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As a generalisation of consecutive k-out-of-n:F and k-out-of-n:F system models, a consecutive k-
within-m-out-of-n:F system consists of n linearly ordered components and fails if and only if there
are m consecutive components which include among them at least k failed components. In this
paper, we study the survival function of a consecutive k-within-m-out-of-n:F system consisting of
independent but nonidentical components. We obtain exact expressions for the survival function
when 2m ≥ n. A detailed analysis for consecutive 2-within-m-out-of-n:F systems is presented
and the asymptotic behaviour of hazard rate of these systems is investigated using mixture
representations.

1. Introduction

It is a well-accepted fact that all components in an engineered system are not created equal.
This in turn implies that different components may have different survival probabilities. The
study of systems consisting of nonidentical components is a difficult task especially when
the system has a complex structure. Some recent contributions on systems with independent
but nonidentical components appear in Navarro [1], Zhao et al. [2], Kochar and Xu [3], and
Navarro et al. [4].

Consecutive type systems have been extensively studied in the literature. One of the
most widely studied consecutive type system is a linear consecutive k-out-of-n:F system
which consists of n linearly ordered components and fails if and only if at least k consecutive
components fail. This type of systems is potentially useful for modeling transportation and
transmission systems. Much of the previous research has concentrated on the optimal design
or reliability computation of such systems. There are several papers which study the dynamic
reliability properties of consecutive k-out-of-n systems. Boland and Samaniego [5] obtained
some stochastic ordering results on lifetimes of consecutive k-out-of-n systems consisting
of independent components. Triantafyllou and Koutras [6] studied the lifetime distribution
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of consecutive k-out-of-n:F systems consisting of independent and identical components. A
review of recent developments on consecutive k-out-of-n and related systems is presented in
Eryilmaz [7].

In this paper we study the dynamic reliability of consecutive k-within-m-out-of-n:F
systems consisting of independent but nonidentical (inid) components. A consecutive k-
within-m-out-of-n:F system consists of n linearly ordered components and fails if and only if
there arem consecutive components which include among them at least k-failed components
(1 < k ≤ m ≤ n). There are numerous applications for such systems in practice, for example,
quality control, inspection procedures, radar detection, transportation, and transmission
systems (see, e.g., Chang et al. [8]). A consecutive k-within-m-out-of-n:F system involves
consecutive k-out-of-n:F and k-out-of-n:F (a system which fails if and only if at least k
components fail) systems for m = k and m = n, respectively. The dynamic reliability
properties of consecutive k-within-m-out-of-n:F systems with identical components have
been studied in several papers (Papastavridis [9], Iyer [10], Eryilmaz et al. [11], Eryilmaz
and Kan [12], Triantafyllou and Koutras [13]).

Consecutive k-within-m-out-of-n:F system can be represented as a series system of
n−m+1-dependent k-out-of-m:F systems. That is, the lifetime of this system can be expressed
as

Tk,m:n = min
(
T
[1:m]
k:m , T

[2:m+1]
k:m , . . . , T

[n−m+1:n]
k:m

)
, (1.1)

where T
[i:i+m−1]
k:m shows the lifetime of k-out-of-m:F subsystem of components with the

lifetimes Ti, Ti+1, . . . , Ti+m−1, 1 ≤ i ≤ n −m + 1.
The evaluation of the survival function associated with Tk,m:n is of special importance

for understanding the dynamic behaviour of the system since the reliability characteristics
such as hazard rate and mean residual life function can be obtained from this function. In
the present paper, we obtain expressions for the survival functions of consecutive k-within-
m-out-of-n:F systems for 2m ≥ n when the components are independent but not necessarily
identically distributed. In Section 2, a detailed analysis for consecutive 2-within-m-out-of-n:F
systems is presented. Section 3 contains results for 2m ≥ n.

In the following, we provide the notations that will be used throughout the paper. n is
the number of components; Ti is the lifetime of component i; Xi(t) is the state of component
i at time t: Xi(t) = 1(0) if Ti ≤ t(Ti > t);Tk,m:n is the lifetime of consecutive k-within-m-out-
of-n:F system; T [a:b]

k:b−a+1 is kth smallest among Ta, Ta+1, . . . , Tb; Rk,m:n(t) = P{Tk,m:n > t} is the
survival function of consecutive k-within-m-out-of-n:F system; hk,m:n(t) is the hazard rate of
consecutive k-within-m-out-of-n:F system.

Throughout the paper the components are assumed to be independent and the
survival function associated with the ith component is Fi(t) = P{Ti > t} = 1 − Fi(t), i =
1, 2, . . . , n.

2. Results for Consecutive 2-within-m-out-of-n:F Systems

If T1, T2, . . . , Tn represent the lifetimes of n components in a coherent system, then the system
lifetime can be represented as

T = max
1≤j≤s

min
i∈Pj

Ti, (2.1)
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where P1, P2, . . . , Ps are theminimal path sets. If T1, T2, . . . , Tn are independent, then the system
survival function can be computed from the series survival functions as

S(t) = P{T > t} =
∑

A⊆{1,2,...,s}
(−1)|A|+1∏

i∈PA

Fi(t), (2.2)

where Fi(t) = P{Ti > t}, i = 1, 2, . . . , n, and PA =
⋃

j∈A Pj .
The hazard rate associated with the subset A of (2.2) is

hA(t) =
∑
i∈PA

ri(t), (2.3)

where ri(t) is the hazard rate associated with Fi(t).

Example 2.1. Let n = 4, m = 3, and k = 2. Then the path sets of consecutive 2-within-3-out-of-
4:F system are {1, 2, 3, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}, and {2, 3}. The minimal path sets
are P1 = {2, 3}, P2 = {1, 2, 4}, and P3 = {1, 3, 4}. Therefore

T2,3:4 = max(min(T2, T3),min(T1, T2, T4),min(T1, T3, T4)), (2.4)

and hence the survival function of consecutive 2-within-3-out-of-4:F system is

R2,3:4(t) = F2(t)F3(t) + F1(t)F2(t)F4(t) + F1(t)F3(t)F4(t)

− 2F1(t)F2(t)F3(t)F4(t)
(2.5)

which is a mixture of series survival functions with the weight vector (1, 1, 1,−2). The hazard
rates of each element of (2.5) are

h1(t) = r2(t) + r3(t),

h2(t) = r1(t) + r2(t) + r4(t),

h3(t) = r1(t) + r3(t) + r4(t),

h4(t) = r1(t) + r2(t) + r3(t) + r4(t).

(2.6)

Lemma 2.2. For 2m ≥ n the consecutive 2-within-m-out-of-n:F system has n +
(
n−m+1

2

)
+ 1 path

sets, and these sets are

C = {1, 2, . . . , n},
C \ {i}, i = 1, 2, . . . , n,

C \ {i,m + i + j
}
, i = 1, 2, . . . , n −m, j = 0, 1, . . . , n − i −m.

(2.7)

Proof. For 2m ≥ n, the consecutive 2-within-m-out-of-n:F system works if and only if there
is no failed component or there is only one failed component or there are at most two
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failed components separated by at least m − 1 working components. Thus the proof is
complete.

The following results are direct consequences of Lemma 2.2.

Lemma 2.3. For 2m ≥ n, the consecutive 2-within-m-out-of-n:F system has
(
n−m+1

2

)
minimal path

sets with n − 2 elements. These minimal path sets are

{
l
(s)
1 , . . . , l

(s)
n−2

}
≡ {1, 2, . . . , n} \ {i,m + i + j

}
,

i = 1, 2, . . . , n −m, j = 0, 1, . . . , n − i −m, s = 1, 2, . . . ,
(
n −m + 1

2

)
.

(2.8)

Lemma 2.4. Let T1, T2, . . . , Tn be inid lifetimes of components with Fi(t) = P{Ti ≤ t}, i = 1, 2, . . . , n.
For 2m ≥ n,

R2,m:n(t) =
n∏
j=1

Fj(t) +
n∑
i=1

Fi(t)
n∏
j=1
j /= i

Fj(t)

+
n−m∑
i=1

n−i−m∑
j=0

Fi(t)Fm+i+j(t)
n∏
l=1

l /= i,m+i+j

Fl(t).

(2.9)

Theorem 2.5. [1] Let S be a survival function such that

S(t) =
n∑
i=1

ωiSi(t), (2.10)

for all t ≥ 0, where ω1, . . . , ωn are real numbers such that
∑n

i=1 ωi = 1. Let hi(t) be the failure rate
function corresponding to Si(t), i = 1, . . . , n. If

lim
t→∞

inf
hi(t)
h1(t)

> 1, lim
t→∞

sup
hi(t)
h1(t)

< ∞, (2.11)

for i = 2, 3, . . . , n, then limt→∞(h(t)/h1(t)) = 1, where h(t) is the failure rate function corresponding
to S(t).

In the following, one will study the limiting behaviour of the hazard rate of a
consecutive 2-within-m-out-of-n:F system.

Theorem 2.6. Let T1, T2, . . . , Tn be independent and the hazard rate of Ti is ri(t). For 2m ≥ n, if
limt→∞ri(t) = λi and λ1 > λ2 > · · · > λn, then

lim
t→∞

h2,m:n(t) = min
(
λ
l
(1)
1
+ · · · + λ

l
(1)
n−2
, λ

l
(2)
1
+ · · · + λ

l
(2)
n−2
, . . . , λ

l
(s)
1
+ · · · + λ

l
(s)
n−2

)
, (2.12)

where s =
(
n−m+1

2

)
.
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Proof. From Lemma 2.3, the minimum number of elements in the minimal path sets of
consecutive 2-within-m-out-of-n system is n − 2 (for 2m ≥ n) and the total number of these
minimal path sets is

(
n−m+1

2

)
. Thus the proof follows from Theorem 2.5 and the conditions of

Theorem 2.6.

Example 2.7. Let n = 4, m = 3, and k = 2. Suppose that limt→∞ri(t) = λi, i = 1, 2, 3, 4 and
λ1 > λ2 > λ3 > λ4. Then using the hazard rates given in (2.6), we have

lim
t→∞

inf
h2(t)
h1(t)

=
λ1 + λ2 + λ4

λ2 + λ3
> 1,

lim
t→∞

inf
h3(t)
h1(t)

=
λ1 + λ3 + λ4

λ2 + λ3
> 1,

lim
t→∞

inf
h4(t)
h1(t)

=
λ1 + λ2 + λ3 + λ4

λ2 + λ3
> 1,

lim
t→∞

sup
hi(t)
h1(t)

< ∞,

(2.13)

for i = 2, 3, 4. Therefore

lim
t→∞

h2,3:4(t) = λ2 + λ3. (2.14)

3. General Results

The reliability of consecutive k-within-m-out-of-n:F system is closely related to the discrete
scan statistic defined by

Sn,m(t) = max

⎧
⎨
⎩

i+m−1∑
j=i

Xj(t) : 1 ≤ i ≤ n −m + 1

⎫
⎬
⎭. (3.1)

A consecutive k-within-m-out-of-n:F system survives at time t if and only if less than k
components are failed among any consecutive m components. Thus its survival function can
be expressed as

Rk,m:n(t) = P{Tk,m:n > t} = P{Sn,m(t) < k}, (3.2)

or equivalently,

Rk,m:n(t) = P
{
T
[1:m]
k:m > t, T

[2:m+1]
k:m > t, . . . , T

[n−m+1:n]
k:m > t

}
, (3.3)

for t ≥ 0 and 1 ≤ k ≤ m ≤ n.
The proof of the following result is easy and hence is omitted.
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Lemma 3.1. For k = 1 and b − a ≥ 0,

P
{
T
[a:b]
k:b−a+1 > t

}
=

b∏
i=a

Fi(t), (3.4)

for k > 1 and b − a = k − 1,

P
{
T
[a:b]
k:b−a+1 > t

}
= 1 −

b∏
i=a

Fi(t), (3.5)

and for k > 1 and b − a ≥ k,

P
{
T
[a:b]
k:b−a+1 > t

}
= P

{
T
[a:b−1]
k−1:b−a > t

}
Fb(t) + P

{
T
[a:b−1]
k:b−a > t

}
Fb(t). (3.6)

Theorem 3.2. For 2m ≥ n,

Rk,m:n(t) =
min(n−m, k−1)∑

s=0

P
{
T
[n−m+1:m]
k−s:2m−n > t

}[
R∗

s+1, n−m:2(n−m)(t) − R∗
s,n−m:2(n−m)(t)

]
, (3.7)

where R∗
s,n−m:2(n−m)(t) is the reliability of consecutive s-within-(n−m)-out-of-2(n−m):F system with

components 1, . . . , n −m, m + 1, . . . , n.

Proof. By the definition of Sn,m(t),

P{Sn,m(t) < k} = P

⎧
⎨
⎩

m∑
j=1

Xj(t) < k,
m+1∑
j=2

Xj(t) < k, . . . ,
n∑

j=n−m+1

Xj(t) < k

⎫
⎬
⎭. (3.8)

For 2m ≥ n,

P{Sn,m(t) < k} =
∑

x1,...,xn−m, xm+1,...,xn∈{0,1}
P

{
m∑

i=n−m+1

Xi(t) < m∗ ,

X1(t) = x1, . . . , Xn−m(t) = xn−m,Xm+1(t) = xm+1, . . . , Xn(t) = xn

}
,

(3.9)

where

m∗ = min(k − x1 − · · · − xn−m, k − x2 − · · · − xn−m − xm+1, . . . , k − xm+1 − · · · − xn)

= k −max(x1 + · · · + xn−m, x2 + · · · + xn−m + xm+1, . . . , xm+1 + · · · + xn).
(3.10)



Mathematical Problems in Engineering 7

If S∗
2(n−m),n−m(t) denotes the scan statistic based on X1(t), . . . , Xn−m(t), Xm+1(t), . . . , Xn(t), then

P{Sn,m(t) < k} =
min(n−m,k−1)∑

s=0

P

{
m∑

i=n−m+1

Xi(t) < k − s, S∗
2(n−m),n−m(t) = s

}
. (3.11)

Thus the proof is completed by the independence of
∑n

i=n−m+1 Xi(t) and S∗
2(n−m),n−m(t) and

P

{
m∑

i=n−m+1

Xi(t) < k − s

}
= P

{
T
[n−m+1:m]
k−s:2m−n > t

}
,

P
{
S∗
2(n−m),n−m(t) = s

}
= R∗

s+1,n−m:2(n−m)(t) − R∗
s,n−m:2(n−m)(t).

(3.12)

Theorem 2.6 can be extended to any consecutive k-within-m-out-of-n:F system in the
following way.

Theorem 3.3. Let T1, T2, . . . , Tn be independent and the hazard rate of Ti is ri(t). For 1 < k ≤ m ≤ n,
if limt→∞ri(t) = λi and λ1 > λ2 > · · · > λn, then

lim
t→∞

hk,m:n(t) = min
(
λ
l
(1)
1
+ · · · + λ

l
(1)
n−z(n,m,k)

, λ
l
(2)
1
+ · · · + λ

l
(2)
n−z(n,m,k)

, . . . , λ
l
(s)
1
+ · · · + λ

l
(s)
n−z(n,m,k)

)
,

(3.13)

where s is the number of minimal path sets with n−z(n,m, k) elements and z(n,m, k) is the maximum
number of failed components such that the system can still work.

The number z(n,m, k) has been derived in Eryilmaz and Kan [12] as

z(n,m, k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n −
[
n

m

]
(m − k + 1) if n −m

[
n

m

]
< k,

(k − 1)
(
1 +

[
n

m

])
if n −m

[
n

m

]
≥ k.

(3.14)

Example 3.4. Let n = 7, m = 3, and k = 2. Then z(n,m, k) = 3 and there is only one minimal
path set with n − z(n,m, k) = 7 − 3 = 4 elements, that is, s = 1 and the corresponding minimal
path set is {2, 3, 5, 6}. Thus under the conditions of Theorem 3.3, we have

lim
t→∞

h2,3:7(t) = λ2 + λ3 + λ5 + λ6. (3.15)
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