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This paper discusses the problem of determining an unknown source which depends only on
one variable for the modified Helmholtz equation. This problem is ill-posed in the sense that the
solution (if it exists) does not depend continuously on the data. The regularization solution is
obtained by the simplified Tikhonov regularization method. Convergence estimate is presented
between the exact solution and the regularization solution. Moreover, numerical results are
presented to illustrate the accuracy and efficiency of this method.

1. Introduction

Inverse source problems arise in many branches of science and engineering, for example,
heat conduction, crack identification, electromagnetic theory, geophysical prospecting, and
pollutant detection. For the heat source identification, there has been a large number of
research results for different forms of heat source [1–6]. To the author’s knowledge, there
were few papers for identifying the unknown source on the modified Helmholtz equation
which is pointed out in [7] by regularization method.

In this paper, we consider the following inverse problem: to find a pair of functions
(u(x, y), f(x)) satisfying

Δu
(
x, y
) − k2u

(
x, y
)
= f(x), 0 < x < π, 0 < y < +∞,

u
(
0, y
)
= u
(
π, y
)
= 0, 0 ≤ y < +∞,
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u(x, 0) = 0, 0 ≤ x ≤ π,

u
(
x, y
)|

y→∞ bounded, 0 ≤ x ≤ π,

u(x, 1) = g(x), 0 ≤ x ≤ π,

(1.1)

where f(x) is the unknown source depending only on one spatial variable, u(x, 1) = g(x)
is the supplementary condition, and the constant k > 0 is the wave number. In applications,
input data g(x) can only be measured, and there will be measured data function gδ(x)which
is merely in L2(0, π) and satisfies

∥
∥∥g − gδ

∥
∥∥
L2(0,π)

≤ δ, (1.2)

where the constant δ > 0 represents a noise level of input data.
It is easy to derive a solution of problem (1.1) by the method of separation of variables

u
(
x, y
)
= −

∞∑

n=1

1 − e−
√
n2+k2y

n2 + k2
fnXn, (1.3)

where
⎧
⎨

⎩
Xn =

√
2
π

sin nx, (n = 1, 2 . . .)

⎫
⎬

⎭
(1.4)

is an orthogonal basis in L2(0, π), and

fn =

√
2
π

∫π

0
f(x) sin nxdx. (1.5)

By the supplementary condition, we define the operatorK : f → g, then we have

g(x) = Kf(x) = −
∞∑

n=1

1 − e−
√
n2+k2

n2 + k2
fnXn. (1.6)

It is easy to see that K is a linear compact operator and the singular values {σn}n=∞n=1 of K
satisfy

σn = −1 − e−
√
n2+k2

n2 + k2 ,

gn = −1 − e−
√
n2+k2

n2 + k2 fn(Xn,Xn),

(1.7)

that is,

fn = σ−1
n gn, (1.8)
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where

gn =

√
2
π

∫π

0
g(x) sin nxdx. (1.9)

Therefore,

f(x) = K−1g(x) =
∞∑

n=1

1
σn

(
g,Xn

)
Xn = −

∞∑

n=1

n2 + k2

1 − e−
√
n2+k2

gnXn. (1.10)

Note that 1/σn = O(n2) as n → ∞, thus the exact data function g(x) must satisfy the
property that (g,Xn) decays rapidly as O(n−2). As for the measured data function gδ(x) is
only in L2(0, π), we cannot expect the coefficient gδ

n of gδ(x) has the same decay rate. Thus,
the problem (1.1) is ill posed. It is impossible to gain the unknown source using classical
methods. In the following sections, we will use the simplified Tikhonov method to deal with
the ill posed problem. Before doing that, we impose an a priori bound on the unknown source;
that is,

∥
∥f(·)

∥
∥
Hp(0,π) ≤ E, p > 0, (1.11)

where E > 0 is a constant and ‖ · ‖Hp(0,π) denotes the norm in Sobolev space which is defined
by [8] as follows:

∥∥f(·)∥∥
Hp(0,π) =

( ∞∑

n=1

(
1 + n2

)p∣∣(f,Xn

)∣∣2
)1/2

. (1.12)

The simplified Tikhonov regularization method was based on the Tikhonov regu-
larization method. Skillfully simplifying the filter gained by the Tikhonov regularization,
a better regularization approximation solution of the inverse problem was obtained. This
idea initially came from Carasso, the author who modified the filter gained by the Tikhonov
regularization method and obtained the order optimal error estimate in [9]. By this method,
Fu [10] considered the inverse heat conduction problem on a general sideways parabolic
equation, and Cheng et al. [11, 12] considered the spherically symmetric inverse problem.

This paper is organized as follows. Section 2 gives some auxiliary results. Section 3
gives a simplified Tikhonov regularization solution and error estimation. Section 4 gives two
examples to illustrate the accuracy and efficiency of this methods. Section 5 puts an end to
this paper with a brief conclusion.

2. Some Auxiliary Results

Now, we give some important Lemmas, which are very useful for our main conclusion.

Lemma 2.1. For n ≥ 1 and k is a positive constant, there holds

1

1 − e−
√
n2+k2

≤ 2. (2.1)
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Lemma 2.2. For 0 < α < 1, there holds the following inequalities:

sup
n≥1

(
1 − 1

1 + α2n4

)(
1 + n2

)−p/2 ≤ max
{
α2, αp/2

}
,

sup
n≥1

n2 + k2
(
1 − e−

√
n2+k2
)(

1 + α2n4
) ≤

2
α
+ 2k2.

(2.2)

Proof. Let

G(n) :=
(
1 − 1

1 + α2n4

)(
1 + n2

)−p/2
. (2.3)

The proof of (2.2) can be separated from two cases.

Case 1. For large values of n, that is, n ≥ n0 := 1/
√
α, we get

G(n) ≤
(
1 + n2

)−p/2
≤ n−p ≤ n0

−p = αp/2. (2.4)

Case 2. 1 ≤ n < n0, we obtain

G(n) =
α2n4

1 + α2n4

(
1 + n2

)−p/2 ≤ α2n4
(
1 + n2

)−p/2 ≤ α2n4−p. (2.5)

If 0 < p ≤ 4, above inequality becomes into

G(n) ≤ α2n4−p < α2n0
4−p = αp/2. (2.6)

If p > 4, we get

G(n) ≤ α2n4−p ≤ α2. (2.7)

Combining (2.4) with (2.6) and (2.7), the first inequality equation is obtained.Let

B(n) :=
n2 + k2

(
1 − e−

√
n2+k2
)(

1 + α2n4
)

=
n2

(
1 − e−

√
n2+k2
)(

1 + α2n4
) +

k2
(
1 − e−

√
n2+k2
)(

1 + α2n4
)

:= H(n) + J(n).

(2.8)
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Using Lemma 1, we obtain

H(n) ≤ 2n2

1 + α2n4
. (2.9)

Let

L(n) :=
2n2

1 + α2n4
, (2.10)

then

L′(n) =
4n
(
1 − α2n4)

(
1 + α2n4

)2 . (2.11)

Setting L′(n) = 0, we can obtain n1 = 1/
√
α. It is easy to see that n1 = 1/

√
α is a unique

maximal value point of L(n).
So,

L(n) ≤ 2n2
1

1 + α2n2
1

≤ 2n2
1 =

2
α
,

J(n) ≤ k2

1 − e−
√
n2+k2

≤ 2k2.

(2.12)

So, we get

B(n) ≤ 2
α
+ 2k2. (2.13)

This completes the proof.

3. A Simplified Tikhonov Regularization Method

Since problem (1.1) is an ill-posed problem, we give an approximate solution of f(x) by a
Tikhonov regularization method which minimizes the quantity

∥∥∥Kfδ − gδ
∥∥∥
2
+ α2
∥∥∥fδ
∥∥∥
2
. (3.1)

Then, by Theorem 2.12 in [8], the unique solution of the minimization problem (3.1) is equal
to solve the following normal equation:

K∗Kfδ(x) + α2fδ(x) = K∗gδ(x), (3.2)

that is,

fδ(x) =
[
K∗K + α2I

]−1
K∗gδ(x). (3.3)
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Because K is a linear self-adjoint compact operator, that is, K∗ = K, we have the equivalent
form

fδ(x) =
[
K2 + α2I

]−1
Kgδ(x). (3.4)

We define function of a compact self-adjoint operator K by the spectral mapping theorem in
the following way.

Definition 3.1 (see[13]). If f(x) is a real-valued continuous function on the spectrum σ(K), we
define f(K) by

f(K)x =
∑

n

f(λn)(x,ωn)ωn, (3.5)

where K is a compact self-adjoint, λn ∈ σ(K), and ωn are the corresponding orthogonal
eigenvectors.

So, we obtain

fδ(x) = −
∞∑

n=1

(
1 − e−

√
n2+k2
)
/
(
n2 + k2)

α2 +
((

1 − e−
√
n2+k2
)
/(n2 + k2)

)2

(
gδ(x), Xn

)
Xn

= −
∞∑

n=1

(
n2 + k2)/

(
1 − e−

√
n2+k2
)

1 + α2
(
(n2 + k2)/

(
1 − e−

√
n2+k2
))2

(
gδ(x), Xn

)
Xn

= −
∞∑

n=1

(
n2 + k2)/

(
1 − e−

√
n2+k2
)

1 + α2
(
(n2 + k2)/

(
1 − e−

√
n2+k2
))2 g

δ
nXn.

(3.6)

Comparing (1.10) with (3.6), we can find that the procedure consists in replacing
the unknown g(x) with an appropriately filtered noised data gδ(x). The filter in (3.6)
attenuates the coefficient gδ

n of gδ(x) in a manner consistent with the goal of minimizing
quantity (3.1). By this idea, we can use a much better filter 1/(1 + α2n4) to replace the filter

1/(1 + α2((n2 + k2)/(1 − e−
√
n2+k2))

2
) and give another approximation fδ

α (x) of the solution
f(x).

We define a regularization approximate solution of problem (1.1) for noisy data gδ(x)
which is called the simplified Tikhonov regularized solution of problem (1.1) as follows:

fδ
α (x) := −

∞∑

n=1

n2 + k2
(
1 − e−

√
n2+k2
)(

1 + α2n4
)
(
gδ, Xn

)
Xn. (3.7)
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Theorem 3.2. Let fδ
α (x) be the simplified Tikhonov approximation of the solution f(x) of problem

(1.1). Let gδ(x) be measured data at y = 1 satisfying (1.2), and let priori condition (1.11) hold for
p > 0. If one selects

α =
(
δ

E

)2/(p+2)

, (3.8)

then the following estimate holds:

∥∥∥f(·) − fδ
α (·)
∥∥∥
L2(0,π)

≤ 2δp/(p+2)E2/(p+2)

(

1 +
1
2
max

{

1,
(
δ

E

)(4−p)/(p+2)})

+ 2k2δ. (3.9)

Proof. Due to the triangle inequality, we have

∥∥∥f − fδ
α

∥∥∥
L2(0,π)

=

∥∥∥
∥∥∥
∥
−

∞∑

n=1

n2 + k2

1 − e−
√
n2+k2

(
g,Xn

)
Xn

−

⎛

⎜
⎝−

∞∑

n=1

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)
(
gδ, Xn

)
Xn

⎞

⎟
⎠

∥∥∥
∥∥∥
∥
L2(0,π)

=

∥∥
∥∥∥
∥∥

∞∑

n=1

n2 + k2

1 − e−
√
n2+k2

(
g,Xn

)
Xn

−
∞∑

n=1

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)
(
gδ, Xn

)
Xn

∥∥∥
∥∥∥
∥
L2(0,π)

≤

∥
∥∥∥∥
∥∥

∞∑

n=1

n2 + k2

1 − e−
√
n2+k2

(
g,Xn

)
Xn −

∞∑

n=1

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)
(
g,Xn

)
Xn

∥
∥∥∥∥
∥∥
L2(0,π)

+

∥
∥∥∥
∥∥∥

∞∑

n=1

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)
(
g,Xn

)
Xn

−
∞∑

n=1

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)
(
gδ, Xn

)
Xn

∥
∥∥∥
∥∥∥
L2(0,π)

=

∥∥∥
∥∥∥

∞∑

n=1

n2 + k2

1 − e−
√
n2+k2

(
g,Xn

)
Xn

(
1 − 1

1 + α2n4

)

L2(0,π)

∥∥∥
∥∥∥
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+

∥
∥∥∥
∥∥∥

∞∑

n=1

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)
(
g − gδ, Xn

)
Xn

∥
∥∥∥
∥∥∥
L2(0,π)

≤
∥∥∥
∥∥

∞∑

n=1

(
1 − 1

1 + α2n4

)(
f,Xn

)
Xn

(
1 + n2

)p/2(
1 + n2

)−p/2
∥∥∥
∥∥
L2(0,π)

+ sup
n≥1

⎛

⎜
⎝

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)

⎞

⎟
⎠

∥∥∥∥
∥

∞∑

n=1

(
g − gδ, Xn

)
Xn

∥∥∥∥
∥
L2(0,π)

≤ sup
n≥1

((
1 − 1

1 + α2n4

)(
1 + n2

)−p/2)∥∥∥∥
(
f,Xn

)
Xn

(
1 + n2

)p/2∥∥∥∥
L2(0,π)

+ sup
n≥1

⎛

⎜
⎝

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)

⎞

⎟
⎠

∥
∥∥∥
∥

∞∑

n=1

(
g − gδ, Xn

)
Xn

∥
∥∥∥
∥
L2(0,π)

≤ sup
n≥1

((
1 − 1

1 + α2n4

)(
1 + n2

)−p/2)
E + sup

n≥1

⎛

⎜
⎝

n2 + k2

(
1 + α2n4

)(
1 − e−

√
n2+k2
)

⎞

⎟
⎠δ

≤ max
{
α2, α(p/2)

}
E +

2
α
δ + 2k2δ

= max

{(
δ

E

)4/(p+2)

,

(
δ

E

)p/p+2
}

E + 2
(
δ

E

)−2/(p+2)
δ + 2k2δ

= 2δp/(p+2)E2/(p+2)

(

1 +
1
2
max

{

1,
(
δ

E

)4−p/(p+2)})

+ 2k2δ.

(3.10)

The proof is complete.

Remark 3.3. If 0 < P ≤ 4,

∥∥
∥f(·) − fδ

α (·)
∥∥
∥
L2(0,π)

≤ 3δp/(p+2)E2/(p+2) + 2k2δ −→ 0, as δ −→ 0. (3.11)

If p > 4,

∥
∥∥f(·) − fδ

α (·)
∥
∥∥
L2(0,π)

≤ 2δp/(p+2)E2/(p+2) + δ4/(p+2)E(p−2)/(p+2) + 2k2δ −→ 0, as δ −→ 0.

(3.12)

Hence, fδ
α (x) can be viewed as the approximation of the exact solution f(x).
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Table 1: Relative errors rerr(f)with ε = 0.01, k = 2, N = 10 and p = 2 for different M.

M 10 50 100 200 400 800 1600 3200

rerr(f) 0.0199 0.0080 0.0041 0.0046 0.0045 0.0033 0.0013 0.0010

Table 2: Relative errors rerr(f)with ε = 0.01, k = 2, M = 100 and p = 2 for different N.

N 1 3 4 6 7 8 10 11

rerr(f) 1 0.0019 0.0022 0.0026 0.0035 0.0044 0.0034 0.0055

4. Numerical Example

From (1.10), we know that

(
Kf
)
(x) =

∞∑

n=1

1 − e−
√
n2+k2

n2 + k2

(
f,Xn

)
Xn

=
∫π

0

2
π

∞∑

n=1

1 − e−
√
n2+k2

n2 + k2 f(s) sin(ns) sin(nx)ds = g(x).

(4.1)

We use trapezoid’s rule to approach the integral and do an approximate truncation for
the series by choosing the sum of the frontM+1 terms. After considering an equidistant grid
0 = x1 < · · · < xM+1 = π, (xi = (i − 1)/Mπ, i = 1, . . . ,M + 1), we get

2
π

M+1∑

i=1

N∑

n=1

1 − e−
√
n2+k2

n2 + k2 f(xi) sin(nxi) sin
(
nxj

)
h = g

(
xj

)
, (4.2)

where

h =
π

M
. (4.3)

Example 4.1. It is easy to see that the function u(x, y) = (1 − e−
√
2ky) sin kx and the function

f(x) = −2k2 sinkx are the exact solutions of the problem (1.1). Consequently, the data
function is g(x) = (1 − e−

√
2k) sin kx, and

∥∥f(·)∥∥Hp(0,π) =

( ∞∑

n=1

(
1 + n2

)p∣∣f,Xn

∣∣2
)1/2

=
(
1 + k2

)p/2
k2
√
2π. (4.4)

Adding a random distributed perturbation to each data function, we obtain vector gδ; that is,

gδ = g + ε randn
(
size
(
g
))
. (4.5)

The function “randn(·)” generates arrays of random numbers whose elements are normally
distributed with mean 0, variance σ2 = 1, and standard deviation σ = 1. “Randn(size(g))”
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Table 3: δ, α and rerr(f)with p = 1/2, k = 2 and E = 14.9931.

ε 10−1 10−2 10−3 10−4 10−5

δ 0.0332 0.0331 3.2100 × 10−4 3.0044 × 10−5 2.8271 × 10−6

α 0.0510 0.0231 0.0109 0.0049 0.0022
rerr(f) 0.1018 0.0529 0.0607 0.0621 0.0624

Table 4: δ, α and rerr(f)with p = 1, k = 2 and E = 22.4200.

ε 0.1 0.05 0.01 0.005 0.001

δ 0.0287 0.0150 0.0029 0.0015 2.8461 × 10−4

α 0.0067 0.0040 0.0011 6.1518 × 10−4 1.6699 × 10−4

rerr(f) 0.0376 0.0156 0.0035 0.0015 4.8988 × 10−4

returns an array of random entries that is the same size as g. The total noise level δ can be
measured in the sense of root mean square error (RMSE) according to

δ =
∥
∥∥gδ − g

∥
∥∥
2
=

(
1

M + 1

M+1∑

n=1

(
gn − gδ

n

)2
)1/2

. (4.6)

Using gδ as data function, we obtain the computed approximation fδ
α (x) by using

(3.7). The relative error is given as follows:

rerr
(
f
)
:=

∥∥fδ
α − f

∥∥
2∥∥f

∥∥
2

, (4.7)

where ‖ · ‖2 is defined by (4.6).
Tables 1-2 showM andN have small influence on the relative error when they become

larger. So, we will always takeM = 100 and n = 7 in the following examination.

Test 1

We choose p = 1/2, p = 1, p = 2 and p = 3 in Tables 3, 4, 5, and 6 to compute the parameters
δ, α, and rerr(f), respectively.

These tables indicate that parameter δ, α, and rerr(f) all depend on the perturbation ε.
δ, α, and rerr(f) decrease with the decrease of ε. These are consistent with our regularization
methods. In addition, rerr(f) decreases with the increase of p at first, but it ceases decreasing
when p reaches to some extent. This means that rerr(f) does not decrease for stronger
“smoothness” assumptions on the exact solution f(x).

Test 2

Figure 1 shows the comparison between the exact solution f(x) and the regularization so-
lution fδ

α (x) for k = 1, k = 2, k = 3, and k = 4 with the perturbation ε = 0.1, ε = 0.01, and
ε = 0.001 with Example 4.1.
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Table 5: δ, α and rerr(f)with p = 2, k = 2 and E = 50.1326.

ε 10−1 10−2 10−3 10−4 10−5

δ 0.0300 0.0151 0.0028 0.0014 2.8037 × 10−4

α 0.0245 0.0174 0.0075 0.0052 0.0024
rerr(f) 0.0300 0.0105 0.0036 9.2789 × 10−4 3.7118 × 10−4

Table 6: δ, α, and rerr(f)with p = 3, k = 2 and E = 112.0998.

ε 10−1 10−2 10−3 10−4 10−5

δ 0.0293 0.0133 0.0028 0.0015 2.8145 × 10−4

α 0.0369 0.0269 0.0144 0.0111 0.0058
rerr(f) 0.0352 0.0135 0.0051 0.0024 6.4392 × 10−4

0 0.5 1 1.5 2 2.5 3 3.5
−2.5

−2

−1.5

−1

−0.5

0

Exact solution
ε = 0.1

ε = 0.01
ε = 0.001

x

f
(x
)
an

d
it
s
ap

pr
ox

im
at
io
n

(a)

0 0.5 1 1.5 2 2.5 3 3.5

Exact solution
ε = 0.1

ε = 0.01
ε = 0.001

x

−8
−6
−4
−2
0

2

4

6

8
f
(x
)
an

d
it
s
ap

pr
ox

im
at
io
n

(b)

0 0.5 1 1.5 2 2.5 3 3.5

Exact solution
ε = 0.1

ε = 0.01
ε = 0.001

x

−20
−15
−10
−5
0

5

10

15

20

f
(x
)
an

d
it
s
ap

pr
ox

im
at
io
n

(c)

0 0.5 1 1.5 2 2.5 3 3.5

Exact solution
ε = 0.1

ε = 0.01
ε = 0.001

x

−40
−30
−20
−10

0

10

20

30

40

f
(x
)
an

d
it
s
ap

pr
ox

im
at
io
n

(d)

Figure 1: The exact solution f(x) and its approximation fδ
α (x): (a) k = 1, (b) k = 2, (c) k = 3, and (d) k = 4.



12 Mathematical Problems in Engineering

0 0.5 1 1.5 2 2.5 3 3.5

Exact solution
ε = 0.1

ε = 0.01
ε = 0.001

x

−0.2
0

0.2

0.4

0.6

0.8

1

1.2

f
(x
)
an

d
it
s
ap

pr
ox

im
at
io
n

(a)

0 0.5 1 1.5 2 2.5 3 3.5

Exact solution
ε = 0.1

ε = 0.01
ε = 0.001

x

−0.2
0

0.2

0.4

0.6

0.8

1

1.2

f
(x
)
an

d
it
s
ap

pr
ox

im
at
io
n

(b)

Figure 2: The exact solution f(x) and its approximation fδ
α (x) for k = 10: (a) p = 2, and (b) p = 3.
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Figure 3: The exact solution f(x) and its approximation fδ
α (x) for p = 2: (a) k = 3, and (b) k = 10.

Figure 1 indicates these regularized solutions approximate to the exact solution, as
the amount of ε decreases, while the numerical results are not so good as the parameter k
becomes larger.

Test 3

The unknown sources f(x) is given. The numerical test was constructed in the following way.
First, we selected the solution f(x) and obtained the exact data function g(x) using (1.6).
Then, we added a normally distributed perturbation to each data function giving vectors
gδ(x). Finally, we obtained the regularization solutions using (3.7).
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Example 4.2. Consider a piecewise smooth source:

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ x ≤ π

4
,

4
π
x − 1,

π

4
< x ≤ π

2
,

3 − 4
π
x,

π

2
< x ≤ 3π

4
,

0,
3π
4

< x ≤ π.

(4.8)

In Example 4.2, since the direct problem with the heat source f(x) does not have
an analytical solution, the data g(x) is obtained by solving the direct problem. Figures 2-3
show the comparisons between the exact solution and its computed approximation with
different noise level for Example 4.2. It can be seen that as the amount of noise ε decreases, the
regularized solutions approximate better the exact solution. In addition, even when k = 10,
the regularized solutions still approximate the exact solution. From Figures 2-3, it can be seen
that the numerical solution is less than that of Example 4.1. It is not difficult to see that the
well-known Gibbs phenomenon and the recovered data near the nonsmooth points are not
accurate. Taking into consideration the ill posedness of the problem, the results presented in
Figures 2-3 are reasonable.

5. Conclusions

In this paper, we considered the inverse problem of determining the unknown source using
the simplified Tikhonov regularization method for the modified Helmholtz equation. It
was shown that with a certain choice of the parameter, a stability estimate was obtained.
Meanwhile, the numerical example verified the efficiency and accuracy of this method.
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