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This paper considers the extended problem of the thermosolutal Marangoni forced convection
boundary layer by Pop et al. (2001) when the wall is permeable, namely, there is a suction or
injection effect. The governing system of partial differential equations is transformed into a system
of ordinary differential equations, and the transformed equations are solved numerically using
the shooting method. The effects of suction or injection parameter f0 on the velocity, temperature,
and concentration profiles are illustrated and presented in tables and figures. It is shown that dual
solutions exist for the similarity parameter β less than 0.5.

1. Introduction

Thermosolutal Marangoni forced convection boundary layer flow refers to the thermal
and solutal concentration in Marangoni forced convection boundary layer flow due to the
surface tension gradients. The study of Marangoni convection has attracted the interest of
many researchers in recent years. This is mainly because of its vast contributions in the
industrial field especially in the art work of dyeing on the ground (Kuroda [1]) and in the
field of crystal growth (Arafune and Hirata [2]). Some of the relevant works are done by
Christopher and Wang [3] who studied the effects of Prandtl number on the Marangoni
convection over a flat plate. They have also presented a similarity solution for Marangoni
flow for both the momentum and the energy equations assuming a developing boundary
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layer along a surface. Besides, Chamkha et al. [4] have dealt with a steady coupled dissipative
layer, called Marangoni mixed convection boundary layer. The mixed convection boundary
layer is generated when besides the Marangoni effects there are also buoyancy effects due
to the gravitational and external pressure gradient effects. Furthermore, in the following
papers, numerical solutions on Marangoni boundary layers in various geometries were
discovered, analyzed, and discussed, for instance, papers by Golia and Viviani [5], Dressler
and Sivakumaran [6], Al-Mudhaf and Chamkha [7], and Magyari and Chamkha [8]. An
excellent paper on Marangoni boundary layer flow along the interface of the immiscible
nanofluid by Arifin et al. [9] has been recently published. They show that the results indicate
that dual solutions exist when β < 0.5. The paper complements also the work by Golia and
Viviani [5] concerning the dual solutions in the case of adverse pressure gradient.

Investigations into the effects of suction and injection on the boundary layer flow
have generated the interest of many researchers nowadays. Pop andWatanabe [10] analyzed
the effects of uniform suction or injection on the boundary layer flow and heat transfer on
a continuous moving permeable surface. Meanwhile, Hamza [11] obtained the similarity
solution for a flow between two parallel plates (rectangular or circular) approaching or
receding from each other with suction or injection at the porous plate. Shojaefard et al.
[12] investigated the numerical study concerning flow control by suction and injection on
a subsonic airfoil. They discovered that the surface suction can significantly increase the lift
coefficient; meanwhile, the injection decreases the skin friction.

The existence of dual solutions or second solutions has aroused a lot of interest of
many authors. We mention here some of the papers that discovered the dual solution in their
problems. For example, papers by de Hoog et al. [13], Ingham [14], Ramachandran et al.
[15], Xu and Liao [16] and Ishak et al. [17–19]. Ridha [20] considered the dual solutions
of two coupled third-degree nonlinear ordinary differential equations associated with the
incompressible viscous laminar flow along a corner. Further, Xu and Liao [16], obtained the
dual solutions of boundary layer flow over an upstream moving plate using the homotopy
analysis method (HAM). Ishak et al. [19] discovered the dual solution of the classical Blasius
problem. In their study, they considered the boundary layer flow over a static flat plate and
introduced a new parameter, namely, the velocity ratio parameter to analyze the case when
both the flat plate and the free stream are in moving situations. Dual solutions are found to
exist when the plate and the free stream move in the opposite directions.

In this paper, we extend the problem by Pop et al. [21] by taking the effects of suction
or injection for the boundary layer flow. We would also like to investigate whether the dual
solutions exist in the above problem. To validate our findings, we have compared the present
results with those of Pop et al. [21] for the case of impermeable surface. It is found that
the results are in very good agreement. The effects of suction and injection parameter on
the surface velocity, temperature, and concentration as well as on velocity, temperature, and
concentration profiles are discussed and illustrated in tables and figures.

2. Mathematical Formulation

We consider the steady two-dimensional flow along the interface S of two Newtonian
immiscible fluids, where x and y are the axes of a Cartesian coordinate system. We
also assume that the temperature and concentration at the interface are Ts(x) and Cs(x),
respectively. Besides, the surface is assumed to be permeable so as to allow for possible
suction or injection at the wall (Al-Mudhaf and Chamkha [7]). Under the usual boundary-
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layer approximations, the basic governing equations are (see Pop et al. [21])

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= ue

due

dx
+ ν

∂2u

∂y2
,

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
,

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
,

(2.1)

with the boundary conditions,

v = vw, T = Ts(x), C = Cs(x), μ
∂u

∂y
= σT

∂T

∂x
+ σC

∂C

∂x
on y = 0, (2.2)

u −→ ue(x), T −→ Tm C −→ Cm as y −→ ∞, (2.3)

where u and v are the velocity components along x and y axes, T is the fluid temperature,
C is the solutal concentration, ue(x) is the external velocity, α is the thermal diffusivity, ν is
the kinematic viscosity, D is the mass diffusivity, and vw is the constant suction (vw > 0) or
injection (vw < 0) velocity, μ is the dynamic viscosity, and σT and σC are the rates of change
of surface tension with temperature and solute concentration, respectively. As mentioned by
Pop et al. [21], the forth condition of (2.2) represents the Marangoni coupling conditions at
the interface (balance of the surface tangential momentum), having considered for the surface
tension the linear relation given by

σ = σm − σT (T − Tm) − σC(C − Cm), σT = −∂σ
∂T

, σC = − ∂σ

∂C
. (2.4)

Following Pop et al. [21], we define the following nondimensional variables:

x = L0 +XL, y = δLY, u = UcU, v = δUcV,

T = Tm + tΔT, C = Cm + φΔC, ue(x) = UcUe(x), vw = UcLδ
2Vw,

(2.5)

where L0 locates the origin of the curvilinear abscissa x, L is the extension of the relevant
interface S, and ΔT and ΔC are positive increments of temperature and solute concentration
linked to the temperature and solute concentration gradients imposed on the interface,



4 Mathematical Problems in Engineering

respectively. Further, δ is a scale factor in the direction normal to the interface, and Uc

is the reference velocity which is defined as δ = Re−1/3 and Uc = ν/(Lδ2) with Re =
σTΔTL/νμ being the Reynolds number. Substituting (2.5) into (2.1), we obtain the following
nondimensional equations:

∂U

∂X
+
∂V

∂Y
= 0,

U
∂U

∂X
+ V

∂U

∂Y
= Ue

dUe

dX
+
∂2U

∂Y 2
,

U
∂t

∂X
+ V

∂t

∂Y
=

1
Pr

∂2t

∂Y 2
,

U
∂φ

∂X
+ V

∂φ

∂Y
=

1
Sc

∂2φ

∂Y 2
,

(2.6)

and the boundary conditions (2.2) and (2.3) reduce to

V = Vw, t = ts(X), φ = φs(X),
∂U

∂Y
=

∂t

∂X
+ ε

∂φ

∂X
on Y = 0,

U −→ Ue(X), t −→ 0, φ −→ 0 as Y −→ ∞,

(2.7)

where Pr is the Prandtl number, Sc is the Schmidt number, and ε is the Marangoni parameter
and is defined as

ε =
MaC

MaT
=

σCΔC

σTΔT
, (2.8)

with MaC = σCΔCL/μα and MaT = σTΔTL/μα being the solutal Marangoni number and
thermal Marangoni number, respectively. It is also noted that positive Vw is for fluid suction
and negative for fluid injection at the wall. Equations (2.6) can be transformed into the
corresponding ordinary differential equations by the following transformations (see Pop et
al. [21]):

U = u0X
(2β−1)/3f ′(η

)
, V =

1
3
u0l0x

(β−2)/3((2 − β
)
ηf ′(η

) − (
1 + β

)
f
(
η
))
,

t = −t0Xβθ
(
η
)
, φ = −c0Xβh

(
η
)
, Ue = u0X

(2β−1)/3, η =
Y

l0x(2−β)/3 ,
(2.9)

where f ′(η), θ(η), and h(η) represent the velocity, temperature, and concentration profiles in
the similarity plane and η being the similarity variable. The constant scale factors u0, t0, c0,
and l0 are chosen in order to simplify the equations, and these must satisfy the following
conditions:

u0l
2
0 =

3
β + 1

,
t0l0
u0

=
1
β
,

c0
t0

= 1. (2.10)
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If we take t0 = 1 or c0 = 1 (due to arbitrariness of the temperature difference ΔT or the solutal
concentration difference ΔC), then l0 and u0 are uniquely determined as

l0 =
(

3
1 + β

)1/3

β−1/3, u0 =
(

3
1 + β

)1/3

β2/3. (2.11)

The transformed ordinary differential equations are

f ′′′ + ff ′′ +
2β − 1
β + 1

(
1 − f ′2

)
= 0,

1
Pr

θ′′ + fθ′ − 3β
1 + β

f ′θ = 0,

1
Sc

h′′ + fh′ − 3β
1 + β

f ′h = 0,

(2.12)

along with the boundary conditions

f(0) = f0, f ′′(0) = −1 − ε, θ(0) = 1, h(0) = 1,

f ′(∞) = 1, θ(∞) = 0, h(∞) = 0,
(2.13)

where f0(>0) is the constant suction parameter and f0(<0) is the constant injection parameter.

3. Results and Discussion

The system of transformed governing equations (2.12) along with the boundary equations
(2.13) is solved numerically using the shooting method. Tables 1, 2, and 3 illustrate the
influence of the suction and injection parameter f0 = 1, 0, and −1 on the surface velocity,
f ′(0), surface temperature, −θ′(0), and surface concentration, −h′(0) for different values of
the similarity parameter, β and different values of the Schmidt number, Sc in the case of
Marangoni parameter, ε = 0, 1, and −1. Further, the Prandtl number, Pr, is taken to be
Pr = 0.7 corresponding to air and the Schmidt number; Sc has the following values: Sc = 0.22
(hydrogen), 0.6 (water), 0.75 (oxygen), and 0.78 (ammonia). It should be noticed that the
results given in the parentheses ( ) are the second (dual) solutions. Results obtained by Pop
et al. [21] for the case of impermeable surface are also included in these tables. It is clearly
seen that the results agree well in all the three tables.

Figures 1, 2, and 3 present the variations of the surface velocity, temperature, and
concentration with β, respectively, when Pr = 0.7, Sc = 0.78 in the case of ε = 0 (Marangoni
effect neglected) with the effect of the parameter f0. The dashed line refers to the second
solution of the problem. From these figures, we can see that the second solutions exist for
β < 0.5. This discovery is consistent with the statement given in Pop et al. [21], that for β < 0.5,
the solutions are not unique. Not only that it can be observed from the figures but the effects
of suction or injection parameter can be clearly seen when β > 0.4. The imposition of suction
(f0 > 0) at the surface has the tendency to reduce the velocity but increase the temperature
and concentration gradients along the interface. Meanwhile, the opposite results are observed
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Figure 1: Variation of the surface velocity with β when Pr = 0.7, Sc = 0.78, and ε = 0.
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Figure 2: Variation of the surface temperature with β when Pr = 0.7, Sc = 0.78, and ε = 0.

for the case of surface injection (f0 < 0), an increase in the surface velocity and decrease in
the surface temperature and concentration gradients. Hence, consequently, the interface heat
transfer and the interface mass transfer will decrease as well.
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Figure 4: Effects of f0 on the velocity profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = 0.

Figures 4 to 12 illustrate the effects of parameter f0 on the velocity f ′(η), temperature
θ(η), and concentration h(η) profiles when Pr = 0.7 (air), Sc = 0.78 (ammonia), and β = 0.35 in
the case of ε = 0, 1, and −1. The influence of f0 on the velocity profiles is depicted in Figures 4,
5, and 6. The figures show that the suction parameter decreases the velocity profiles, and the
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Figure 5: Effects of f0 on the velocity profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = 1.
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Figure 6: Effects of f0 on the velocity profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = − 1.

injection parameter increases the velocity profiles for the case of theMarangoni parameter ε =
0 and 1. Further, in Figures 7, 8, and 9, we can see the effects of f0 on the temperature profiles.
The figures indicate that for ε = 0, 1, and −1, imposition of the suction parameter tends to
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Figure 7: Effects of f0 on the temperature profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = 0.
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Figure 8: Effects of f0 on the temperature profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = 1.

reduce the temperature profiles, whereas the injection parameter increases the profiles. It
should be noticed that the second solutions in these cases have positive values. Besides, it
can also be seen that reduction in Marangoni parameter ε causes the dual solutions to be
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Figure 9: Effects of f0 on the temperature profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = − 1.
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Figure 10: Effects of f0 on the concentration profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = 0.

more stable. On the other hand, the effects of suction or injection parameter on concentration
profiles h(η) are shown in Figures 10, 11, and 12 and are similar to the concentration
profiles.
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Figure 11: Effects of f0 on the concentration profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = 1.
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Figure 12: Effects of f0 on the concentration profiles when Pr = 0.7, Sc = 0.78, β = 0.35, and ε = − 1.

4. Conclusions

The present work deals with the thermosolutal Marangoni forced convection boundary layer
flow as considered by Pop et al. [21]. We extended the paper by taking into consideration
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the effects of suction or injection. On the other hand, we also studied the existence of
dual similarity solutions in the present problem. Further, the governing equations are
transformed into ordinary differential equations and are then solved numerically using the
shooting method. The effects of suction or injection parameter on the flow and heat transfer
characteristics are studied. In general, imposition of suction is to decrease the velocity,
temperature, and concentration profiles, whereas injection shows the opposite effects. On
the other hand, the second (dual) solutions are discovered to exist when similarity parameter
β < 0.5.
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