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The rotordynamics and fluid dynamics of a turbo-machine considering the effect of fluid-solid
interaction (FSI) are numerically investigated using finite element software ADINA. The iterative
method is adopted in computation of coupled fields of displacement and fluid. What distinguishes
the present study from previous ones is the use of ADINA’s rotational meshes and the FSI interface
that separates the rotor surface from its surrounding fluid. The rotor’s center orbit and frequency
response as well as the transient fluid dynamics are obtained with various axial flow speeds. By
including real rotating motion of the rotor, this paper presents a better way to solve complicated
rotordynamic problems of turbo-machines that are operated in FSI circumstances.

1. Introduction

Fluid solid interaction (FSI) analyses play very important roles in understanding rotordy-
namics of turbo-machines. It has been noticed that fluid and solid as parts of the rotor system
influence each other and severe vibrations may be excited in some situations. Particularly,
this is true for machines transferring heavy fluid, for example, pumps or other turbo-
machines. Historically, the FSI-induced vibration was studied empirically or experimentally.
For instance, Childs [1, 2] carried out a series of experiments to investigate the FSI forces
between the impeller and the shroud of a pump as well as the resulted axial vibrations.
Marscher [3] determined the “wet” critical speeds of a multistage pump rotor. Numerical
methods such as the finite element method (FEM) and coupled FEM with the boundary
element method (BEM) have been widely applied to various FSI problems. Bathe et al. [4–
6] who is the developer of the ADINA software proposed application of FEM to solve the
FSI problems for compressible and incompressible fluid flow by iterative method and direct
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method. Bermúdez et al. [7] demonstrated the plausibility and effectiveness of solving the
FSI problems by using FEM as well. Kwon and Jo [8] modeled two 3D beams and external
flow around them and used coupled lattice Boltzmann method (LBM) and FEM to analyze
the characteristics of the flow field. Czygan and von Estorff [9, 10] and Soares et al. [11, 12]
adopted both the FEM and BEM to solve the FSI problems. They used an iterative method
which coupled of finite element and boundary element for the time domain to analyze
fluid-solid systems. Michelin and Llewellyn Smith [13] introduced an unsteady point vortex
method for two-dimensional coupled motion of a general sharp-edged solid body and a sur-
rounding inviscid flow. The application of these methods makes integrated FSI analysis effec-
tive and computationally plausible for complex rotordynamic problems.

In this paper, the FSI problem is investigated for a turbo-machine to obtain its rotor-
dynamic response by using finite element software ADINA with consideration of real rotat-
ing movement of the rotor surrounded by incompressible fluid flow. The fields of solid and
fluid are modeled with ADINA’s rotational meshes and solved iteratively for pressure and
velocity of the fluid field as well as displacement of solid rotor. The first “wet” critical speed
of the rotor is identified through a signal filtrating with different axial flow velocities. The
natural frequency is changed from 15.63Hz to 14.65Hz at different Reynolds numbers.

2. Governing Equations

Consider a problem domain Ω consisting of a fluid partΩf and a solid partΩs. For the fluid
domain Ωf we assume a flow of incompressible Newtonian fluid. The basic equations gov-
erning continuity and momentum are given by

∇ · (ρsV
)
= 0,

ρf
Dυi

Dt
= ρfffi +

∂Tji

∂xj
, (i = 1, 2, 3),

(2.1)

where Einstein’s summation convention is adopted here and throughout the rest of the paper.
V = (υ1, υ2, υ3), υi is the velocity vector with respect to Cartesian coordinates xi, ρf the fluid
density,D/Dt = ∂/∂t+(V ·∇) is material derivative, and ffi are the body forces per unit mass.
The stress tensor Tij for incompressible Newtonian fluids can be expressed as

Tij = μf

(
∂υj

∂xi
+
∂υi

∂xj

)

− pδij , (i = 1, 2, 3), (2.2)

where p is pressure and μf is dynamic viscosity. An empirical formula is used to compute
Reynolds number, as follows

Re =
ρfvzDe

μf
, (2.3)
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where De is characteristic diameter denoted as

De =
4A
χ

, (2.4)

where A is flow area and χ is the length of fluid-solid interface attached to the flow area.
In this model, the Reynolds number is approximately between 1.108 × 106 and 2.216 ×

107, which is larger than its empirical critical value 1100 for turbulent flows. Hence, the
numerical simulation of the flow field is carried out by using one with the turbulence model.
The viscosity coefficient for the turbulent flow is modified in ADINA, as

μ = μ0 + μt, (2.5)

where μ0 is the laminar viscosity and μt is its turbulence counterparts.
In the present paper, theK-ω model for high-Reynolds-number turbulences in incom-

pressible flows is adopted. Based on the normal K-ε model, a parameter ω is introduced
which is related to K and ε as

ω ∼ ε

K
, (2.6)

where ε and K are dissipation rate and kinetic energy of turbulence, respectively. Then, μt is
computed by

μt = αρf
K

ω
. (2.7)

The governing equations forK and ω are referred to ADINA [14].
The momentum equation for the solid domain Ωs is expressed as

ρs
∂2ui

∂t2
− ∂σij

∂xj
= ρsfsi, (i = 1, 2, 3), (2.8)

where ui is the displacement vector, σij denotes the Cauchy stress tensor, ρs is the density of
the solid material, and fsi are body forces per unit mass acting on the solid. By assuming
deformation is small, the strain tensor εij is related to the displacements ui by the kinematic
relation

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)

, (i = 1, 2, 3). (2.9)

On the fluid-solid interface the nonslip boundary conditions is applied for velocities
and stresses on the interface

υi,s = υi,f

σijnsj = −Tijnsj

(i = 1, 2, 3), (2.10)

where subscripts s and f denote the solid and fluid domains, respectively.
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Figure 1: Computational model and finite element meshes.

Table 1: Material parameter.

Solid Fluid
Young’s modulus 2.1 × 105 MPa Laminar viscosity 1 × 10−3 Pa·s
Poisson’s ratio 0.3
Density 7.85 × 103 Kg/m3 Density 1 × 103 Kg/m3

3. Computational Model and Method

The sketch of the analysis model and its finite element meshes are shown in Figure 1 (unit:
mm). The radiuses of shaft and impeller are 50mm and 70mm, respectively. The external
diameter of the blade is 300mm. The total lengths along the z-axis are 2002mm for the rotor
and 150mm for the flow field, respectively. The external diameter of the flow field is 310mm.
The blades are straight and have a 3.814◦ angle with respect to z-axis.

736 8-node-hexahedral elements and 1254 10-node-tetrahedral elements are used to
mesh the solid field. For the fluid field, there are 4032 8-node-hexahedral elements. In ADINA
a special kind of element called rotational meshes are used to simulate the rotation of the rotor
surrounded with fluid. The material parameters are displayed in Table 1.

The rotation speed of the rotor is 600 rpm. The unbalanced mass eccentricity of the
rotor is 2.33μm which is applied to the model by loading it with a following force F (see
Figure 1) at the center point O. Themagnitude of F is a constant 1N, and its initial direction is
chosen to be along the x axis in the Cartesian coordinate. To simulate the rotor in real rotating
status, the direction of F is made to revolve synchronously with the rotor so that its loading
relative to the rotation does not change. The displacement boundary condition is fixed end:
Ux = Uy = Uz = θx = θy = 0.
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(f) Center orbit after filtering

Figure 2: Displacements and orbit of the rotor center before and after EMD filtering is performed.

The initial velocity of vz is negative in the z-direction for all fluid domains. This
velocity is kept unchanged on the cross-section at the inlet. The time step of FSI is 0.001 s
and total computation lasts 2 s. In this case the sampling frequency for fast Fourier transform
(FFT) analysis is 1000Hz; the Fourier length for the FFT is 1024.

The displacement Ux and Uy of the rotor center O can be obtained from the com-
putation results and are used in signal analysis to identify frequency components. The em-
pirical mode decomposition (EMD) method [15] is used to purify displacement signals by
numerically filtrating artificial noise. Then the filtrated signals are transformed by FFT and
are analyzed to determine the orbital position point O. By cascading response of the solid
part obtained from results with different flow velocities, the rotor’s first critical speed upon
different Reynolds numbers can be determined.

4. Dry Critical Speed

The rotor’s first critical speed is analyzed by using the rotational meshes without considering
of fluid. The results give the “dry” critical speed of the rotor that can be compared to the “wet”
critical speed obtained with coupling fluid-solid interactions.

The displacements and the orbit of the axial center point O are illustrated in Figure 2.
The displacement results of the rotor center are filtered using EMD to remove noise. Figures
2(a), 2(b) and, 2(c) are x- and y-directional displacements and the orbit of point O before the
EMD filtering, respectively. In comparison, Figures 2(d), 2(e), and 2(f) are those responses
after the filtering. It is clearly seen that indeed the EMD effectively removes noise in the
displacement signals while retain their dominating part in frequency domain.

Following the above filtering, the FFT analysis is carried out to identify the frequency
components of the rotor response in Figure 3, where the “dry” natural frequencies aremarked
with their values over each peak.
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Figure 3: FFT analysis and “dry” natural frequencies.

5. Results of FSI Simulation

Twelve different axial velocities at the inlet for the fluid, that is, 1m/s, 3m/s, 4m/s, 4.5m/s,
4.85m/s, 4.9m/s, 4.95m/s, 5m/s, 6m/s, 10m/s, 15m/s, and 20m/s are used to investigate
the “wet” critical speed considering the fluid-solid-interaction effect. First the results with
vz = 5m/s are presented. The von Mises stress of the rotor is shown in Figure 4(a). The
contour of nodal pressure of fluid is shown in Figure 4(b). The pressure of the outlet is
zero which is also the reference value in computation when the boundary condition of
outlet is free. Thus, pressure values of nodal points are the ones biased from the reference
pressure. The maximum pressure is found on top of the pressurized surface of blades, and
the minimum one is on the root of suction side. The vectors of the velocity magnitude are
shown in Figure 4(c). The maximum value of velocity in the flow field is 11.337m/s which is
found in the case of vz = 5m/s.

Eight points are picked to present the pressure distribution in Figure 5(a). Points 7561,
8551, 8740, and 9730 are on the inlet and the others are on the outlet. Points 8732, 8740, 9722,
and 9730 are on the pressurized side of blades while the rest are on the suction side. The
pressure of points on the outlet is zero. It can be seen that pressures on the inlet are fluctuant
with time and can be regarded as periodic. In addition, the pressures of points 7561 and 8740
are positive and are negative for points 8551 and 9730. The pressures of these eight points in
the time domain are also shown in Figure 5(b).

Based on Figure 6 there is a short period of transient response when the rotor starts
rotating along with a simultaneous axial flow (see Figures 6(a), 6(b), and 6(c)). Once the flow
becomes stable, the transient response of the rotor is gone and the motion becomes periodic.
Figures 6(d) and 6(e) present the FFT results for x- and y-displacements. There are clear
peaks on FFTs in these two figures, suggesting that the first “wet” critical speed is 14.65Hz
when vz = 5m/s.

Next, twelve different axial velocities are used to demonstrate the “wet” critical speed.
The results are listed in Table 2 based on FFT analysis for x- and y-displacements.

As it can be seen from Table 2, the first “wet” critical speed bifurcates at vz = 4.9m/s.
For y-displacement it drops from 15.63Hz to 14.65Hz; the same thing happens for x-
displacement at a slightly higher velocity vz = 4.95m/s. The bifurcation diagram of the
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Table 2: The results of first critical speed with various axial velocities.

Velocity (m/s) 1 3 4 4.5 4.85 4.9 4.95 5 6 10 15 20
First
critical
speed

X-FFT 15.63 15.63 15.63 15.63 15.63 15.63 14.65 14.65 14.65 14.65 N/A N/A

Y-FFT 15.63 15.63 15.63 15.63 15.63 14.65 14.65 14.65 14.65 14.65 N/A N/A

FFTs with axial velocity is shown in Figure 7. The FFT results of x-displacements when vz =
10m/s, vz = 15m/s, and vz = 20m/s are shown in Figure 8.

Based on the above results, the rotor’s first critical speed drops and bifurcates with an
increasing fluid axial velocity. The peaks that represent critical speeds on the FFT results be-
come unclear with faster flow and almost disappear when vz = 15m/s. The peaks eventually
cannot be identified at all when vz = 20m/s.
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Figure 6: Results of FSI when vz = 5m/s.
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Figure 7: The bifurcation of frequency with axial velocity.

6. Conclusion

In this paper, the rotordynamic response of a turbo-machine is analyzed considering the FSI
problem and real rotation movement of the rotor. ADINA’s rotational elements are used
iteratively to solve the responses of both the solid and fluid fields. The first “wet” critical
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Figure 8: The FFT results of x-displacement when vz = 10m/s, vz = 15m/s, and vz = 20m/s.

speeds are obtained with several different axial velocities of fluid flow. The results of FEM
with fluid-solid interaction can be determined and processed by the FFT analysis with signals
purified. The orbit of the center point in time domain is obtained by the EMD filter. Then, the
“wet” first critical speed can be determined.

As the increase of the fluid axial velocity, the “wet” first critical speed changes from
15.63Hz to 14.65Hz. Then, the peak gets lower and cannot be distinguished at higher
Reynolds numbers. The present study shows that the first critical speed changes with the
velocities of the flow. It means the structure has different “wet” first critical speeds in different
Reynolds numbers with various flow conditions.
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