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Different high-performance fins are mathematically analyzed in this work. Initially, three types
are considered: (i) exponential, (ii) parabolic, and (iii) triangular fins. Analytical solutions are
obtained. Accordingly, the effective thermal efficiency and the effective volumetric heat dissipation
rate are calculated. The analytical results were validated against numerical solutions. It is found
that the triangular fin has the maximum effective thermal length. In addition, the exponential pin
fin is found to have the largest effective thermal efficiency. However, the effective efficiency for the
straight one is the maximumwhen its effective thermal length based on profile area is greater than
1.4. Furthermore, the exponential straight fin is found to have effective volumetric heat dissipation
that can be 440% and 580% above the parabolic and triangular straight fins, respectively. In
contrast, the exponential pin fin is found to possess effective volumetric heat dissipation that can
be 120% and 132% above the parabolic and triangular pin fins, respectively. Finally, new high
performance fins are mathematically generated that can have effective volumetric heat dissipation
of 24% and 12% above those of exponential pin and straight fins, respectively.

1. Introduction

Fins are widely used in industry, especially in heat exchanger and refrigeration industries
[1–5]. They are extended surfaces used to enhance heat transfer between the solids and the
adjoining fluids [6]. Heat transfer inside fins has been extensively studied in the literature.
Many mathematical analyses related to conduction and convection heat transfer in fins have
been published. Harper and Brown [7] are considered the forerunner who began analyzing
heat transfer inside fins mathematically. They found that one-dimensional analysis was
sufficient for heat transfer inside fins. In addition, they recommended that tip heat loss can
be accounted by using a corrected fin length which is equal to half of the fin thickness added
to its length. Also, they pointed out that the differential surface area of the element is equal
to the differential fin length element divided by the cosine of the taper angle.
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Later on, Schmidt [8] analyzed mathematically longitudinal and radial fins of uniform
thickness and longitudinal fins of trapezoidal profile. Many works have been followed before
the work of Gardner [9]. He derived general mathematical solutions for the temperature
excess profile and fin efficiency for fin satisfying the Murray [10] assumptions and whose
thickness varies as some power of the distance from the fin tip. Gardner [9] work is
considered an important work because he reemphasized the concept of fin efficiency. This
concept has been used later on by thousands of works. In addition, he was one of the first to
demonstrate the use of applied mathematics including the use of modified Bessel functions
in conduction and convection heat transfer. Later on, many works used applied mathematics
in analyzing heat transfer inside fins subject to variable convection heat transfer coefficient
[11–13]. A sufficient and interesting literature about mathematical analysis in fin heat transfer
is shown in the works of Kraus et al. [14] and Aziz and McFadden [15].

The fin thermal efficiency, ηf , is defined according to Gardner [9] as the fin heat
transfer rate divided by the fin heat transfer rate if the fin surface is kept at uniform
temperature of Tb. According to this definition, the fin efficiency depends on two independent
factors: (i) fin thickness or radius distribution, and (ii) fin thermal length. Nowadays,
it becomes a primary goal to improve the performance of thermal systems. This goal is
obviously achievable by avoiding having fin thermal lengths more than its effective value.
Owing to the fact that the fin effective thermal length is directly related to the fin profile [16],
the fin efficiency can be improved and can be dependent only on the fin thickness or radius
distribution. It should be noted that the fin effective thermal length is the one that produces
fin heat transfer rate 1.0 percent below its maximum value. In this work, the fin efficiency
based on the effective thermal length is named as the effective thermal efficiency. To the best
knowledge of the author, almost negligible attention has been made towards analyzing high-
performance fins based on their effective thermal efficiency. In addition, reducing the number
of variables influencing the fin efficiency facilitates extrapolations of new generations of high-
performance fins beyond those analyzed in the literature.

In this work, high-performance fins with effective thermal lengths are mathematically
analyzed. Three types are initially considered: (i) exponential, (ii) parabolic, and (iii)
triangular fins. Analytical forms for the excess temperature are obtained. As such, the
fin effective thermal efficiency and the effective volumetric heat dissipation are calculated
both analytically and numerically. Comparisons between the performances of each fin are
performed. Finally, ultrahigh performance fin geometries are extrapolated from the derived
solutions.

2. Problem Formulation

In this work, Murray [10] assumptions are considered. In addition, the square of the fin
profile gradient is neglected.

2.1. Straight-Fins

Consider a rectangular fin having a thickness H(x) that is much smaller than its length L as
shown in Figure 1.H(x) is considered to vary along the fin centerline axis (x-axis) according
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Figure 1: Schematic diagram for the straight fin and the system coordinate.

to the following relationships:

H(x) = Hbe
−bx, (2.1)

H(x) = Hb

(
1 − x

L

)
, (2.2)

H(x) = Hb

(
1 − x

L

)2
, (2.3)

where b is a real positive number named as the exponential index. The quantityHb represents
the fin thickness at its base (x = 0). Equations (2.1)–(2.3) correspond to exponential,
triangular, and parabolic straight fins, respectively.

The application of the energy equation [16] on a fin differential element results in the
following differential equation:

d

dx

(
H

dT

dx

)
− 2h

k
(T − T∞) = 0, (2.4)

where T, T∞, k, and h are the fin temperature, free stream temperature, fin thermal
conductivity, and the convection heat transfer coefficient between the fin and the fluid stream,
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respectively. The boundary conditions are the adiabatic tip conditions. Mathematically, they
are given by

T(x = 0) = Tb,
∂T

∂x

∣∣∣∣
x=L∞

= 0.0, (2.5)

where L∞ is the length that produces fin heat dissipation rate equal to 99 percent of the
maximum heat dissipation rate.

2.1.1. Exponential Straight Fins

By solving (2.4) using (2.1), the following temperature distribution is obtained:

T(x) − T∞
Tb − T∞

= e0.5bx
[
K0
(
2Xe0.5bL∞

)
I1
(
2Xe0.5bx

)
+ I0
(
2Xe0.5bL∞

)
K1
(
2Xe0.5bx

)

K0
(
2Xe0.5bL∞

)
I1(2X) + I0

(
2Xe0.5bL∞

)
K1(2X)

]
, (2.6)

where X = m/b and m =
√
2h/kHb. The fin heat transfer rate per unit width for the

exponential straight fin is calculated from

q′f = −kHb
dT

dx

∣∣∣∣
x=0

=
√
2hkHb(Tb − T∞)

[
I0
(
2Xe0.5bL∞

)
K0(2X) −K0

(
2Xe0.5bL∞

)
I0(2X)

K0
(
2Xe0.5bL∞

)
I1(2X) + I0

(
2Xe0.5bL∞

)
K1(2X)

]
.

(2.7)

The maximum heat transfer rate through exponential straight fins is obtained when
considering L∞ approaching infinity. It is equal to

(
q′f
)
∞
= −kHb

dT

dx

∣∣∣∣
x=0

=
√
2hkfHb(Tb − T∞)

[
K0(2X)
K1(2X)

]
. (2.8)

The effective thermal lengthmL∞ is obtained by solving the equation given by q′f = 0.99(q′f)∞.
As such, the mL∞ must satisfy the following relationship:

K0
(
2XemL∞/2X)

I0
(
2XemL∞/2X

) =
0.01K0(2X)K1(2X)

I0(2X)K1(2X) + 0.99I1(2X)K0(2X)
. (2.9)

The fin thermal efficiency based on the fin effective thermal length is denoted by η∞.
Mathematically, it is equal to

η∞ ≡
0.99
(
q′f
)
∞

2h(Tb − T∞)L∞
=

0.99
(mL∞)

K0(2X)
K1(2X)

. (2.10)

The fin dimensionless heat dissipation per unit effective thermal volume, β∞, is defined as the
ratio between the heat transfer rate through the fin of length L∞ to maximum heat transfer
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rate from a rectangular fin having the same base thickness and volume. Mathematically, it is
equal to

β∞ ≡
0.99
(
q′
f

)
∞

(2h/Hb)(Tb − T∞)
∫L∞
0 H dx

=
(
mL∞
X

)
η∞[

1 − e−mL∞/X
] . (2.11)

It should be mentioned that the previous solutions could not be located in the literature.

2.1.2. Triangular Straight Fins

Equations (2.6)–(2.11) change to the following for the case of the triangular straight fin:

T(x) − T∞
Tb − T∞

=
K1

(
2mL

√
1 − L∞/L

)
I0
(
2mL

√
1 − x/L

)
+ I1
(
2mL

√
1 − L∞/L

)
K0

(
2mL

√
1 − x/L

)

I0(2mL)K1

(
2mL

√
1 − L∞/L

)
+K0(2mL)I1

(
2mL

√
1 − L∞/L

) ,

(2.12)

q′f =
√
2hkHb(Tb − T∞) ×

⎡
⎢⎣
K1

(
2mL

√
1 − L∞/L

)
I1(2mL) − I1

(
2mL

√
1 − L∞/L

)
K1(2mL)

I0(2mL)K1

(
2mL

√
1 − L∞/L

)
+K0(2mL)I1

(
2mL

√
1 − L∞/L

)

⎤
⎥⎦,

(2.13)

(
q′f
)
∞
=
√
2hkHb(Tb − T∞)

[
I1(2mL)
I0(2mL)

]
, (2.14)

I1
(
2mL

√
1 − L∞/L

)

K1

(
2mL

√
1 − L∞/L

) =
0.01I0(2mL)I1(2mL)

I0(2mL)K1(2mL) + 0.99K0(2mL)I1(2mL)
, (2.15)

η∞ =
0.99

(mL∞)
I1(2mL)
I0(2mL)

= 0.99ηf
(

mL

mL∞

)
; ηf ≡

(
q′
f

)
∞

2h(Tb − T∞)L∞
, (2.16)

β∞ =
η∞

[1 − (1/2)(mL∞/mL)] , (2.17)

where m =
√
2h/kHb. It should be mentioned that (2.12)–(2.14) exist in different forms in

the work of Kraus et al. [14].
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2.1.3. Parabolic Straight Fins

Equations (2.6)–(2.11) change to the following for the case of the parabolic straight fin:

T(x) − T∞
Tb − T∞

=
(1 − x/L)s1 − (s1/s2)(1 − L∞/L)

s1−s2(1 − x/L)s2

1 − (s1/s2)(1 − L∞/L)
s1−s2 , (2.18)

q′f = kHb

(s1
L

)
(Tb − T∞)

[
1 − (1 − L∞/L)

s1−s2

1 − (s1/s2)(1 − L∞/L)
s1−s2

]
, (2.19)

(
q′f
)
∞
= kHb

(s2
L

)
(Tb − T∞), (2.20)

(mL∞)
(mL)

∼= 1 −

⎡
⎢⎣
1 +
√
1 + 4(mL)2

199
√
1 + 4(mL)2

⎤
⎥⎦

1/
√

1+4(mL)2

, (2.21)

η∞ =
0.99 × 2

1 +
√
1 + 4(mL)2

(
mL

mL∞

)
= 0.99ηf

(
mL

mL∞

)
; ηf ≡

(
q′
f

)
∞

2h(Tb − T∞)L
, (2.22)

β∞ =
3η∞[

1 − (1 −mL∞/[mL])3
]
(
mL∞
mL

)
, (2.23)

where m =
√
2h/kHb. The constants s1 and s2 are equal to the following:

s1 = −1
2
− 1
2

√
1 + 4(mL)2; s2 = −1

2
+
1
2

√
1 + 4(mL)2. (2.24)

It should be mentioned that (2.20) exists in a different form in the work of Kraus et al. [14].

2.2. Pin Fins

Consider a pin fin having a radius r(x) that is much smaller than its length L as shown in
Figure 2. r(x) is taken to vary along the fin centerline axis (x-axis) according to the following
relationships:

r(x) = rbe
−bx, (2.25)

r(x) = rb
(
1 − x

L

)
, (2.26)

r(x) = rb
(
1 − x

L

)2
, (2.27)

where b is the exponential index. The quantity rb represents the fin radius at its base
(x = 0). Equations (2.25)–(2.27) corresponds to exponential, triangular and parabolic pin-
fins, respectively.
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xr(x)

h, T∞

Figure 2: Schematic diagram for the pin fin and the system coordinate.

The application of the energy equation [16] on a fin differential element results in the
following differential equation:

d

dx

(
r2

dT

dx

)
− 2h

k
r(T − T∞) = 0. (2.28)

The boundary conditions are given by (2.5).

2.2.1. Exponential Pin Fins

By solving (2.28) using (2.25), the temperature distribution equals

T(x) − T∞
Tb − T∞

= ebx
[
K1
(
2Xe0.5bL∞

)
I2
(
2Xe0.5bx

)
+ I1
(
2Xe0.5bL∞

)
K2
(
2Xe0.5bx

)

K1
(
2Xe0.5bL∞

)
I2(2X) + I1

(
2Xe0.5bL∞

)
K2(2X)

]
, (2.29)

where X = m/b and m =
√
2h/krb. The fin heat transfer rate is given by

q′f = −kπr2b
dT

dx

∣∣∣∣
x=0

= πrb
√
2hkfrb(Tb − T∞)

[
K1(2X)I1

(
2Xe0.5bL∞

) − I1(2X)K1
(
2Xe0.5bL∞

)

K1
(
2Xe0.5bL∞

)
I2(2X) + I1

(
2Xe0.5bL∞

)
K2(2X)

]
.

(2.30)
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The maximum heat transfer is obtained when L∞ approaches infinity. It is equal to

(
q′f
)
∞
= πrb

√
2hkfrb(Tb − T∞)

[
K1(2X)
K2(2X)

]
. (2.31)

The effective thermal length mL∞ is obtained when q′f = 0.99(q′f)∞. As such, it can be
obtained by solving the following equation:

K1
(
2XemL∞/2X)

I1
(
2XemL∞/2X

) =
0.01K1(2X)K2(2X)

I1(2X)K2(2X) + 0.99I2(2X)K1(2X)
. (2.32)

The fin effective thermal efficiency for the exponential pin fin is equal to

η∞ ≡
0.99
(
q′
f

)
∞

2πh(Tb − T∞)
∫L∞
0 r dx

=
0.99

X
(
1 − e−mL∞/X

)K1(2X)
K2(2X)

=
0.99ηf(

1 − e−mL∞/X
) . (2.33)

The fin dimensionless heat transfer per unit effective volume β∞, is defined here as the ratio
between the heat transfer rate of the fin with length L∞ to maximum heat transfer rate from
a rectangular pin fin having the same base radius and volume. Mathematically, it is equal to

β∞ ≡
0.99
(
q′f
)
∞

(2πh/rb)(Tb − T∞)
∫L∞
0 r2 dx

=
2η∞[

1 + e−mL∞/X
] . (2.34)

It should be mentioned that (2.29)–(2.34) could not be located in the literature at least in the
same form as they are shown.

2.2.2. Triangular Pin Fins

Equations (2.29)–(2.34) change to the following for the case of the triangular pin fin:

T(x) − T∞
Tb − T∞

=
[1 − x/L]−0.5K2

(
2mL[1 − L∞/L]

0.5
)
I1
(
2mL[1 − x/L]0.5

)

I1(2mL)K2

(
2mL[1 − L∞/L]

0.5
)
+K1(2mL)I2

(
2mL[1 − L∞/L]

0.5
)

+
[1 − x/L]−0.5I2

(
2mL[1 − L∞/L]

0.5
)
K1

(
2mL[1 − x/L]0.5

)

I1(2mL)K2

(
2mL[1 − L∞/L]

0.5
)
+K1(2mL)I2

(
2mL[1 − L∞/L]

0.5
) ,

(2.35)
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q′
f

= πrb
√
2hkrb(Tb − T∞)

×

⎡
⎢⎣
K2

(
2mL[1 − L∞/L]

0.5
)
I2(2mL) − I2

(
2mL[1 − L∞/L]

0.5
)
K2(2mL)

K2

(
2mL[1 − L∞/L]

0.5
)
I1(2mL) + I2

(
2mL[1 − L∞/L]

0.5
)
K1(2mL)

⎤
⎥⎦,

(2.36)

(
q′f
)
∞
= πrb

√
2hkrb(Tb − T∞)

[
I2(2mL)
I1(2mL)

]
, (2.37)

I2
(
2mL[1 − L∞/L]

0.5
)

K2

(
2mL[1 − L∞/L]

0.5
) =

0.01I1(2mL)I2(2mL)
K2(2mL)I1(2mL) + 0.99I2(2mL)K1(2mL)

, (2.38)

η∞ =
0.99

(mL∞)[1 − 0.5(mL∞/[mL])]
I2(2mL)
I1(2mL)

= 0.99ηf
(mL/[mL∞])

2

[2(mL/[mL∞]) − 1]
, (2.39)

β∞ =
3η∞(L∞/L)[1 − 0.5(L∞/L)][

1 − (1 − [L∞/L])
3
] , (2.40)

where m =
√
2h/krb. It should be mentioned that (2.37) matches a solution shown in [16].

2.2.3. Parabolic Pin Fins

Equations (2.29)–(2.34) change to the following for the case of parabolic pin fin:

T(x) − T∞
Tb − T∞

=
(1 − (x/L))p1 − (p1/p2

)
(1 − (L∞/L))

p1−p2(1 − (x/L))p2

1 − (p1/p2
)
(1 − (L∞/L))

p1−p2 , (2.41)

q′f = kπr2b

(p1
L

)
(Tb − T∞)

[
1 − (1 − (L∞/L))

p1−p2

1 − (p1/p2
)
(1 − (L∞/L))

p1−p2

]
, (2.42)

(
q′f
)
∞
= kπr2b

(p2
L

)
(Tb − T∞), (2.43)

(mL∞)
(mL)

∼= 1 −

⎡
⎢⎣
1 +
√
1 + (4/9)(mL)2

199
√
1 + (4/9)(mL)2

⎤
⎥⎦

1/[3×
√

1+(4/9)(mL)2]

, (2.44)

η∞ =
0.99 × 9

2(mL)2
[
1 − (1 −mL∞/(mL))3

]
⎡
⎣
√
1 +

4
9
(mL)2 − 1

⎤
⎦ =

0.99ηf[
1 − (1 −mL∞/(mL))3

] ,

(2.45)

β∞ =
5η∞
[
1 − (1 − [L∞/L])

3
]

3
[
1 − (1 − [L∞/L])

5
] , (2.46)
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where m =
√
2h/krb. The constants p1 and p2 are equal to the following:

p1 = −3
2
− 3
2

√
1 +

4
9
(mL)2, p2 = −3

2
+
3
2

√
1 +

4
9
(mL)2. (2.47)

It should be mentioned that (2.43) matches with a solution shown in [16].

2.3. Generation of High-performance Fins

2.3.1. High-Order Polynomial Method

The variation of the high-performance fin profile with its β∞-indicator can be approximated
by the following relationship:

r(x)
rb

=
H(x)
Hb

∼= 1 + b(x)β∞ + c(x)β2∞ + d(x)β3∞, (2.48)

where the coefficients b(x), c(x), and d(x) should satisfy the following conditions:

1 −
(x
L

) ∼= 1 + b(x)
[(
β∞
)
t

]
+ c(x)

[(
β∞
)
t

]2 + d(x)
[(
β∞
)
t

]3
, (2.49)

[
1 −
(x
L

)]2 ∼= 1 + b(x)
[(
β∞
)
p

]
+ c(x)

[(
β∞
)
p

]2
+ d(x)

[(
β∞
)
p

]3
, (2.50)

e−bx ∼= 1 + b(x)
[(
β∞
)
e

]
+ c(x)

[(
β∞
)
e

]2 + d(x)
[(
β∞
)
e

]3
. (2.51)

The quantities (β∞)t, (β∞)p, and (β∞)e are the corresponding β∞-values of triangular,
parabolic, and exponential fins, respectively. Solving (2.49)–(2.51) for the functions
b(x), c(x), and d(x) and rearranging (2.48), the following equation can be obtained:

r(x)
rb

=
H(x)
Hb

∼= 1 +
β∞
[
β∞ − (β∞

)
t

]⌊
β∞ − (β∞

)
p

⌋

(
β∞
)
e

[(
β∞
)
e −
(
β∞
)
t

][(
β∞
)
e −
(
β∞
)
p

]
{
e−mx/X − 1

}

+
β∞
[
β∞ − (β∞

)
t

][
β∞ − (β∞

)
e

]
(
β∞
)
p

[(
β∞
)
p −
(
β∞
)
t

][(
β∞
)
p −
(
β∞
)
e

]
⎧
⎨
⎩

[
1 − mx

mLp

]2
− 1

⎫
⎬
⎭

+
β∞
[
β∞ − (β∞

)
p

][
β∞ − (β∞

)
e

]
(
β∞
)
t

[(
β∞
)
t −
(
β∞
)
p

][(
β∞
)
t −
(
β∞
)
e

]
{
− mx

mLt

}
, 0 ≤ mx ≤ mLt,

(2.52)

where mLt, mLp, and X are obtained by solving (2.9), (2.15), (2.21), (2.32), (2.38), and (2.44)
at the samemL∞ that is used to obtain (β∞)t, (β∞)p, and (β∞)e. Practically, (2.52) can be used
as long as positive fin thicknesses or radii are produced.
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2.3.2. Exponential Method

The variation of the high-performance fin profile with its β∞-indicator can be approximated
by the following relationship:

r(x)
rb

=
H(x)
Hb

∼= 1 + i(x)
(
β∞
)j(x)

e−l(x)β∞ , 0 ≤ mx ≤ mLt, (2.53)

where the coefficients i(x), j(x), and l(x) should satisfy the following conditions:

1 −
(x
L

) ∼= 1 + i(x)
[(
β∞
)
t

]j(x)
e−l(x)[(β∞)t], (2.54)

[
1 −
(x
L

)]2 ∼= 1 + i(x)
[(
β∞
)
p

]j(x)
e−l(x)[(β∞)p], (2.55)

e−bx ∼= 1 + i(x)
[(
β∞
)
e

]j(x)
e−l(x)[(β∞)e]. (2.56)

The quantities (β∞)t, (β∞)p, and (β∞)e are the corresponding β∞-values of triangular,
parabolic and exponential fins, respectively. Solving (2.54)–(2.56) for the functions i(x), j(x),
and l(x), the following equations are obtained:

j(x) =

ln

[ (
e−mx/X − 1

)

(−mx/[mLt])

]
−
{(

β∞
)
e −
(
β∞
)
t(

β∞
)
p −
(
β∞
)
t

}
ln

[(
1 − (mx)/

[
mLp

])2 − 1
−mx/[mLt]

]

ln

[(
β∞
)
e(

β∞
)
t

]
−
⎧
⎨
⎩

((
β∞
)
e −
(
β∞
)
t

)
((

β∞
)
p −
(
β∞
)
t

)
⎫
⎬
⎭ ln

[(
β∞
)
p(

β∞
)
t

] , (2.57)

l(x) =

ln

[(
β∞
)
p(

β∞
)
t

]
/ ln

[(
β∞
)
e(

β∞
)
t

]
ln

[ (
e−mx/X − 1

)

(−mx/[mLt])

]
− ln

[(
1 − (mx)/

[
mLp

])2 − 1
−mx/[mLt]

]

{(
β∞
)
p −
(
β∞
)
t

}
− {(β∞

)
e −
(
β∞
)
t

}
ln

[(
β∞
)
p(

β∞
)
t

]
/ ln

[(
β∞
)
e(

β∞
)
t

] , (2.58)

i(x) = −
(

mx

mLt

)[(
β∞
)
t

]−j(x)
el(x)(β∞)t , (2.59)

where mLt, mLp, and X are obtained by solving (2.9), (2.15), (2.21), (2.32), (2.38) and (2.44)
at the same mL∞ that is used to obtain (β∞)t, (β∞)p, and (β∞)e. Also, (2.53) can be used as
long as positive fin thicknesses or radii are produced.
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3. Numerical Methodology

Equations (2.4) and (2.28)were descretized using three points central differencing according
to the following equations:

Hi−1/2θi−1 −
⌊
Hi+1/2 +Hi−1/2 + (mL)2Δx2

⌋
θi +Hi+1/2θi+1 = 0,

(ri−1/2)
2θi−1 −

⌊
(ri+1/2)

2 + (ri−1/2)
2 + (mL)2riΔx2

⌋
θi + (ri+1/2)

2θi+1 = 0,
(3.1)

where i is the location of the descretized point in the x direction. x, H, r, and θ are the
dimensionless forms of x, H, r, and T , respectively. The resulting tridiagonal systems of
algebraic equations shown by (3.1)were solved using the well-established Thomas algorithm
(Blottner [17]). The integrals shown in (2.11), (2.33), and (2.34) were computed numerically
using the Simpson’s rule [18]. Table 1 shows comparisons between the numerical and the
analytical results of the effective efficiency. Excellent agreement is noticed in this table. As
such, this led to more confidence in the obtained analytical solutions.

3.1. Useful Correlations

The results generated by solving (2.9), (2.15), (2.32), and (2.38) are shown in form of
correlations, which were developed using well-known software. The correlations have the
following functional form:

Π =
g1Φg2 + g3Φg4 + g5Φg6

g7Φg8 + g9Φg10 + g11Φg12
. (3.2)

The correlation constants g1–g12 for the different studied cases are listed in Table 2. Maximum
errors associated with these correlations are less than 1% for all used ranges ofmL and when
X > 0.015.

4. Discussion of the Results

Figures 3 and 4 illustrate the variation of the effective efficiency and efficiency ratio η∞/ηf
with the fin thermal length mL. These figures show that thermal efficiencies of parabolic,
triangular, and exponential fins can be significantly increased especially at large thermal
lengths. This is achievable by eliminating the fin portions beyond the effective thermal length
mL∞. Triangular pin fins are found to possess larger η∞/ηf -values than parabolic pin fins.
However, parabolic straight fins have always larger η∞/ηf -values than triangular straight
fins. It should be noted that fin volumes near the tip are maximum for triangular fins. As a
consequence, triangular fins have always larger effective thermal lengths than exponential
and parabolic fins. This fact can be noticed from Figures 3 and 4 along with (2.16), (2.22),
(2.33), (2.39), and (2.45).

Figure 5 shows the relation between the effective thermal efficiency η∞
and the effective thermal length L3/2

∞ (h/kAp∞)
1/2 based on the effective profile

area, Ap∞, for the different types of the straight fins. It should be noted that
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Table 1: Comparisons between the numerical and the analytical results.

Fin type Thermal
condition

Numerical
computation of η∞

Analytical
computation of η∞

Percent
difference

Straight-
triangular mL = 2.5 0.4703 0.4704 0.02%

Straight-
parabolic mL = 2.0 0.5457 0.5459 0.04%

Straight-
exponential X = 2.0 0.4414 0.4419 0.1%

Pin-triangular mL = 1.5 0.7753 0.7756 0.04%
Pin-parabolic mL = 1.0 0.9174 0.9178 0.04%
Pin-exponential X = 2.0 0.5763 0.5764 0.02%

Table 2: Correlation constants, see (3.2), for the analyzed straight fins.

Coefficient

Triangular
straight
Π = mL∞
Φ = mL

Triangular
straight
Π = mL

Φ = mL∞

Exponential
straight
Π = mL∞
Φ = X

Triangular
Pin

Π = mL∞
Φ = mL

Triangular
Pin

Π = mL
Φ = mL∞

Exponential
straight
Π = mL∞
Φ = X

g1 0.69428 598.742 3.8343 1.46608 7.27154 0.931451
g2 −1.98283 −7.1912 −0.894435 0.117199 0.311742 −0.514116
g3 0.198954 12.3343 7.0634 4.2461 −0.546715 4.46038
g4 −1.76853 −2.80184 −0.274186 −1.98447 4.10486 0.513971
g5 0.167474 2.12319 0.208524 −0.578418 0.40409 −5.04956
g6 1.06061 0.746752 −0.131276 0.116989 4.33523 0.523092
g7 0.886024 588.714 0.704077 0.973387 −0.389977 0.119439
g8 −2.9514 −8.19517 −1.7562 −1.29981 2.18417 −0.367153
g9 0.141659 3.82157 3.17823 4.63058 4.673 0.105864
g10 0.623454 −1.09171 −1.10017 −2.99168 −0.699218 −1.22631
g11 0.0680181 −0.0615233 2.84166 0.33941 1.77476 0.000821297
g12 1.04416 3.2981 −0.273702 0.116343 −0.695973 0.483324

L3/2
∞ (h/kAp∞)

1/2 is equal to mL∞
√
[2 − L∞/L]

−1, mL∞

√
1.5(L∞/L)[1 − (1 − L∞/L)

3]
−1
,

and (mL∞)
3/2
√
[2X(1 − e−mL∞/X)]−1 for triangular, parabolic and exponential straight fins,

respectively. Figure 5 shows that the triangular straight fin has the maximum η∞-value when
L3/2
∞ (h/kAp∞)

1/2 < 0.95. However, the exponential straight fin possesses the maximum
η∞-value when L3/2

∞ (h/kAp∞)
1/2 ≥ 1.4. Exponential pin fins have the maximum effective

thermal efficiency for the same effective thermal length, mL∞, as shown from Figure 6. The
variation of η∞ with the fin geometry is almost insignificant for the analyzed pin fins. Figures
5 and 6 demonstrate that the minimum effective thermal efficiency for all fins is 0.377.

Exponential fins have the largest effective heat dissipation per unit volume, β∞, as
evident from Figures 7 and 8 while triangular fins have the smallest β∞-values. All of the
analyzed fins are noticed to have an asymptotic β∞-value of 0.375 as their thermal lengths
approaches infinity. Figures 9 and 10 show a number of fin-geometries having high thermal
performances. The pin fin geometry with β∞ = 1.83 has volumetric heat dissipation 17%
above that of the exponential pin fin. The exact β∞-value of that plot is 1.795 which deviates
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Figure 10: New high-performance pin fins profiles,m =
√
2h/krb.

from the estimated value, β∞ = 1.83, by 1.95%. It is noticed from Figures 9 and 10 that errors
associated with (2.53) are smaller than those associated with (2.52). The effective thermal
efficiency of the fin shown by (2.52)with β∞ = 2.3 is larger than that of the exponential fin at
smaller effective thermal lengths while its effective volumetric heat dissipation is larger than
that of exponential fin when mL∞ > 0.5 as shown in Figures 5 and 7. Figure 8 shows that
the pin fin with profile given by (2.53) with β∞ = 1.83 possesses maximum volumetric heat
dissipation that is 24% above that of the exponential pin fin.

5. Conclusions

Heat transfer through high-performance fins was mathematically analyzed under conditions
that lead to useful thermal lengths. Three fin types were considered: parabolic, triangular, and
exponential straight or pin fins. Analytical solutions were obtained. The effective thermal
length was obtained for each case. Accordingly, the effective thermal efficiency and the
effective heat dissipation per unit volume were calculated. The analytical results were



Mathematical Problems in Engineering 17

compared against numerical solutions and excellent agreements were found. The following
remarks were concluded:

(i) Triangular fins have always-larger effective thermal lengths than parabolic fins.

(ii) Exponential pin fins possess the largest effective thermal efficiencies.

(iii) The exponential straight fin possesses the maximum effective thermal efficiency
when its effective thermal length based on profile area is greater than 1.4.

(iv) The triangular straight fin has the maximum effective thermal efficiency when its
effective thermal length based on profile area is smaller than 0.95.

(v) Exponential straight fins were found to possess effective volumetric heat dissipa-
tion that can be 440% and 580% above parabolic and triangular straight fins.

(vi) Exponential pin fins were found to possess effective volumetric heat dissipation
that can be 120% and 132% above parabolic and triangular pin fins.

(vii) The derived analytical solutions were used to generate new high-performance fins
that possess volumetric heat dissipation 24% and 12% above those of exponential
pin and straight fins, respectively.

Nomenclature

Ap∞: Effective fin profile area
b: Exponential functions indices
H: Fin thickness
Hb: Tin thickness at its base
h: Convection heat transfer coefficient
In(x): Modified Bessel functions of the first kind of order n
Kn(x): Modified Bessel functions of the second kind of order n
k: Fin thermal conductivity
L: Fin length
L∞: Effective fin length
m: Fin thermal index
q′f : Fin heat transfer rate per unit width
(q′

f
)
∞
: Maximum fin heat transfer rate per unit width

r: Fin radius
rb: Fin radius at its base
T : Fin temperature
Tb: Fin base temperature
T∞: Free stream temperature of the adjoining fluid
Vf : Fin volume
X: Dimensionless exponential fin parameter
x: Coordinate axis along the fin centreline.

Greek Symbols

β∞: Fin effective dimensionless volumetric heat dissipation
ηf : Fin thermal efficiency
η∞: Fin effective thermal efficiency.
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