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The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal
sliding mode control laws that ensure the exponential convergence of the attitude control system
are developed. Integral sliding mode control (ISMC) is applied to combine the first-order sliding
modewith optimal control and is used to control quaternion-based spacecraft attitudemanoeuvres
with external disturbances and an uncertainty inertia matrix. For the optimal control part the
state-dependent Riccati equation (SDRE) and optimal Lyapunov techniques are employed to solve
the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to
guarantee the stability of the attitude control system under the action of the proposed control laws.
An example of multiaxial attitude manoeuvres is presented and simulation results are included to
verify the usefulness of the developed controllers.

1. Introduction

In recent years considerable attention has been focused on the optimal control problems of
a spacecraft. Various optimal control methods have been proposed for solving the attitude
control problems of a rigid spacecraft. Nonlinear H∞ control was used in [1] to design
a stabilizing feedback control for the spacecraft tracking problem. Sharma and Tewari [2]
devised a Hamilton-Jacobi formulation for tracking attitude manoeuvres of spacecraft to
derive a nonlinear optimal control law. An H∞ inverse optimal adaptive controller was
applied to attitude tracking of spacecraft by Luo et al. [3]. An adaptive control and nonlinear
H∞ control were merged to design robust optimal controllers. An alternative way to design a
robust optimal controller is to use an optimal sliding mode controller design scheme. Sliding
mode control (SMC) is a very effective approach when applied to a system with disturbances
which satisfy the matched uncertainty condition. In recent decade, SMC has widely been
extended to incorporate new techniques, such as adaptive sliding mode control, higher-order
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sliding mode control, and optimal sliding mode control. These techniques preserve the main
advantages of SMC and also yield more accuracy and desired performances [4, 5]. Various
real life applications have been controlled by practical implementations of these advanced
SMC techniques. Adaptive sliding mode controllers were used to control manipulators
[6, 7] and a hypersonic flight vehicle [8]. Second-order sliding mode controllers have been
applied to electrical devices (container cranes [9], DC drives [10, 11]), practical mechanical
systems [12], aircraft pitch control [13], and spacecraft attitude tracking control [14]. On the
other hand, optimal sliding mode control has been rarely studied for practical applications
since this method requires the knowledge of a stabilizing control law to solve a nonlinear
optimal control problem. Optimal sliding mode control has been developed by Xu [15] by
employing the ISMC concept [16] to combine the first-order sliding mode with optimal
control. Unfortunately, the class of nonlinear systems studied in [15] is a special case of
nonlinear systems and cannot be applied to more general highly nonlinear systems (e.g.,
spacecraft system). The Xu method [15] has further been extended to a more general class
of nonlinear systems in [17]. Pukdeboon and Zinober [17] have developed robust optimal
control laws for attitude tracking of a rigid spacecraft. However, the optimal sliding mode
control of a flexible spacecraft has rarely been studied. An optimal sliding mode controller
was developed in [18] for a linear stochastic system and applied to the middeck active
control experiment (MACE) which represents the control structure interaction problem for a
precision spacecraft. The integrated controller combining the optimal slidingmode and active
vibration suppression control was presented in Hu and Ma [19]. For their control strategy,
the technique of active vibration control using smart materials was used to actively suppress
certain flexible modes by designing optimal positive position feedback (OPPF) compensators
that add damping to the flexible structures in certain critical modes in the inner feedback loop.

In this paper the SDRE approach is used for nonlinear optimal controller designs, The
SDRE approach was applied to optimal control and stabilization for nonlinear systems by
Banks and Mhana [20]. The explicit control law has been studied for nonlinear system of the
form ẋ = A(x)x + B(x)u. In [21] Cloutier et al. studied nonlinear regulation and nonlinear
H∞ control via the SDRE approach. Some real-life applications have been successfully
controlled by implementation of the SDRE technique. In [22, 23] the SDRE method was
successfully applied to spacecraft attitude control for rest-to-rest manoeuvres. Zhang et al.
[24] has applied the SDRE technique to propose optimal controllers for a flexible transporter
system with arbitrarily varying lengths. On the other hand, a nonlinear optimal controller
can be developed by using the optimality Hamilton-Jacobi-Bellman principle. This concept
was used to design suboptimal control laws for the Euler-Lagrange systems in [25–27].
One approach to solve the equations obtained by the optimality Hamilton-Jacobi-Bellman
principle is to use the optimal Lyapunov technique and its corresponding theorems. Based on
Krasovskii’s theorem and the optimal Lyapunov technique, many optimal controllers have
been developed for attitude stabilization of a rigid body by El-Gohary and coresearchers
[28–31].

The class of nonlinear systems studied in [15] was a special case of nonlinear systems
whereas our design will work for a more general class of nonlinear systems. We have
developed two controllers for application to spacecraft regulation manoeuvres. The first
controller is an SDRE-based sliding mode (SM) controller. It uses the method in [15] and
combines this with ISMC [16] and the SDRE approach [20]. Since spacecraft systems are
highly nonlinear systems, the SDRE approach is rather difficult to apply for spacecraft
systems. The basic concepts in [32] are used for applying the SDRE approach to the spacecraft
system. For the second controller, the optimal Lyapunov technique [28–31] is applied to
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develop an optimal control law and the ISMC concept is used to merge the resulting optimal
controller and first-order sliding control. The control law obtained could be called an optimal
Lyapunov-based SM controller.

This paper is organized as follows. In Section 2 the dynamic equations of a fexible
spacecraft and the attitude kinematics [33, 34] are described. Section 3 presents the integral
sliding mode [16] technique. In Section 4 we discuss an optimal sliding mode controller and
study the sliding manifold and control law in the stability proof of this controller. Section 5
describes the SDRE technique and includes a systematic procedure for the design of the
SDRE controller. In Section 6 the optimal Lyapunov technique is used to produce an optimal
feedback controller that yields global asymptotic stability. A controller design procedure is
proposed and the stability proof of this controller is investigated. In Section 7 an example
of spacecraft attitude manoeuvres is presented in order to make comparisons between the
SDRE-based SM controller and the optimal Lyapunov-based SM controller. In Section 8 we
present conclusions.

2. Mathematical Model of Flexible Spacecraft

A flexible spacecraft is composed of a rigid main body and some flexible appendages. The
kinematics of the spacecraft determine the attitude of the main body and are described by the
four unitary quaternions [34]

q = e sin
(
β

2

)
, cos

(
β

2

)
, (2.1)

where e ∈ R3 and β denote the Euler axis and Euler angle, respectively. We define here the
quaternion q = [q0 qT ]T with q ∈ R3. Then the kinematic equations are described in terms of
the attitude quaternion [34] and are given by

q̇ =
1
2

[ −qT[
q×] + q0I3×3

]
ω, (2.2)

where ω ∈ R3 denotes the angular velocity vector and I3×3 is the 3 × 3 identity matrix. The
skew-symmetric matrix [q×] is

[
q×] =

⎡
⎢⎢⎣

0 −q3 q2

q3 0 −q1
−q2 q1 0

⎤
⎥⎥⎦, (2.3)

and the elements of q are restricted by ‖q‖ = 1. Note that a quaternion consists of the scalar
q0 and the three-dimensional vector q, so it has four components. The scalar term is used for
avoidance of singular points in the attitude representation [34]. The quaternion kinematics
equation is required to be solved for all four components. However, to indicate the orientation
of the spacecraft or a rotational motion, it is sufficient to use only the vector q because this
vector completely shows rotation axis and angle. Furthermore, the scalar q0 can be calculated
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easily using the vector q and the condition ‖q‖ = 1. More details of quaternion and other
attitude representations can be found in [34, 35].

The equation governing a flexible spacecraft is expressed as [33]

Jω̇ + δT η̈ = −[ω×]
(
Jω + δT η̇

)
+ u + d,

η̈ + Cη̇ +Kη = −δ1up − δJω̇,

(2.4)

where J = JT is the total inertia matrix of the spacecraft, η is the modal displacement, and
δ is the coupling matrix between the central rigid body and the flexible attachments. u ∈ R3

denotes the control input, d ∈ R3 represents the external disturbance torque, and K and C
denote the stiffness and damping matrices, respectively, which are defined as

K = diag
(
ω2

ni, i = 1, 2, . . . ,N
)
,

C = diag(2ζiωni, i = 1, 2, . . . ,N)
(2.5)

with damping ζi and natural frequency ωni.
Letting

ϑ =

[
η

η̇ + δω

]
(2.6)

the relative dynamic equation (2.4) can be written as

Jmbω̇ = −[ω×](Jmbω +Hϑ) + Lϑ −Mω + u + d,

ϑ̇ = Aϑ + Bω,
(2.7)

where

A =

[
0 I

−K −C

]
, B =

[−δ
Cδ

]
, D =

[
0

−δ

]
,

H =
[
0 δT

]
, L =

[
δTK δTC

]
, M = δTCδ.

(2.8)

Note that because of the constraint relation among the four unitary quaternions q20 +
qTq = 1, and q0 are not independent of the other components of the quaternion.

3. ISMC

The concept of integral sliding mode [16] concentrates on the robustness of the motion in the
whole state space. It is constructed without the reaching phase and it ensures insensitivity of
the desired trajectory with respect to matched uncertainties, starting at time zero. However,
since this controller design requires a first-order SMC, the main drawback of sliding control,
namely, the chatter problem, is encountered.
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Integral sliding control is applied to obtain robustness against external disturbances
during the sliding mode. Next the concepts of ISMC [16] are discussed.

Consider a nonlinear dynamic system

ẋ = F(x) +G(x)u, (3.1)

where x ∈ Rn, u ∈ Rm. Suppose there exists a feedback control law u = u0(x) such that system
(3.1) can be stabilized to follow a desired trajectory.

For system (3.1) the control law [16] is designed as

u = u0 + u1, (3.2)

where u0 is the ideal control and u1 is designed to be discontinuous to reject the disturbances.
The switching function [16] is designed as

s = s0(x) + γ, with s, s0(x), γ ∈ Rm. (3.3)

The switching function consists of two parts; the first part s0(x) may be designed as
the linear combination of the system states (similar to the conventional sliding mode design);
and the second part γ induces the integral term and will be determined as

γ̇ = −∂s0
∂x

(F(x) +G(x)u0(x)), γ(0) = −s0(x(0)), (3.4)

where γ(0) is determined based on the requirement s(0) = 0 since the sliding mode occurs
at time zero. To derive the sliding mode equation, the time derivative of s on the system
trajectories should bemade equal to zero. The equivalent control ueq is determined by solving
the algebraic equation ṡ = 0 with respect to the control input and then substituting into the
equation for u.

4. Optimal Sliding Mode Controller Design

We continue the controller design by using the ISMC technique. The way to obtain the
optimal performance is to design an ideal control in (3.2) using nonlinear optimal control
techniques. So our designs will consider an ideal control as the optimal control law for
nonlinear attitude regulation systems. (In this paper the SDRE and the optimal Lyapunov
approaches are used to produce optimal control laws and the details will be given in
subsequent sections.).

We use the integral sliding mode concept to obtain the sliding manifold and a new
robust optimal control law is then developed. The second method of Lyapunov is used to
show that reaching and sliding on the manifold are guaranteed.

Using (3.3) and letting s0(x) = ω + κq, the switching function is designed as

s = ω + κq + φ, (4.1)
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where κ is a 3 × 3 symmetric positive-definite constant matrix and φ is an auxiliary variable
that is the solution of the differential equation [16]

φ̇ = −∂s0
∂x

[F(x) +G(x)υ∗], φ(0) = −s0(x(0)) (4.2)

with υ∗ being the optimal controller for the system (3.1). Using the ISMC (3.2) we obtain an
optimal sliding mode controller

u = υ∗ − μτ, (4.3)

where μ is a m × m positive definite diagonal matrix, and τ ∈ Rm the ith component of τ is
given by

τi = sat(si, εi), i = 1, 2, 3, . . . m,

sat(si, εi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for si > εi,

si/εi for |si| ≤ εi,

−1 for si < −εi.

(4.4)

Now we show that the control law (4.3) is designed such that the reaching and sliding mode
conditions are satisfied. The candidate Lyapunov is selected as [18]

Vs =
1
2
sTs, (4.5)

and the time derivative of V is

V̇s = sT ṡ. (4.6)

With the substitution of ṡ and (4.2)we obtain

V̇s = sT
(
∂s0
∂x

[F(x) +G(x)υ∗] + φ̇

)
. (4.7)

With external disturbances and the optimal control υ∗, the control law (3.2) can be written as

u = u1 + υ∗ + ξ. (4.8)
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Substituting (4.2) and (4.8) in (4.7), the time derivative of Vs can be written as

V̇s = sT
∂s0
∂x

(F(x) +G(x)u)

− sT
[
∂s0
∂x

(F(x) +G(x)u −G(x)u1 −G(x)ξ)
]

= sT
(
∂s0
∂x

G(x)[ξ + u1]
)
.

(4.9)

Let the discontinuous control input u1 have the following form

u1 = −μ sign(s), (4.10)

where μ ∈ Rm×m is a positive definite diagonal matrix. Letting Ψ = (∂s0/∂x)G(x), we obtain

V̇s = sT
(
Ψ
[
ξ − μ sign(s)

])
. (4.11)

We choose s0 such that Ψ is positive definite and then (4.11) becomes

V̇s = |s|(Ψ[
ξ sign(s) − μ

])
. (4.12)

Obviously if μ is chosen such that μ > sup |ξ|, then V̇s < 0. This guarantees reaching and
sliding on the manifold.

5. SDRE Controller

In this section we mention briefly the optimal controller design scheme using the SDRE
approach. The regulation motion of a flexible spacecraft is considered. The Xu method [15]
and the integral sliding mode [16] are merged to design a new controller which consists of
two parts; the sliding mode and optimal control. The first-order sliding mode is used for the
sliding mode controller design while the optimal control law is designed using the SDRE
method [20] to solve the infinite-time optimal quadratic problem.

The SDRE method requires factorization of the nonlinear dynamics into the state
vector and the product of a matrix valued function which depends the state itself. This matrix
is so called the state-dependent coefficient (SDC) matrix. For the optimal controller design,
the difficulty of using the SDRE approach is how choose the appropriate SDC matrix. Using
the basic concepts described in [32] we can rewrite the spacecraft dynamics equation in a
more suitable form and the appropriate SDC matrix is then selected. After we obtain the
optimal control law, a new optimal sliding mode controller will be designed by merging the
optimal control and first-order sliding mode controller.

This controller is designed such that it minimizes the performance index

I =
∫∞

0

(
xTQ(x)x + uTN(x)x + uTR(x)u

)
dt, (5.1)
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where

ẋ = f(x) + g(x)u, x(0) = x0 ,

f(x) =

⎡
⎢⎢⎣
−J−1mb([ω×]Jmbω + [ω×]Hϑ +Mω − Lϑ)

0.5
([
q×] + q0I3

)
Aϑ + Bω

⎤
⎥⎥⎦, g(x) =

⎡
⎢⎢⎣
J−1mb

03×3

03×3

⎤
⎥⎥⎦.

(5.2)

Here, the state x ∈ Rn is defined as x = [ωT qT ϑT ]T . The weighting matrices Q(x), N(x),
and R(x) are positive semidefinite and positive definite, respectively. f(x) and g(x) are all
sufficiently smooth functions of the state vector x(t), and x(0) is the initial conditions of the
process. It is assumed that f(0) = 0 and g(x)/= 0 for all x.

To apply the SDRE method f(x) must be decomposed as f(x) = a(x)x. Using the
theorem in [32] the SDC matrix a(x) can be obtained by writing f(x) in a more suitable form
as

f(x) =

⎡
⎢⎢⎣
−J−1

mb[ω×]Jmb − J−1
mb

M 03×3 −J−1
mb[ω×]H + J−1

mb
L

0.5
([
q×] + q0I3

)
03×3 03×8

B 08×3 A

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ω

q

ϑ

⎤
⎥⎥⎦. (5.3)

To use the SDRE approach the SDC matrix a(x) is chosen as

a(x) =

⎡
⎢⎢⎣
−J−1

mb[ω×]Jmb − J−1
mb

M 03×3 −J−1
mb[ω×]H + J−1

mb
L

0.5
([
q×] + q0I3

)
03×3 03×8

B 08×3 A

⎤
⎥⎥⎦. (5.4)

Thus, the optimal control υ∗ [15] is given as

υ∗ = −R−1
(
gTΠ(x) +N(x)

)
x, (5.5)

where Π(x) is the solution to the generalized SDRE [15]

Π(x)
[
a(x) − g(x)R−1(x)NT (x)

]
+
[
aT (x) −N(x)R−1(x)gT (x)

]
Π(x) +Q(x)

−Π(x)g(x)R−1(x)gT (x)Π(x) −N(x)R−1NT (x) = 014×14.
(5.6)

Note that the parameterization in (5.3) is not unique. It has explicitly been selected to make
the stability problem analytically tractable. It is convenient to use this parameterization, since
the state-dependent Riccati equation (5.6)will have a simple form to be solved forΠ(x). Next,
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it should be checked whether the parametrization in (5.3) is pointwise controllable for all x.
The controllability matrix is

MC =
[
g(x) a(x)g(x) a2(x)g(x)

]

=

⎡
⎢⎢⎣
J−1
mb

−J−1
mb[ω×] − J−1

mb
MJ−1

mb
M13

C

03×3 0.5
([
q×] + q0I3

)
J−1mb M23

C

03×3 BJ−1
mb

M33
C

⎤
⎥⎥⎦,

(5.7)

where

M13
C =

(
J−1mb[ω×] + J−1mbMJ−1mb

)(
[ω×] −MJ−1mb

)
+
(−J−1mb[ω×]H + J−1mbL

)
BJ−1mb,

M23
C = 0.5

([
q×] + q0I3

)(−J−1mb[ω×] − J−1mbMJ−1mb

)
,

M33
C = B

(−J−1mb[ω×] − J−1mbMJ−1mb

)
+ABJ−1mb.

(5.8)

Clearly the condition for pointwise controllability is

|MC| =
∣∣∣J−1mb

∣∣∣
∣∣∣∣∣
0.5

([
q×] + q0I3

)
J−1
mb

M23
C

BJ−1mb M33
C

∣∣∣∣∣, (5.9)

where |MC| denotes the determinant of the matrixMC. Letting T(q) = [q×]+q0I3, one obtains

|Mc| =
∣∣∣J−1mb

∣∣∣
∣∣∣∣12T

(
q
)
J−1mbABJ−1mb

∣∣∣∣. (5.10)

Using (5.10)we can ensure that |MC|/= 0. This implies thatMC has full rank. In Cimen [36] it
was stated that the observability matrix has full rank by choosing the Q(x) positive definite
for all x ∈ Rn. If our design selects Q(x) to be positive definite, the observability matrix will
be a full rank matrix and the sufficient condition for observability is satisfied. Thus, the SDRE
method generates a closed loop solution, which is locally asymptotically stable. However, the
success of the SDRE approach depends on a good choice of the matrix a(x). It is difficult to
obtain global stability because of the limitations of this technique.

After we obtain the matrix a(x), an optimal controller υ∗ can be designed using (5.5).
Substituting this control into (4.3) the SDRE-based SM controller is obtained.

6. Optimal Lyapunov Controller

This section presents an optimal control moment which stabilizes the zero solution and
minimizes the selected performance index (5.1). The basic principles in Krasovskii [37] with
a Lyapunov function are applied to develop an optimal controller. The stability proof of this
control law is also performed by using the optimal Lyapunov technique (see [28–31]).
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The optimal Lyapunov function, defined as the minimum value of the performance
index (5.1), is given by

V (x) = min
u

1
2

∫∞

0

(
xTQ(x)x + 2uTN(x)x + uTR(x)u

)
dt. (6.1)

The function V (x) represents the value of the integral performance index when evaluated
along the optimal trajectory. Let the positive definite symmetric matrix Q ∈ Rn×n and the
matrix N ∈ Rm×n be partitioned as

Q =

⎡
⎢⎢⎣
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤
⎥⎥⎦, N =

[
N1 N2 N3

]
, (6.2)

respectively. We next show that V (x) can be treated as a Lyapunov function. Based on
Krasovskii’s theorem, the function V (x) satisfies the following equation:

B(V, x, u) =
∂V

∂t
+ (∇ωV )ω̇ +

(∇qV
)
q̇ + (∇ϑV )ϑ̇ + Ω(V, x, u) ≥ 0. (6.3)

We assume that uo is the optimal control law. From the optimality conditions of Krasovskii’s
theorem, function V must satisfy the following partial differential equation:

0 =
∂V

∂t
+
∂V

∂ω
ω̇ +

∂V

∂q
q̇ +

∂V

∂ϑ
ϑ̇ +

1
2

(
xTQx + 2uT

uo
Nx + uT

uo
Ruuo

)
(6.4)

which is known as the Hamilton-Jacobi equation. Clearly, the resulting partial differential
equation (6.4) contains the optimal control uo. In particular if the optimal control uo is known,
we can solve this equation for the optimal Lyapunov function V . On the other hand if the
function V is known, this equation can be solved for the optimal control uo. In fact both
solutions of this equation and control torques are dependent on each other. Substituting (2.2)
and (2.7) into (6.4), one obtains

0 =
∂V

∂t
+
∂V

∂ω

(
J−1mb(−[ω×]Jmbω − [ω×]Hϑ −Mω + Lϑ + uo)

)

+
∂V

∂q

[
−1
2
(
qTω

)T 1
2
(
T
(
q
)
ω
)T]T +

∂V

∂ϑ
(Aϑ + Bω)

+
1
2
ωTQ11ω +

1
2
qTQ22q +

1
2
ϑTQ33ϑ +ωTQ12q +ωTQ13ϑ + qTQ23ϑ

+ uT
oN

[
ωT qT ϑT

]
+
1
2
uT
oRuo.

(6.5)



Mathematical Problems in Engineering 11

Let a Lyapunov function be chosen as

V (x) =
1
2
ωTJmbω + α

(
q0 − 1

)2 + αqTq +
1
2
ϑTPϑ, (6.6)

where P is a positive-definite matrix that is a solution of the Lyapunov equation ATP + PA =
−QA with a positive-definite matrixQA. The gradient of V with respect to ω, q and ϑ is given
by

∂V

∂ω
= ωTJmb,

∂V

∂q
=
[
2α

(
q0 − 1

)
2αq

]
,

∂V

∂ϑ
= ϑTP. (6.7)

This function consists of the sum of quadratic terms, so it is a positive definite function with
respect to stabilizing variables. Substituting (6.7) into (6.5), one obtains

0 = ωTLϑ −ωTMω +ωTuo +
1
2
ωTQ11ω +

1
2
qTQ22q +

1
2
ϑTQ22ϑ +ωTQ12q

+ωTQ13ϑ + qTQ23ϑ + uT
oN

[
ωT qT ϑT

]
+
1
2
uT
oRuo.

(6.8)

After lengthy calculus manipulation, one can obtain the optimal control uo as

uo = −αq −Λω. (6.9)

We can conclude that (6.5) can be solved by using the Lyapunov function V (x) and the
controller uo with the following relations:

Q11 = Λ + 2M, Q22 = α2Λ−1, Q33 = QA = −1
2

(
PA +ATP

)
,

Q31 = QT
13 = −1

2
PB, Q21 = QT

12 = 03×3, Q32 = QT
23 = 08×3,

Λ = R−1, N1 = 03×3, N2 = αΛ−1, N3 = 03×8.

(6.10)

We also prove that the optimal control (6.9) with the chosen Lyapunov function (6.6) yields
global asymptotic stability. For the purpose of the stability analysis, the first time derivative
of V (x) is considered and it takes the form

V̇ (x) = ωTJmbω̇ + 2α
(
q0 − 1

)
q̇0 + 2αqT q̇ + ϑTPϑ̇. (6.11)

Substituting (2.7) into (6.11), we obtain

V̇ =
(
ωTLϑ −ωTMω − αωTq −ωTΛω

)
+ 2α

(
q0 − 1

)(−1
2

(
qTω

))

+ 2αqT
(
1
2
[
q0I3 +

[
q×]]

)
ω + ϑTP(Aϑ + Bω)

(6.12)
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Figure 1: SDRE-based SM controller: components of quaternion vector with external disturbances.

which can be further expressed as

V̇ = ωTLϑ −ωTMω − αωTq −ωTΛω

− αq0q
Tω + αqTω + αqTq0ω − ϑTQAϑ + ϑTPBω

(6.13)

which can be further expressed as

V̇ = −βTΦβ, (6.14)

where

β =

[
ω

ϑ

]
, Φ =

[
Λ +M −L
−PB QA

]
. (6.15)

We know that there exists an appropriate controller parameter Λ such that Φ is positive
definite. Therefore V̇ (x) is negative definite and global asymptotic stability has been proved.

After obtaining the resulting optimal controller, a new optimal sliding mode controller
will be developed by combining this controller with a first-order SMC. The optimal
Lyapunov-based SM controller can be obtained by letting υ∗ = uo and substituting (6.9) into
(4.3).

7. Simulation Results

An example of attitude control of flexible spacecraft [33] is presented with numerical
simulations to validate and compare both controllers; SDRE-based SM controller and optimal
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Figure 2: SDRE-based SM controller: components of angular velocity vector with external disturbances.
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Lyapunov-based SM controller. The spacecraft is assumed to have the nominal inertia
matrix

J =

⎡
⎢⎢⎣
350 3 4

3 270 10

4 10 190

⎤
⎥⎥⎦ kg ·m2, (7.1)
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Figure 4: SDRE-based SM controller: control torques with external disturbances.

and coupling matrices

δ =

⎡
⎢⎢⎢⎢⎢⎣

6.45637 1.27814 2.15629

−1.25619 0.91756 −1.67264
1.11678 2.48901 −0.83674
1.23637 −2.6581 −1.12503

⎤
⎥⎥⎥⎥⎥⎦
kg1/2 ·m/s2, (7.2)

respectively. The first four elastic modes have been considered in the model used for simu-
lating spacecraft at ωn1 = 0.7681, ωn2 = 1.1038, ωn3 = 1.8733, and ωn4 = 2.5496 with damping
ζ1 = 0.0056, ζ2 = 0.0086, ζ3 = 0.013, and ζ4 = 0.025. The weighting matrices are chosen
to be Q = diag(1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1) and R = diag(1, 1, 1). The initial states of the
rotation motion are given by q(0) = [0.173648 − 0.263201 0.789603 − 0.526402]T , ω(0) =
[0 0 0]T rad/sec, and ϑ(0) = [0 0 0 0 0 0 0 0]T . For the SDRE-based SM controller the control
vector is designed by using (4.3) with optimal control (5.5). The optimal Lyapunov-based
SM controller is obtained by using (4.3) with optimal control (6.9). For both controllers the
switching function (4.1) is chosen using the same constant matrix κ defined as κ = λI3×3 with
λ = 1.2. To obtain s(0) = 0 the initial φ is chosen to be φ(0) = −(ω(0) + κq(0)). The attitude
control problem is considered in the presence of external disturbance d(t). The disturbance
model [33] is

d(t) = 0.1 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.3 cos
(

t

10

)
+ 0.1

0.15 sin
(

t

10

)
+ 0.3 cos

(
t

10

)

0.3 sin
(

t

10

)
+ 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Nm. (7.3)
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Figure 5: SDRE-based SM controller: modal displacements with external disturbances.
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Figure 6: SDRE-based SM controller: modal displacements with external disturbances.

Simulation studies have been performed to test both controllers. Figures 1 and 2 clearly show
the performance of the SDRE-based SM controller. The responses of quaternion and angular
velocity components reach zero after 70 seconds. Obviously the effect of external disturbances
on quaternion and angular velocity is totally removed. From Figure 4 it can be seen that
the SDRE-based SM controller stabilizes the closed-loop system of flexible spacecraft and
provides quite smooth control torque responses. As shown in Figures 5 and 6 the modal
displacements (μ1–μ1) converge to the neighborhood of zero.

On the other hand Figure 7 shows that the optimal Lyapunov-based SM controller
provides good trajectories of the quaternions and they reach zero in about 80 seconds.
Similarly, from Figure 8 it can be seen that the angular velocities reach zero after 100 seconds.
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Figure 8: Optimal Lyapunov-based SM controller: components of angular velocity vector with external
disturbances.

As shown in Figure 10 the control torques obtained by the optimal Lyapunov-based SM
controller are quite smooth although the external disturbances are taken into account. The
responses of modal displacements are similar to those obtained by the SDRE-based SM
controller (Figures 11 and 12). For both controllers, the sliding vectors are on the sliding
manifold (s = 0) at time zero and very close to zero thereafter (Figures 3 and 9).
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Figure 10: Optimal Lyapunov-based SM controller: control torques with external disturbances.

Making comparisons between the simulation results obtained by the SDRE-based
SM controller and optimal Lyapunov-based SM controller, it can be seen that the SDRE-
based SM controller provides smoother attitude responses and achieves the desired attitude
faster. In view of these simulation results, the SDRE-based SM controller seems to be a
more useful approach for general cases of attitude regulation problems. Different models
and manoeuvres may yield different behaviour. However, the success of the SDRE approach
depends on a good choice of the SDC matrix a(x). It is difficult to obtain global stability
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Figure 11: Optimal Lyapunov-based SM controller: modal displacements with external disturbances.
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Figure 12: Optimal Lyapunov-based SM controller: modal displacements with external disturbances.

because of the limitations of this technique. On the other hand the difficulty of using the
optimal Lyapunov approach is how to find a suitable Lyapunov function. Once this function
is known, the optimal Lyapunov approach can be used for the optimal controller design that
yields global asymptotic stability.

8. Conclusion

We have studied two controller designs for attitude stabilization of a flexible spacecraft.
Both the SDRE-based SM controller and optimal Lyapunov-based SM controller have
been successfully applied to the spacecraft attitude manoeuvres. To obtain both controller
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designs, ISMC combined with first-order sliding mode and optimal control has been applied
to quaternion-based spacecraft attitude manoeuvres with external disturbances and an
uncertain inertia matrix. The SDRE and the optimal Lyapunov approaches are used to solve
the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used
to guarantee the stability of the attitude control system under the action of both controllers.
An example of multiaxial attitude manoeuvres is presented and simulation results are given
and compared to verify the usefulness of the developed controllers.
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