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A quasi-sliding mode control (QSMC) to suppress chaos for a permanent magnet synchronous
motor (PMSM) with parameters fall into a certain area is proposed in this paper. Especially,
based on the new concept of QSMC, continuous control input is obtained to avoid chattering
phenomenon. As expected, the system states can be driven to zero or into a predictable and
adjustable bound even when uncertainties are present. Numerical simulations demonstrate the
validity of the proposed QSMC design method.

1. Introduction

Since chaotic attractors were found by Lorentz in 1963, many chaotic systems have been
constructed. A chaotic system is a very special nonlinear dynamical system and it possesses
several properties such as the sensitivity to initial conditions, as well as an irregular,
unpredictable behavior and thereby confines the precise operation of physical systems, such
as mechanical systems, biological systems, and power converters. In the past twenty years,
the idea of controlling chaos with the aim of stabilizing the unstable periodic orbits of a
chaotic system has received a great deal of interest, due to its complexity andwide varieties of
application. The first research was introduced by Ott et al. [1]. Now, many control techniques
for chaos control were used, such as feedback control [2], variable structure control [3],
sliding mode control [4, 5], observer-based control [6], and adaptive control [7, 8].

Chaos phenomena in the motor drive with parameters fall into a certain area was
introduced by Kuroe and Hayashi in 1980 [9]. Up to now, many classes of motor drive
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systems have been found with rich phenomena of chaos [10–12]. Since undesired chaotic
behavior can extremely destroy the stabilization of the motor or even induce drive system
collapse. Therefore, control and suppress chaotic behavior of the motor drive systems is an
important problem. The chaotic behavior of permanent magnet synchronousmotors (PMSM)
has been extensively studied in [12]. Since then, many chaos control methods for PMSM have
been proposed [13–15]. Due to physical limitations, practical systems are frequently subjected
to uncertainty and the robustness is very important to the control performance. However, in
[13–15], the robustness of controlled PMSM systemswas only verified by simulation analysis.
No complete theoretical discussions are included in their works. On the other hand, sliding
mode control has been widely recognized as a powerful approach regarding robust control
problems. The main advantage is that the sliding mode control can potentially be exploited
to improve control performance such as robustness and fast time response. However, in [16–
19], ideal sliding mode only exists for infinite frequency switching operation. From practical
point of view, thus control input is impossible to implement and will cause the undesired
chattering phenomenon [20, 21]. Thereby, it is necessary to develop a new robust control
method without chattering to deal with the PMSM systems with uncertainties.

In this paper, controlling chaos in PMSM was considered. The main contribution of
this paper is to introduce a new concept of quasi-sliding mode control (QSMC) technique
and propose a continuous controller for avoiding the chattering phenomenon. Furthermore,
the chaos of the considered PMSM subjected to uncertainties or disturbances can be fully
suppressed or driven into a predictable and adjustable bound. Finally, we present numerical
simulation results to illustrate the effectiveness and robustness of the proposed QSMC
scheme.

This paper is organized as follows. Section 2 describes the dynamics of a PMSM
and formulates the chaos control problem. Definition of the quasi-sliding manifold and the
bounds of the states of controlled PMSM in the quasi-sliding manifold will be given in
Section 3. In Section 4, the QSMC design is derived. Finally, an illustrative example and
conclusions are presented in Sections 5 and 6, respectively.

2. System Description and Problem Formulation

In this section, we consider the chaos suppression of a PMSMmodel via a quasi-sliding mode
controller.

2.1. Mathematical Model of PMSM Drive Systems and Problem Formulation

The transformed model of PMSM with smooth air gap can be described as follows [12]:

dw

dt
= σ

(
iq −w

) − T̃L,

diq

dt
= −iq − idw + γw + ũq,

did
dt

= −id + iqw + ũd,

(2.1)
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wherew, iq and id are state variables, which denote angle speed and the direct and quadrature
(d-q) axis currents, respectively. The state w can be directly measured while states iq and id
can be calculated by the d-q transformation mentioned in [22]. ũd, ũq are the transformed
d-q axis stator voltage components, respectively, T̃L is the transformed external load torque,
σ and γ are system parameters. In system (2.1), the external inputs are set to zero, that is,
T̃L = ũd = ũq = 0, then the system (2.1) becomes an unforced system as:

dw

dt
= σ

(
iq −w

)
,

diq

dt
= −iq − idw + γw

did
dt

= −id + iqw.

, (2.2)

The bifurcation and chaos phenomena of PMSM driver system have been extensively studied
in [12] using the modern nonlinear theory. It was pointed out that PMSM drives would
display chaotic behavior when parameters of motor fall into a certain area. Figure 1 shows
the chaotic motion of system (2.1) in the case of T̃L = ũd = ũq = 0, σ = 5.45, γ = 20,
[w(0), iq(0), id(0)] = [−1, 2, 4]. This chaotic behavior will cause the torque of PMSMoscillation
in a wide range and it can destroy the stabilization of the PMSM drive system. In order to
remove chaos, wewill consider the chaos control in the PMSMand give an explicit and simple
procedure to establish a quasi-SMC to achieve the control goal.

2.2. Problem Formulation

Consider the PMSM as shown in (2.2), to control the system effectively, we use u as the
manipulated variable which is accessible. By adding this input, the equation of the controlled
system with matched uncertainty can be expressed by

dw

dt
= σ

(
iq −w

)
,

diq

dt
= −iq − idw + γw + Δf

(
w, iq, id, ρ

)
+ u,

did
dt

= −id + iqw,

(2.3)

where Δf(w, iq, id, ρ) is the uncertainty of parameter disturbances and external noise
perturbation ρ applied to the PMSM. In general, Δf(w, iq, id, ρ) is assumed to be bounded
by

∣∣Δf
(
w, iq, id, ρ

)∣∣ ≤ δw|w| + δiq
∣∣iq

∣∣ + δid |id| + δρ, (2.4)

where δw, δiq , δid , and δρ are known positive constants.
The considered goal of this paper is to design a QSMC such that the resulting states of

PMSM with uncertainties can be driven to predictable and desired bounds.
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Figure 1: (a) Trajectories of PMSM oscillation. (b) Trajectories projected on the w(t)-iq(t) plane. (c)
Trajectories projected on the w(t)-id(t) plane. (d) Trajectories projected on the iq(t)-id(t) plane.

In consequence, to achieve this control goal for PMSM, there exist two major phases.
First, it needs to select an appropriate switching surface for the system such that the motion
on the quasi-slidingmanifold defined in the next section can ensure all the closed-loop signals
bounded. Second, it needs to determine a QSMC such that the existence of the quasi-sliding
manifold can be guaranteed.

3. Definition of Quasi-Sliding Manifold and Switching Surface Design

Before completing the above two phases, we first give the definition of quasi-slidingmanifold
as follows.

Definition 3.1. The system (2.2) is said to be in the quasi-sliding manifold if there exist δQ > 0
and tQ > 0 such that any solution x(·) of controlled system (2.2) satisfies |s(t)| ≤ δQ, for all
t ≥ tQ.

When the controlled system (2.2) is trapped into the quasi-sliding manifold, the
system behavior can be governed by some equivalent dynamics which is relative to the
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switching surface. Therefore, to make it easy for analyzing the behavior of controlled PMSM
in the quasi-sliding manifold, the switching surface is defined as

s(t) = iq(t) + cw(t), (3.1)

where s ∈ R and c > −1 is a designed constant. When the system operates in the quasi-
sliding manifold, that is, |s(t)| ≤ δQ for t ≥ tQ, from (2.2) and (3.1), the following dynamics of
quasi-sliding manifold can be obtained as

dw(t)
dt

= −σ(1 + c)w(t) + σs(t). (3.2)

Solving the differential equation (3.2) for w when t ≥ tQ results in

w(t) = e−σ(1+c)(t−tQ)w
(
tQ
)
+ σ

∫ t

tQ

e−σ(1+c)(t−τ)s(τ)dτ. (3.3)

If the system enters the quasi-slidingmanifold, according to Definition 3.1, one has |s(t)| ≤ δQ.
Furthermore, since c > −1 is determined such that σ(1 + c) > 0, the bound for state w is
obtained as

|w(t)| =
∣∣∣∣∣
e−σ(1+c)(t−tQ)w

(
tQ
)
+ σ

∫ t

tQ

e−σ(1+c)(t−τ)s(τ)dτ

∣∣∣∣∣

≤ e−σ(1+c)(t−tQ)
∣∣w

(
tQ
)∣∣ + σδQe

−σ(1+c)t
∫ t

tQ

eσ(1+c)τdτ

= e−σ(1+c)(t−tQ)
∣∣w

(
tQ
)∣∣ + σδQ

1 − e−σ(1+c)(t−tQ)

σ(1 + c)
.

(3.4)

Equation (3.4)with σ(1 + c) > 0 shows that

lim
t→∞

|w(t)| ≤ γ1 =
δQ

1 + c
. (3.5)

Furthermore, by (3.1), the bound for iq(t) when the time t → ∞ can be also obtained as

lim
t→∞

∣∣iq(t)
∣∣ = lim

t→∞
|s(t) − cw(t)| ≤ lim

t→∞
|s(t)| + lim

t→∞
|c||w(t)| ≤ γ2 =

(
1 +

|c|
1 + c

)
δQ. (3.6)

Meanwhile, after |w| ≤ γ1 and |iq| ≤ γ2, solving the differential equation (2.2) for state id
results in

lim
t→∞

|id(t)| ≤ γ3 = γ1γ2. (3.7)



6 Mathematical Problems in Engineering

Obviously, by (3.5)–(3.7), the bounds of γi, i = 1, 2, 3 are relative to δQ. Therefore, to control
the system with a smaller value of δQ is important and the solution is given in the following
section.

4. QSMC Design for Quasi-Sliding Manifold

Having established an appropriate switching surface and estimating the bounds of the states
of system in the quasi-sliding manifold, this section aims to design a QSMC to drive the
dynamics (2.2) into the quasi-sliding manifold |s(t)| ≤ δQ. To ensure the occurrence of the
quasi-sliding manifold, the continuous controller is proposed as

u(t) = −k(η + η̃
) s

|s| + δ
, (4.1)

where k > 1, δ > 0, η = |(cσ − 1)iq − idw + (γ − cσ)w|, and η̃ = δw|w| + δiq |iq| + δid |id| + δρ ≥ 0.
The proposed control scheme above will guarantee the occurrence of quasi-sliding

manifold for the system (2.2), and is proven in the following theorem.

Theorem 4.1. Consider the system (2.2), if this system is controlled by u(t) in (4.1). Then the system
trajectory converges to the quasi-sliding manifold, |s(t)| ≤ δQ = kδ/(k − 1).

Proof. Let the Lyapunov function of the system be V = (1/2)s2, then taking the derivative of
V and introducing (2.2) and (3.1), one has

dV (t)
dt

= s
ds(t)
dt

= s

(
diq(t)
dt

+ c
dw(t)
dt

)

= s
(
(cσ − 1)iq − idw +

(
γ − cσ

)
w + f

(
w, iq, id, ρ

)
+ u

)

≤ (
η + η̃

)|s| + su

=
(
η + η̃

)|s| − k
(
η + η̃

) s2

|s| + δ
=
(
η + η̃

)|s| − k
(
η + η̃

)
(
|s| − |s|δ

|s| + δ

)
.

(4.2)

Since |s|δ/(|s| + δ) ≤ δ, we have

dV (t)
dt

≤ (
η + η̃

)|s| − k
(
η + η̃

)
(|s| − δ) = −(k − 1)

(
η + η̃

)
(
|s| − kδ

k − 1

)
. (4.3)

Since k > 1 has been chosen in the controller (4.2), (4.3) implies that (dV (t)/dt) < 0,
whenever |s(t)| > δQ = kδ/(k − 1). That is to say that |s| will converge to the region of
|s(t)| ≤ δQ = kδ/(k − 1). Thus the proof is achieved completely.

Remark 4.2. From the switching surface (3.1) and [23, Definition 10.10], the relative degree of
system (2.3) is 1. Obviously, the statesw and iq in (2.3) are controllable while id is the internal
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state which is bounded input-bounded output (BIBO) stable as shown in (2.3). Furthermore,
according to the results in (3.4)–(3.6), the state variables of system (2.3) are all bounded.

Remark 4.3. Since the controller in (4.1) is continuous, the control is without infinite frequency
switching operation and chattering is eliminated.

Remark 4.4. In fact, δ is a design parameter, therefore, one can select a sufficient small value
of δ to make δQ as well as γi, i = 1, 2, 3 arbitrarily bounded in the neighborhood of zero.

Remark 4.5. From the above analysis, a procedure for the robust control of chaos in PMSM is
proposed as follows.

Step 1. Select c > −1 to ensure σ(1 + c) > 0.

Step 2. Obtain the switching function s(t) from (3.1) and select the control parameters.

Step 3. Calculate the predictable bounds γi, i = 1, 2, 3 by (3.5)–(3.7).

Step 4. Obtain the QSMC from (4.1).

5. A Numerical Example

In this section, simulation results are presented to demonstrate and verify the effectiveness
and robustness of the proposed QSMC scheme. The system parameters and initial conditions
keep the same as those in Figure 1. And then, we imposeΔf(w, iq, id, ρ) = 0.3w+0.2iq sin(w)+
0.2id + 0.3 in the control system. As mentioned in Remark 4.5, the QSMC design procedure
for chaos suppression in the PMSM driver can be summarized as follows.

Step 1. According to (4.1), parameter c = 1 > −1 is selected such that σ(1 + c) > 0.

Step 2. Consequently, the switching surface s(t) is constructed as

s(t) = iq(t) + cw(t). (5.1)

Select the control parameters in (4.1) as k = 3 and δ = 0.06 and according to Theorem 4.1, we
have δQ = 0.09.

Step 3. By (3.5), (3.6), and (3.7), we can calculate the predictable bounds γi, i = 1, 2, 3 as

|w(t)| ≤ γ1 = 0.045;
∣∣iq(t)

∣∣ ≤ γ2 = 0.135; |id(t)| ≤ γ3 = 6.075 × 10−3. (5.2)

Step 4. Construct the QSMC from (4.1) as

u(t) = −3(η + η̃
) s

|s| + 0.06
, (5.3)

where η = |(cσ −1)iq − idw+(γ −cσ)w|; η̃ = 0.2|w|+0.3|iq|+0.2|id|+0.3; c = 1; σ = 5.45; γ = 20.
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Figure 2: State responses of the PMSM driver (2.3)with u(t) = 0.
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Figure 3: State responses of controlled PMSM system with QSMC (5.3).
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Figure 4: (a) The time response of switching function s(t). (b) The time response of continuous QSMC
(5.3).

The simulation results are shown in Figures 2–4. Figure 2 shows the three state
responses of the PMSM driver (2.3) with u(t) = 0. It can be seen from Figure 2 that
the three state variables are chaotic when u(t) = 0. The corresponding state responses,
switching surface s(t), and control input under the proposed QSMC (5.3) under the effect
of Δf(w, iq, id, ρ) are shown in Figures 3 and 4, respectively. From the simulation results in
Figure 3, it shows that the three state variables are able to converge to the predicted bounds as
calculated in (5.2). Also the trajectory of controlled system quickly converges to quasi-sliding
manifold |s(t)| ≤ δQ = 0.09 and the chattering does not appear due to the continuous control
input as shown in Figure 4. Thus the proposed continuous QSMCworks well and the chaotic
behavior in the PMSM driver is indeed suppressed as desired.

6. Conclusions

In this paper, the chaos suppression problem for permanent magnet synchronous motor
is studied. The new concept of quasi-sliding mode control has been introduced to avoid
chattering phenomenon as frequently in the conventional sliding mode control systems.
As expected, the chaos of the considered PMSM with uncertainties can be suppressed or
driven to neighborhood of zero or into predictable bounds without chattering. Numerical
simulations have verified the effectiveness of the proposed method.
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