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This paper is concerned with the analysis of peristaltic motion of a Jeffrey fluid in a tube with
sinusoidal wave travelling down its wall. The effect of rotation, porous medium, and magnetic
field on peristaltic transport of a Jeffrey fluid in tube is studied. The fluid is electrically conducting
in the presence of rotation and a uniform magnetic field. An analytic solution is carried out for
long wavelength, axial pressure gradient, and low Reynolds number considerations. The results
for pressure rise and frictional force per wavelength were obtained, evaluated numerically, and
discussed briefly.

1. Introduction

The dynamics of the fluid transport by peristaltic motion of the confining walls has received
a careful study in the literature. The need for peristaltic pumping may arise in circumstances
where it is desirable to avoid using any internal moving parts such as pistons in a pumping
process. The peristalsis is also well known to the physiologists to be one of the major
mechanisms of fluid transport in a biological system and appears in urine transport from
kidney to bladder through the ureter, movement of chyme in the gastrointestinal tract, the
movement of spermatozoa in the ductus efferentes of the male reproductive tract and the
ovum in the female fallopian tube, the locomotion of some worms, transport of lymph in
the lymphatic vessels, and vasomotion of small blood vessels such as arterioles, venules, and
capillaries. Technical roller and finger pumps also operate according to this rule. The behavior
of most of the physiological fluids is known to be non-Newtonian. Several models have been
proposed to explain the non-Newtonian behavior of fluids.
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Mahmoud et al. [1–3] investigated effect of the rotation on the radial vibrations
in a nonhomogeneous orthotropic hollow cylinder and effect of the rotation on wave
motion through cylindrical bore in a micropolar porous cubic crystal, and he investigated
effect of the rotation on the radial vibrations in a nonhomogeneous orthotropic hollow
cylinder. Abd-Alla et al. [4–7] investigated effect of the rotation on a nonhomogeneous
infinite cylinder of orthotropic material, influences of rotation, magnetic field, initial stress
and gravity on rayleigh waves in a homogeneous orthotropic elastic half space, and
magneto-thermoelastic problem in rotating nonhomogeneous orthotropic hollow cylindrical
under the hyperbolic heat conduction model, and they studied effect of the rotation on
propagation of thermoelastic waves in a nonhomogeneous infinite cylinder of isotropic
material. Mahmoud [8] studied effect of rotation on generalized magneto-thermoelastic
Rayleigh waves in a granular medium under influence of gravity field and initial stress.
Afifi et al. [9–11] investigated effect of magnetic field and wall properties on peristaltic
motion of micropolar fluid in circular cylindrical tubes and interaction of peristaltic
flow with pulsatile magnetofluid through a porous medium, and they studied aspects
of a magnetofluid with suspended particles. Various attempts [12–14] are made to solve
the extremely complex equations of motion of non-Newtonian fluids. The good number
of recent investigations [15–23] on the peristalsis of non-Newtonian fluids has been
presented with various perspectives, in channels or tubes. Most of the analytic studies
are asymptotic expansions with small Reynolds number, wave number, and amplitude
ratio as a perturbation parameter. Siddiqui et al. [24] examined the peristaltic motion of a
magnetohydrodynamic Newtonian fluid in a tube by taking long wavelength approximation.
More recently Hayat and Ali [22] studied the peristaltic motion of a third-order fluid in
a tube under long wavelength and small Deborah number approximation. However, no
attempt has been made to discuss the peristaltic motion of a magnetohydrodynamic (MHD)
non-Newtonian fluid in a tube which holds for all values of non-Newtonian parameters.
In the present analysis, such an attempt has been made. The liquid considered is of
the Jeffrey type and is electrically conducting. This shows worthwhile the first attempt
for MHD non-Newtonian flow in a tube for all values of the rheological parameters.
The Jeffrey model is relatively simpler linear model using time derivatives instead of
convected derivatives, for example, what the Oldroyd-B model does; it represents a rheology
different from the Newtonian. Although more sophisticated viscoelastic models than the
Jeffrey model exist, in a first study of the MHD peristaltic motion of a non-Newtonian
fluid in circular cylindrical tube, the choice of Jeffrey fluid model is motivated by the
following.

In spite of its relative simplicity, the Jeffrey model can indicate the changes of the
rheology on the peristaltic flow even under the assumption of large wavelength, low
Reynolds number, and small or large amplitude ratio. In Newtonian fluid, Mekheimer [25]
studied the MHD peristaltic flow in a channel under the assumption of small wave number.
Therefore, at least in an initial study, this motivates an analytic study of MHD peristaltic non-
Newtonian tube flow that holds for all non-Newtonian parameters. By choosing the Jeffrey
fluid modele it became possible to treat both the MHD Newtonian and non-Newtonian
problems analytically under long wavelength and low Reynolds number consideration.
Considering the blood as an MHD fluid, it may be possible to control blood pressure and
its flow behavior by using an appropriate magnetic field. The influence of magnetic field may
also be utilized as a blood pump for cardiac operations for blood flow in arterial stenosis or
arteriosclerosis.
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Figure 1: Geometry of peristaltic motion on asymmetric channel through porous medium.

2. Formulation of the Problem

Consider the axisymmetric flow of a Jeffrey fluid in a uniform circular tube with a sinusoidal
peristaltic wave of small amplitude travelling down its wall (see Figure 1). The geometry of
wall surface is therefore described as

h
(
z, t

)
= d + a cos

[
2π
λ

(
z − ct

)]
. (2.1)

Here a is amplitudes of the waves, λ is the wavelength, d is average radius of the undisturbed
tube. The constitutive equations for an incompressible Jeffrey fluid are:

I0 = −pI + S,

S =
μ

1 + λ1

(
γ̇ + λ2γ̈

)
,

(2.2)

where I0 and S are Cauchy stress tensor and extra stress tensor, respectively, p is the pressure,
I is the identity tensor, μ is dynamic viscosity, λ1 is the ratio of relaxation to retardation
times, λ2 is the retardation time, γ̇ is the shear rate, and dots over the quantities indicate
differentiation with respect to time. In laboratory frame, the equations governing two-
dimensional motion of an incompressible MHD Jeffrey fluid through a porous medium [24]
are as follows:
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(2.3)

where R,W are the velocity components in the laboratory frame (R, Z), ρ is the density, p is
the pressure, σ is the electrical conductivity of the fluid, B0 is a constant of magnetic field, μ is
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the kinematic viscosity, Ω is the rotation component, and k0 is the permeability of the porous
medium, and we get [25]
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])
γ̇ ,
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(2.4)

We will carry out this investigation in a coordinate system moving with the wave speed
in which the boundary shape is stationary. The coordinates and velocities in the laboratory
frame (R, Z) and the wave frame (x, y), are related by

r = R − ct, z = Z, u = U − c, w =W, p = p
(
R, t

)
, (2.5)

where u,w are the velocity components in the wave frame (r, z). We introduce the following
nondimensional variables and parameters for the flow:

r =
R
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, z =

2πZ
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,
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,

(2.6)

where Re is the Reynolds number, δ is the dimensionless wave number, andH is themagnetic
parameter (Hartman number). Using nondimensional variables and parameters in (2.3), we
get the following:
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introducing the stream function ψ as

u(r, z) =
δ
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. (2.8)

We can write (2.7) as follows:

δ2
∂

∂r

(
1
r

∂ψ

∂z

)
− δ ∂

∂z

(
1
r

∂ψ

∂r

)
+ δ2

∂

r2

(
1
r

∂ψ

∂z

)
= 0, (2.9)

Re δ
(
δ

r

∂ψ

∂z

∂

∂r
− 1
r

∂ψ

∂r

∂

∂z

)
1
r

∂ψ

∂z
= −∂p

∂r
+ δ2

[
1
r

∂

∂r

(
r
∂Srr
∂r

)
− Srr
r2

+ δ2
∂2Srz
∂z2

]

−δ
k

(
1
r

∂ψ

∂z

)
− δΩ2

(
1
r

∂ψ

∂z

)
,

(2.10)

Re δ3
(
δ

r

∂ψ

∂z

∂

∂r
+
1
r

∂ψ

∂r

∂

∂z

)
1
r

∂ψ

∂r
= −∂p

∂z
+
1
r

∂

∂r

(
r
∂Srz
∂r

)
+ δ2

∂2Szz
∂z2

+H2
(
1
r

∂ψ

∂r

)
+
1

k

(
1
r

∂ψ

∂r

)
−Ω2

(
1
r

∂ψ

∂r

)
.

(2.11)

Eliminating pressure from (2.9), (2.11) by cross-differentiation, using the long wavelength
(δ � 1) and low Reynolds number in (2.9)–(2.11), and neglecting δ and higher power, we
obtain
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where ω2 = 1/k −Ω2 +H2,
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(2.14)

From (2.12) we show that p /= p(r). Differentiating (2.13) with respect to r we get
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where χ2 = (1 + λ1)ω2.
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3. Rate of Volume Flow

The instantaneous volume flow rate in fixed coordinate system is given by

Q
(
z, t

)
= 2π

∫h

0
w
(
Z, t

)
RdR, (3.1)

where h is a function of Z and t. On substituting (2.5) into (3.1) and then integrating, one
obtains

Q = q + πch
2
, (3.2)

where

q = 2π
∫h

0
w r dr (3.3)

is the volume flow rate in the moving coordinate system and is independent of time. Here, h
is a function of z alone. Using the dimensionless variables, we find

F =
q

2πca21
=
∫h

0
wr dr. (3.4)

The time-mean flow over a period T = λ/c at a fixed Z-position is defined as

Q =
1
T

∫T

0
Q dt. (3.5)

Using (3.2) into (3.5), 0 < ε < 1, we obtain
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)
. (3.6)

Using dimensionless variables we write:
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Equation (3.6) becomes
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where β and F are, respectively, the flow rates in the fixed and wave frames.
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We note that h represents the dimensionless form of the surface of the peristaltic wall:

h(z) = 1 + ε cos 2πz, ε =
a1
d1
. (3.9)

Choosing the zero value of the streamline along the central line (w = 0), we have ψ(0) = 0.
Then the shape of the wave at the boundary is the streamline with value ψ(h) = F in wave
frame, the boundary conditions in terms of stream

ψ = 0,
∂

∂r

(
1
r
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)
= 0, at r = 0,

ψ = F,
1
r
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(3.10)

4. Method of Solution

Integration of (2.15) along with boundary conditions (3.10) gives
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1
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where c1 is an arbitrary function of z. Equation (4.1) after using the transformation
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can be reduced into the following modified Bessel equation:
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whose solution along with (4.2) and boundary conditions (3.10) is given below:
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where I0, I1, and I2 are the modified Bessel function of order zero, one, and two, respectively.
Substitution of (4.4) into (2.8) and (2.13) yields the following expressions for axial

velocity (w) and axial pressure gradient:
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(4.5)
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Figure 2: Show the stress distributions for tube a = 0.3, b = 0.4, and d = 1.1.

The expressions for pressure rise (ΔPλ) and frictional force (Fλ) per wavelength are,
respectively, given by

Δpλ =
∫2

0

dp

dz
dz,

Fλ =
∫2π

0
h2
(
−dp
dz

)
dz.

(4.6)

5. Results and Discussion

To investigate the effects of rotation (Ω), magnetic parameter (M), material parameter (λ1),
permeability of the porous medium (k), and mean flux (F), we plotted Figures 2–6.

The stress distribution (Srr), (Srz), and (Szz) in tube for different values of the rotation
(Ω) is presented in Figures 2(a), 2(b), and 2(c), respectively. We notice that the stress is
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Figure 3: Show the velocity distributions for a = 0.3, b = 0.4, d = 1.1, and λ = 0.5.
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Figure 5: Plot showing Fλ for F ∈ [1, 1] for changing rotation (Ω), (a), Hartman number M (b), and
material parameter λ1 (c).

in oscillatory behaviour, which may be due to peristalsis. The absolute value of stress
distribution (Srr), (Srz), and (Szz) increases at first with increasing the rotation (Ω), and then
it decreases with increasing the rotation (Ω) when large values of r have been taken into
account. It is observed that the absolute values of the stress are larger in case of a Jeffrey fluid
when compared with Newtonian fluid.

The effects of the rotation (Ω) and magnetic parameter (M) on the velocity is plotted
in Figure 3. Figure 3 shows that influence of the rotation (Ω) and magnetic parameter (M)
on the velocity increases with the increase of magnetic parameter (M), and it decreases with
the increase of the rotation (Ω).

Figure 4 shows the variation of ΔPλ with flow rate F for values of rotation (Ω),
magnetic parameter (M), andmaterial parameter (λ1) for tube.We observe that the peristaltic
pumping rate increases with increase of magnetic parameter (M) and material parameter
(λ1), and it decreases with the increase of the rotation (Ω). The phenomenon of trapping is
another interesting topic in peristaltic transport. The formation of an internally circulating
bolus of the fluid by closed streamlines is called trapping, and this trapped bolus pushed
ahead along the peristaltic wave.
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Figure 6: Plot showing variation of the pressure gradient (dp/dz)within wavelength for various values of
rotation (Ω) (a) magnetic parameter (M) (b), and material parameter (λ1) (c).

Figure 5 shows the variation of Fλ with flow rate F for values of rotation (Ω), magnetic
parameter (M), and material parameter (λ1) for tube. Figures 5(a), 5(b), and 5(c) display
the influence of (Ω), magnetic parameter (M), and material parameter (λ1), respectively, for
tube on Fλ. Figure 5(a) refers to the case when F = −0.2. Here it is noted that Fλ increases
with decrease of rotation (Ω) when −0.6 ≤ F ≤ −0.2 and it increases with the increase of the
rotation (Ω) when −0.2 < F. Figure 5(a) refers to the case when Ω = 1.2, here, it is noted that
Fλ is negative and positive when −0.6 ≤ F ≤ 0.6 and 0.6 < F, respectively. WhenΩ = 0.8. Here
it is noted that Fλ is negative and positive when −0.6 ≤ F ≤ 0.83 and 0.83 < F, respectively.
When Ω = 0.4, Fλ is negative for −0.6 ≤ F ≤ 1.4 and positive for 1.4 < F. Also, when Ω = 0.0,
Fλ is negative for −0.6 ≤ F ≤ 3.0 and positive for 3.0 < F. Figure 5(b) refers to the case when
F = −0.8. Here it is noted that Fλ increases with decrease of magnetic parameter (M) when
−1.5 ≤ F ≤ −0.8, and it increases with the increase of the magnetic parameter (M) when
−0.8 < F. Figure 5(c) refers to the case when F = −0.8. Here it is noted that Fλ increases with
decrease of material parameter (λ1) when −1 ≤ F ≤ −0.48, and it increases with the increase
of the magnetic parameter (M)when −0.48 < F.
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Figure 6 shows the distributions of the pressure gradient within a wavelength for
various values of the rotation (Ω), magnetic parameter (M) andmaterial parameter (λ1). The
effects of magnetic parameter (M), on the pressure gradient (dp/dz)within a wavelength are
plotted in Figure 2(b). It is noticed that magnetic parameter (M) and material parameter (λ1)
increase the maximum amplitude of (dp/dz)when compared to the case with zero magnetic
parameter and zero material parameter (λ1).

6. Conclusion

The influence of the rotation (Ω), magnetic parameter (M), and material parameter (λ1) on
the peristaltic flow of a Jeffrey fluid in tube has been analyzed. The analytical expressions are
constructed for axial velocity, Fλ, and pressure gradient. Numerical investigation is plotted
and discussed. The main findings can be summarized as follows.

(i) The axial velocity for the MHD fluid is less when compared with hydrodynamic
fluid in the central part of the tube.

(ii) The magnitude of (dp/dz) and Fλ increases with increase of magnetic parameter
(M) and material parameter (λ1) and it increases with decrease of the rotation (Ω).

(iii) The size of trapped bolus is smaller in Jeffrey fluid when compared with that of
Newtonian fluid (λ1 = 0).

(iv) The magnitudes of (dp/dz), ΔPλ, and Fλ for Newtonian fluid are smaller than that
of Jeffrey fluid.

(v) For large values of magnetic parameter (M) and material parameter (λ1), the
magnitudes of ΔPλ and ΔPλ increase with decrease of the rotation (Ω).
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