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Pole placement problems are especially important for disturbance rejection and stabilization of
dynamical systems and regarded as algebraic inverse eigenvalue problems. In this paper, we
propose gain formulae of state feedback through PID-elements to achieve desired pole placement
for a delay-free LTI system with single input. Real and complex stable poles can be assigned with
the proposed compact gain formulae. Numerical examples show that our proposed gain formulae
can be used effectively resulting in very satisfactory responses.

1. Introduction

Pole placement has been an important design method of a linear control system [1–8]. One
approach is to use state feedback in which the gain matrix is calculated via Ackermann’s
formula [4]. Regarding this, the original state model can be transformed into the bidiagonal-
Frobenius canonical form to achieve the desired pole placement [9]. Based on the Frobenius
form, the gain matrices can be readily computed for SISO and MIMO systems [10–12].
The concept of using state-derivative feedback was introduced in 2003-2004 [13, 14]. One
advantage over the conventional state feedback is that it results in smaller gains. In
practical control, for example, vibration control, the derivative signal can be derived from
an accelerometer output as the concept has been successfully implemented [15, 16]. A
linear quadratic regulator to achieve the state-derivative feedback was also developed [17].
Recently, stabilizability and disturbance rejection issues have been investigated for an LTI
system with state-derivative vector as its output [18]. The state-derivative feedback is useful
for stabilization and rejection of dynamic disturbances not for set-point regulation or tracking
control. The approach of state-derivative feedback leads to a possibility of using state-PID
feedback.
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Consider a delay-free LTI system having single input of the form

x′ = Ax + Bu, x(t0) = x0, (1.1)

where x ∈ Rn, u ∈ R, A and B are (n × n) and (n × 1) real coefficient matrices, respectively.
The linear system under consideration must possess a complete controllability

property. Therefore, the controllability matrix wc must have rank-n and can be formed from

wc =
[
B AB A2B · · · An−1B

]
. (1.2)

The Frobenius canonical form of the system is

ξ′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . . . . .
...

0 0 0 · · · 1

−a0 −a1 · · · · · · −an−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

ξ +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0

0

0

...

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

u, (1.3)

where ξ = Tx, Ac = TAT−1, Bc = TB, and T = [q1q1A · · ·q1An−1]T . The vector q1 = eTnw
−1
c in

which en = [0 0 · · · 1]T . For the state-PID feedback, the control u is of the form

u = Kpx +KI

∫
x(τ)dτ +Kdx′, (1.4)

whereKp,KI,Kd ∈ Rn are row gain vectors for the P, I, and D feedback elements, respectively.
Guo et al. (2006) [21] proposed a pole placement method consisting of 3 separated steps. The
pole placement by a state-P feedback is conducted first leading to an intermediate system.
Secondly, a state-I feedback is performed; another intermediate system resulted. Finally,
the closed-loop system with the desired characteristic polynomial is realized by a state-D
feedback incorporated as the final design stage. These steps may be utilized purposefully
to design state-P, -PD, and -PI feedback elements. According to this, the control u of the P-
feedback is

u = K̃F ξ, (1.5)

where K̃F = [k̃1 k̃2 · · · k̃n] to achieve a desired characteristic polynomial

Δ̃d(s) = α̃0 + α̃1s + · · · + α̃n−1sn−1 + α̃ns
n, α̃n = an = 1. (1.6)

The closed-loop system at this interim stage has its characteristic polynomial

Δ̃(s) =
(
a0 − k̃1

)
+
(
a1 − k̃2

)
s + · · · +

(
an−1 − k̃n

)
sn−1 + sn. (1.7)
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Equating (1.6) and (1.7) results in the gain matrix K̃F. For the I-feedback, the control u is

u = KF

∫ t

0
ξ(τ)dτ, (1.8)

where KF = [k1 k2 · · · kn] to achieve a desired characteristic polynomial

Δd(s) = α0 + α1s + · · · + αn−1sn−1 + αns
n + αn+1s

n+1, αn+1 = 1. (1.9)

The second interim system has its closed-loop characteristic polynomial

Δ(s) = −k1 +
(
a0 − k2

)
s + · · · +

(
an−2 − kn

)
sn−1 + an−1sn + sn+1. (1.10)

Equating (1.9) and (1.10) leads to the gain matrix KF. For the D-feedback, the control u is

u = K̂Fξ
′, (1.11)

where K̂F = [k̂1 k̂2 · · · k̂n] to achieve a desired characteristic polynomial

Δ̂d(s) = α̂0 + α̂1s + · · · + α̂n−1sn−1 + α̂ns
n. (1.12)

Equating (1.12) and the closed-loop characteristic polynomial in (1.13) results in the last set
of

Δ̂(s) = a0 +
(
a1 − k̂1

)
s + · · · +

(
an−1 − k̂n−1

)
sn−1 +

(
1 − k̂n

)
sn, (1.13)

gain matrix, K̂F. This previous method requires three sets of poles to be assigned. Two sets are
fictitious, and only the last set is the prescribed characteristic polynomial. In [21], there are no
recommendations for selection of these intermediate pole sets. One may attempt arbitrarily
chosen poles during the separated design phases. In due course, the calculation procedures
are quite awkward. Besides, the paper [21] contains no proof of the proposed theorem.

This paper begins by presenting derivation of the gain matrices for the state-
PID feedback in rigorous manner. It also presents the gain matrices for the state-PI and
-PD feedback cases. Section 3 presents the analysis of disturbance rejection property of
the proposed method. Such complete treatment has not appeared elsewhere before. Three
numerical examples are shown in Section 4 to illustrate the effectiveness of our proposed
gain formulae in comparison with the use of Ackermann’s formula [4, 19] and the methods
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by Guo et al. [21] and Kuo [20], respectively. Moreover, we show by simulations in the
example shown in Section 4.3 that using the method [21] can result in very large controller
gains although the final pole sets remain unchanged. Conclusion follows in Section 5.

2. The PID Gain Matrices

Without loss of generality, the single-input LTI system (1.1) is assumed to be completely
controllable, and B is of full column rank. The next proposition is the main result presenting
the state-PID feedback gain matrices. Note that due to the integral element, one additional
closed-loop pole is needed. This imposes a condition for derivation of the gain matrices and
results in an increase in the order of the system by one.

Proposition 2.1. The system (1.1) with its Frobenius form of (1.3) is subject to the control input
u = Kpx + KI

∫
x(τ)dτ + Kdx′ or u = K̃F ξ + KF

∫ t
0 ξ(τ)dτ + K̂F ξ

′ in which [Kp,KI,Kd] =
[K̃F,KF, K̂F]T. There exist the following gain matrices to achieve a desired characteristic polynomial
Δd(s) = α0 + α1s + · · · + αn−1sn−1 + αn s

n + αn+1s
n+1:

(i) for n = 2,

Kp =
[
a0 a1

]
T,

KI =
[−α0 −α1

]
T,

Kd =
[−α2 0

]
T,

(2.1)

(ii) for n ≥ 3,

Kp =
[
a0

... a1
... · · · ... · · · ... an−1

]
T,

KI =
[
−α0

... −α1
... −2α2

... · · · ... −2αn−1

]
T,

Kd =
[
α2

... · · · ... αn−1
... −αn

... 0
]
T.

(2.2)

Proof. The characteristic polynomial of the closed-loop system can be expressed as

ΔPID(s) = det

[

s
(
I − BcK̂F

)
−Ac − BcK̃F − BcKF

s

]

= 0, (2.3)
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where I is an n × n identity matrix,

s
(
I − BcK̂F

)
−Ac − BcK̃F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

s −1 0 · · · 0

0 s −1 · · · 0

0 0 s
. . .

...

...
...

...
. . . −1

a0 − k̂1s − k̃1 a1 − k̂2s − k̃2 · · · · · · s + an−1 − k̂ns − k̃n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

BcKF

s
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 · · · 0

0 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0

k1

s

k2

s
· · · · · · kn

s

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(2.4)

that is,

ΔPID(s)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s −1 0 · · · 0

0 s − 1 · · · 0

0 0 s
. . .

...

...
...

...
. . . −1

a0−k̂1s−k̃1− k1

s
a1−k̂2s−k̃2− k2

s
· · · · · · s+an−1−k̂ns−k̃n− kn

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.5)

or

ΔPID(s) = −k1 +
(
a0 − k̃1 − k2

)
s +

(
a1 − k̃2 − k̂1 − k3

)
s2 + · · · +

(
an−2 − k̃n−1 − k̂n−2 − kn

)
sn−1

+
(
an−1 − k̃n − k̂n−1

)
sn +

(
1 − k̂n

)
sn+1.

(2.6)
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It can be observed that the order of the closed-loop system is increased by 1 due to the
integral element. By equating (2.6) with the desired characteristic polynomial, the following
relations can be obtained for an n-order system:

−k1 = α0,

a0 − k̃1 − k2 = α1,

a1 − k̃2 − k̂1 − k3 = α2,

...

an−2 − k̃n−1 − k̂n−2 − kn = αn−1,

an−1 − k̃n − k̂n−1 = αn,

1 − k̂n = αn+1.

(2.7)

Therefore, a desired pole placement can be achieved via the state-PID feedback using the gain
matrices in (2.1) and (2.2).

This completes the proof.

The following are 2 immediate consequences of Proposition 2.1.

Corollary 2.2. The system (1.1) with its Frobenius form of (1.3) is subject to the control input u =
Kpx + KI

∫ t
0 x(τ)dτ or u = K̃Fξ + KF

∫ t
0 ξ(τ)dτ in which [Kp,KI] = [K̃F,KF]T. There exist the

following gain matrices to achieve a desired characteristic polynomialΔd(s) = α0+α1s+· · ·+αn−1sn−1+
αns

n + αn+1s
n+1:

Kp =
[
a0

... a1
... a2

... · · · ... an−1 − αn

]
T,

KI =
[
−α0

... −α1
... −α2

... · · · ... −αn−1

]
T.

(2.8)

Corollary 2.3. The system (1.1) with its Frobenius form of (1.3) is subject to the control input u =
Kpx + Kdx′ or u = K̃Fξ + K̂F ξ

′ in which [Kp,Kd] = [K̃F, K̂F]T. There exist the following gain
matrices to achieve a desired characteristic polynomial Δd(s) = α0 + α1s + · · · + αn−1sn−1 + αns

n:

Kp =
[
a0 − α0

... −α1
... −α2

... · · · ... −αn−1

]
T,

Kd =
[
a1

... a2
... · · · ... an−1

... 0
]
T.

(2.9)

Note that with the state-PD feedback, no additional pole is needed for the design. Therefore, the order
of the system remains unchanged.
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The design procedures are as follows:

(1) calculate the transformation matrix for an n-order LTI plant using T =
[q1q1A · · ·q1An−1]T where q1 = eTn w−1

c , en = [0 0 · · · 1]T , and wc =
[B AB A2B · · · An−1 B],

(2) calculate the matrices Ac and Bc using Ac = TAT−1 and Bc = TB for the Frobenius
form of (1.3),

(3) assign the closed-loop pole locations of an n-order:

(i) for state-PID feedback, add one negative real pole having a fast time-constant
(i.e., a negative real pole with a large magnitude),

(ii) for state-PI feedback, add one negative real pole having a fast time constant,
(iii) for state-PD feedback, no additional pole is needed,

(4) determine the prescribed characteristic polynomial Δd(s) having the order of n or
n + 1 corresponding to step 3,

(5) calculate the gain matrices:

(i) for state-PID feedback, use (2.1) or (2.2),
(ii) for state-PI feedback, use (2.8),
(iii) for state-PD feedback, use (2.9).

3. Disturbance Rejection

Disturbance rejection is an important property of the proposed state-PID feedback. This
section provides the analysis of such property. There are three propositions, one of which
has been proposed by [18] and denoted as proposition 3.1 for state-D feedback. The other
propositions denoted as Propositions 3.2 and 3.3 are newly developed to confirm the
disturbance rejection property accomplished by the state-P and -I feedback components,
respectively.

Proposition 3.1. Consider the plant described by

x′ = Ax + B(u + ε), (3.1)

where ε ∈ R, ε is an unknown but constant disturbance, and the state-D controller

u = −Kdx′, det (I + BKd)/= 0. (3.2)

Suppose that det (A)/= 0, and the equilibrium point xe = −A−1Bε of the controller system (3.1) and
(3.2) is globally asymptotically stable, then x(∞) is independent of the controller gainKd and is given
by

x(∞) = lim
t→∞

x(t) = −A−1Bε. (3.3)
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Proof. (see in [18], Lemma 3.2) An immediate conclusion from this proposition according to
(3.3) is that the state-D feedback cannot attenuate the influence of ε in x(∞) in controlled
systems because (3.3) is independent of the state-D matrix Kd.

Proposition 3.2. Consider the plant, with input u in (3.1), and the state-P controller

u = −Kpx. (3.4)

Suppose that the controller system (3.1) and (3.4) is globally asymptotically stable, then x(∞) is
dependent on the controller gain Kp and is given by

x(∞) = lim
t→∞

x(t) = −(A − BKp
)−1Bε. (3.5)

Proof. From (3.1) and (3.4), note that

x′ = Ax + B
(−Kpx + ε

)
,

x′ =
(
A − BKp

)
x + Bε.

(3.6)

Applying the Laplace transform to (3.6), observe that

sX(s) − x(0) =
(
A − BKp

)
X(s) + Bεs−1,

(
sI − (

A − BKp
))
X(s) = Bεs−1 + x(0),

X(s) =
(
sI − (

A − BKp
))−1(Bεs−1 + x(0)

)
.

(3.7)

Thus,

x(∞) = lim
s→ 0

sX(s) = lim
s→ 0

s
(
sI − (A − BKp)

)−1Bεs−1

= −(A − BKp)
−1Bε.

(3.8)

This completes the proof.

From Proposition 3.2, it can be concluded according to (3.8) that the state-P feedback
can attenuate the influence of ε in x(∞) in controlled systems because (3.8) is dependent on
the state-P matrix Kp.

Proposition 3.3. Consider the plant, with input u in (3.1), and the state-I controller

u = −KI

∫
x(t)dt. (3.9)
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Suppose that the controller system (3.1) and (3.9) is globally asymptotically stable, and the condition
of nonzero KI holds, then x(∞) is dependent on the controller gain KI and is given by

x(∞) = lim
t→∞

x(t) = 0. (3.10)

Proof. From (3.1) and (3.9), note that

x′ = Ax + B
(
−KI

∫
x(t)dt + ε

)
,

x′ = Ax − BKI

∫
x(t)dt + Bε.

(3.11)

Applying the Laplace transform to (3.11), observe that

sX(s) − x(0) = AX(s) − BKI
X(s)
s

+ Bεs−1,

(
sI +

BKI

s
−A

)
X(s) = Bεs−1 + x(0),

X(s)
s

=
(
s2I + BKI −As

)−1(
Bεs−1 + x(0)

)
,

X(s) = s
(
s2I + BKI −As

)−1(
Bεs−1 + x(0)

)
.

(3.12)

Thus,

x(∞) = lim
s→ 0

sX(s) = lim
s→ 0

s

(
s
(
s2I + BKI −As

)−1
Bεs−1

)
= 0. (3.13)

This completes the proof.

An immediate conclusion from Proposition 3.3 is that with the state-I feedback a
complete rejection of disturbance in controlled systems can be achieved due to (3.13).

4. Illustrative Examples

Three illustrative examples are presented with focusing on stabilization and disturbance re-
jection issues. Results are compared with those designed by the previous methods including
Ackermann’s formula [4, 19], Guo et al. [21], and Kuo [20], respectively.
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Figure 1: Magnetic ball suspension.

4.1. Magnetic Ball Suspension

The magnetic ball suspension system [20] represented by the diagram in Figure 1 is adopted
as the first example. This 3rd-order system is described by

x′ =

⎡

⎢⎢
⎣

0 1 0

980 0 −2.8
0 0 −100

⎤

⎥⎥
⎦x +

⎡

⎢⎢
⎣

0

0

100

⎤

⎥⎥
⎦u, (4.1)

where x1 = y, x2 = y′, and x3 = i. The system is originally unstable with its poles at ±31.3050
and −100. It is desirable to have the closed-loop poles at −10 ± j10,−50, and −1000 such that
the characteristic polynomial is Δd(s) = s4 + 1070s3 + 71200s2 + 1210000s + 10000000. The
Frobenius canonical form is

ξ′ =

⎡

⎢⎢
⎣

0 1 0

0 0 1

98000 980 −100

⎤

⎥⎥
⎦ξ +

⎡

⎢⎢
⎣

0

0

1

⎤

⎥⎥
⎦u. (4.2)

The obtained gain matrices are Kp = [0 3.5000 1], KI = 103 · [534.1140 4.3214 − 1.4240], and
Kd = [−254.2857 3.8214 0].

The gain matrix due to Ackermann’s formula isK = [−280 −7.7857 −0.3000]. Figure 2
shows the responses and the control input according to the proposed method in which the
initial conditions are x(t0) = [0.005 0 0]T , and the states are disturbed by 1 unit at the time
t = 1 s. It can be observed that using the proposed method the states possess very good
transient responses, the disturbances are completely dampened out, and the control input
is reasonable. With the conventional pole placement method, some states contain a large
amount of steady-state errors due to disturbance as depicted in Figure 3.

By applying themethod [21] to achieve the same closed-loop poles, the design requires
the following fictitious sets of poles: {−1,−2,−4} and {−5,−6,−10}. As a result, the gain
matrices are Kp = [24.5286 3.55 0.93], KI = [−208.6697 3.2156 0.6982], and Kd = [−3.4432 −
0.023 0.0097] with which a combined state-PID feedback controller is derived. The two
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Figure 2: Responses of system states with the proposed state-PID feedback.
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Figure 3: Responses of system states with the conventional state feedback [4, 19].

intermediate systems denoted as
∑1

Int and
∑2

Int are given in Frobenius canonical forms as
follows:

1∑

Int

= z′ =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−8 −14 −7

⎤

⎥⎥
⎦z +

⎡

⎢⎢
⎣

0

0

1

⎤

⎥⎥
⎦u, u = K̂Fz′,

2∑

Int

= z′ =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−299.6255 −139.8240 −20.9738

⎤

⎥⎥
⎦z +

⎡

⎢⎢
⎣

0

0

1

⎤

⎥⎥
⎦u, u = KF

∫ t

0
z(τ)dτ,

(4.3)

where z = Tx. Under the same simulation situations previously described, similar state
responses to those in Figure 2 are achieved due to the closed-loop poles located at the same
locations −10 ± 10j, −50. Notice that some of the gains designed by the proposed method are
somewhat larger but in reasonable ranges for implementation using either analog or digital
technology. The proportional gains of the proposed method are smaller than those obtained
using the method [21]. This means that the proposed controller draws less energy to achieve
its control action.
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Figure 4: Responses of system states with the method in [20].

Based on the method [20], the gains K = [−2.038 − 0.2278 − 0.68] can be obtained
to place the closed-loop poles at −6 ± 4.9j, −20 with the desired characteristic polynomial of
Δd(s) = s3 + 32s2 + 300s + 1200. Hence, (4.4) describes the closed-loop system

x′ =

⎡

⎢⎢
⎣

0 1 0

64.4 0 −16
0 0 −100

⎤

⎥⎥
⎦x +

⎡

⎢⎢
⎣

0

0

100

⎤

⎥⎥
⎦u. (4.4)

Figure 4 shows the state responses having the initial conditions x(t0) = [1 0 0]T , and the
states are disturbed by 0.05 and 1 unit at the time t = 2 and 3 s. Noticeably, a large amount of
steady-state errors in some states due to the disturbances still remain.

4.2. Inverted Pendulum

The inverted pendulum system in [19] is adopted as the second example and represented by
the diagram in Figure 5. Its state model is expressed by

x′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

20.601 0 0 0

0 0 0 1

−0.4905 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦
x +

⎡

⎢⎢⎢⎢⎢
⎣

0

−1
0

0.5

⎤

⎥⎥⎥⎥⎥
⎦
u, (4.5)

where x1 = θ, x2 = θ′, x3 = x, and x4 = x′. With its poles at 0, 0 and ±4.5388, the system is
inherently unstable. It is desirable to place the closed-loop poles at −2 ± 3.464j,−10,−10, and
−100 such that the characteristic polynomial is

Δd(s) = s5 + 124s4 + 2.595999 × 103s3 + 2.0319915 × 104s2 + 7.359852 × 104s + 1.5999256 × 105.
(4.6)
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Figure 5: Inverted pendulum.

The Frobenius canonical form is

ξ′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 20.601 0

⎤

⎥⎥⎥⎥⎥
⎦
ξ +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u. (4.7)

With the proposed state-PID feedback, the gain matrices are Kp = [−20.601 0 0 0], KI =
[7123.1490 1490.2386 1956.3781 1043.4560], and Kd = [−120.6720 − 24.6841 − 313.0368 −
49.3195].

The gain matrix due to the Ackermann’s formula is K = [−298.1504 − 60.6972 −
163.0989 − 73.3945]. Figures 6 and 7 show the responses and the control inputs in which
the initial conditions are x(t0) = [0.1 0 0 0]T , and the states are disturbed by 1 unit at the
time t = 4 s. These comparative results show a similarity to those of the first example.
Very good transient responses with zero steady-state errors are achieved by the proposed
method. With the method [21] to achieve the same closed-loop poles, it requires two fictitious
pole sets designated as {−1,−2,−4,−5} and {−5, −6,−10,−11}. The following feedback gains
are obtained, respectively, as Kp = [30.4377 15.9755 4.0775 7.9511], KI = [−1562.4506 −
478.4985 163.0989 − 262.9969], and Kd = [−14.4536 − 1.1561 − 5.6815 − 0.3365] with which
a combined state-PID feedback controller is derived. During the design process, the two
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Figure 6: Responses of system states with the proposed method.

intermediate systems
∑1

Int and
∑2

Int are calculated and expressed in Frobenius canonical
forms as follows:

1∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−40 −78 −7.798 −12

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u, u = K̂Fz′,

2∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−3300 −1840 −371 −32

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u, u = KF

∫ t

0
z(τ)dτ.

(4.8)

Under the same simulation situations, similar responses to those in Figure 6 are achieved
because the system possesses the same closed-loop pole locations. As a result, the proposed
method gives small proportional gains meaning that the proposed controller draws less
energy in comparison with that of the method [21]. The magnitude of the integral and the
derivative gains are in reasonable ranges for implementation.
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Figure 7: Responses of system states with the conventional method [4, 19].

4.3. Mechanical Vibration

The mechanical vibration system in [14] is adopted as the third example. The diagram in
Figure 8 represents the system, which is described by

x′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 0 1 0

0 0 0 1

−3960 360 −1.2 0.5

3600 −3600 5 −5

⎤

⎥⎥⎥⎥⎥
⎦
x +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

−0.01
0.1

⎤

⎥⎥⎥⎥⎥
⎦
u, (4.9)

where x1 = x1, x2 = x2, x3 = x′
1, and x4 = x′

2. The open-loop poles of the system are −2.1835±
70.1294j and −0.9165 ± 51.3006j. It is desirable to have the closed-loop poles at −5 ± 65j,
−10±55j, and −1000 such that the characteristic polynomial is Δd(s) = s5 +1030s4 +37575s3 +
7691250s2 + 129531250s + 13281.2500 × 106. The Frobenius canonical form is

ξ′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−1.2960 × 107 −20520 −7563.5000 −6.2000

⎤

⎥⎥⎥⎥⎥
⎦
ξ +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u. (4.10)

With the proposed pole placement method, the obtained gain matrices are Kp = 103 ·
[−396 36 −0.1200 0.0500],KI = 106 ·[1166.857940 −36.892361 3.988644 −0.352635], and Kd =
103 · [317.3474 21.3646 1.0022 0.1002]. The gain matrix due to the Ackermann’s formula is



16 Mathematical Problems in Engineering

m2

m1

k2

k1

x2

x1

b2

b1

u

Figure 8: Mechanical vibration.

K = [9.6338 × 103 892.3611 2774315 265.7432]. Figures 9 and 10 show the responses and
the control inputs in which the initial conditions are x(t0) = [0.05 0.05 0.2 0.2]T , and the
states are disturbed by 1 unit at the time t = 1.5 s. Similar to the other examples, using
the proposed method, the transient responses of the system states are reasonably good with
moderate control input, and all the states converge to origin without steady-state errors. As
shown in Figure 10, using the method [4, 19], some states cannot converge to origin properly
although the control input is not high. As a result of applying the method [21], the same
closed-loop pole locations can be placed through the use of two fictitious pole sets, namely,
{−1,−2,−4,−5} and {−5,−6,−10,−11}. This leads to two intermediate systems, respectively,
denoted as

1∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−40 −60 −49 −12

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u, u = K̂Fz′,

2∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−3300 −630 −371 −2

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u, u = KF

∫ t

0
z(τ)dτ.

(4.11)
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Figure 9: Responses of system states with the proposed method.

The obtained gain matrices are Kp = 103 · [−391.1023 35.9999 1.0783 0.0498], KI = 103 ·
[485.5644 1032.9861 355.9761 −28.0424], and Kd = [−1195.2561 0.1455 −97.5520 0.1236] with
which a combined state-PID feedback controller is derived. Again, similar simulation results
to those in Figure 9 are obtained. In order to show that arbitrarily chosen intermediate poles
affect the gains, more results of applying the method [21] are included. All cases aim to
achieve the same closed-loop pole locations at {−5 ± 65j, −10 ± 55j}. Two fictitious pole
sets being considered are {−65, −60, −55, −50} and {−45, −40, −35, −30}. This leads to two
intermediate systems denoted as

1∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−1.0725 × 107 −7.53250 × 105 −19775 −230

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u,

2∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−1.89 × 106 −2.0625 × 105 −8375 −150

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u.

(4.12)

The following three feedback gains are obtained: Kp = 103 · [1269 6.2 3 − 2], KI = 106 ·
[−20.20188381 − 0.03689236 − 0.78515743 0.00493426], and Kd = 103 · [57.9939 − 1.1587 −
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Figure 10: Responses of system states with the method [4, 19].

0.3011 − 0.0769]. Next, assume the following fictitious pole sets: {−10, −11, −12, −13} and
{−10 ± 65j, −20 ± 55j} resulting in the following intermediate systems:

1∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−17160 −6026 −791 −46

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u,

2∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−1.4813125 × 107 −2.415 × 105 −8550 −60

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u.

(4.13)

The obtained gain matrices are Kp = 103 · [−317.493774 35.952333 43.127038 0.03327],KI =
106 · [−23.47560083 − 0.03689236 − 0.44368173 0.04083183], and Kd = [−4418.3 15.9617 −
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78.2139 2.1666]. As the final case, the fictitious pole sets are {−35 ± 65j,−25 ± 55j} and {−10 ±
65j, −20 ± 55j} resulting in two intermediate systems as follows:

1∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−1.98925 × 107 −5.28 × 105 −12600 −120

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u,

2∑

Int

= z′ =

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

−1.4813125 × 107 −2.415 × 105 −8550 −60

⎤

⎥⎥⎥⎥⎥
⎦
z +

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
u.

(4.14)

The obtained gain matrices are Kp = 103 · [301.2391 − 19.2569 − 2.6792 − 1.4059],
KI = 106·[−23.47560083 −0.03689236 −0.44368173 0.04083183], and Kd = [1930.8642 565.8066
342.0296 30.7740].

The above case studies serve to show the effects of fictitious pole locations required by
the method [21] on the designed gains, the magnitudes of which can be very large. Selection
of fictitious poles is a critical problem of this previous method, which has been neither solved
nor considered.

5. Conclusion

A new design method for pole placement via state-PID, -PI, and -PD feedback has been
proposed. The method has two distinctive features: (i) compact design formulae and (ii)
disturbance rejection property. The analyses of these features have been elaborated through
relevant propositions. The paper also describes the design procedures and presents some
illustrative examples including a magnetic ball suspension, an inverted pendulum, and
mechanical vibration systems, respectively. The simulation results reflect that the proposed
method is promising for a real-world application. A future work will be design optimization
to achieve minimum gains subject to nonlinear restriction in control input and specified
performance constraints.
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