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Chaos synchronization is an active topic, and its possible applications have been studied exten-
sively. In this paper we present an improved method for lag synchronization of chaotic systems
with coupled multidelay. The Lyapunov theory is used to consider the sufficient condition for syn-
chronization. The specific examples will demonstrate and verify the effectiveness of the proposed
approach.

1. Introduction

Since synchronization of chaotic systems was first realized by Fujisaka and Yamada [1] and
Pecora and Carroll [2], chaos synchronization has received increasing interest and has
become an active research topic. Currently its possible applications in various fields are in
great interest, for example, applications to control theory [3], telecommunications [4–7], bio-
logy [8, 9], lasers [10, 11], secure communications [12], and so on.

Roughly speaking, chaotic communication schemes rely on the synchronization tech-
nique: the information signal is mixed at the master, and a driving signal is then generated
and is sent to the slave; as a result, their chaotic trajectories remain in step with each other
during temporal evolution. Besides identical synchronization [13], several new types of chaos
synchronization of coupled oscillators have occurred, that is, generalized synchronization
[12], phase synchronization [14], lag synchronization [15], anticipation synchronization [16],
and projective synchronization [17].

Lag synchronization can be realized when the strength of the coupling between phase-
synchronized oscillators is increased. There, the driving signal is constituted by the sum of
multiple nonlinear transformations of delayed state variable [18]. Master and slave’s formu-
las are in the form of single delay [19, 20] and multidelay [21–23]. From the application point
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of view, this new multidelay synchronization, different from conventional synchronization
without lag, offers a significant advantage in terms of security of communication. Since the
constructed state variable of the master system with lag becomes more complex than that of
the conventional system, multilag systems achieve high security. Intruders cannot reconstruct
the attractors of driving signal by using conventional reconstruction methods [24, 25] so as
not to decipher the transferred message.

In the present paper, we proposed a systematic and rigorous scheme for lag synchro-
nization of coupled multidelay systems based on the Lyapunov stability theory. Furthermore,
the zero solution of lag synchronization differential equation is globally asymptotically stable.
The effectiveness of the proposed scheme is confirmed by the numerical simulation of specific
example.

2. The Schemes of Lag Synchronization

2.1. The Proposed Lag Synchronization Model

Lag synchronization was first investigated by Rosenblum [15], and it can be considered that
the state variable of the slave is delayed by the positive time lag τd in comparison with that
of the master while their amplitudes follow each other, that is, limt→∞|y(t) − x(t − τd)| = 0.

We consider the following model of lag synchronization.
Master:

dx(t)
dt

= −αx(t) +
P∑

i=1

mifi[x(t − αi)]. (2.1)

Driving signal:

DS(t) =
Q∑

i=1

kigi
[
x
(
t − βi

)]
+Wx(t − τd). (2.2)

Slave:

dy(t)
dt

= −αy(t) +
R∑

i=1

nihi

[
y
(
t − γi

)]
+DS(t) −Wy(t), (2.3)

where coefficients α,mi, ki, ni, αi, βi, γi,W ∈ �, and P,Q,R are positive integers. State variables
x, y ∈ �, and fi(·), gi(·), hi(·) ∈ � → � are three continuous nonlinear functions. The driving
signal DS(t) in (2.2) is constituted by the sum of multiple nonlinear transformations of
delayed state variable;

∑Q
i=1 kigi[x(t−βi)] is addedwithWx(t−τd). The polynomial −Wy(t) is

added to the right side of dy(t)/dt = −αy(t) +∑R
i=1 nihi[y(t − γi)] + DS(t), forming the slave

equation which is shown as (2.3).

2.2. Proof for the Lag Synchronization Model

The desired synchronization manifold is expressed by the following relation y(t) → x(t−τd)
as t → ∞, where τd is a lag time.
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We choose suitable DS(t) to satisfy e(t) = y(t) − x(t − τd) → 0 as t → ∞.

Assumption 2.1. Q = P +R − I, I < min{P,Q,R}where I is integer. When i = 1, . . . , I, fi ≡ gi ≡
hi,

γi = αi, βi = αi + τd, ki = mi − ni. (2.4)

Assumption 2.2. When j = 1, . . . , (P − I), gI+j ≡ fI+j ,

kI+j = mI+j , βI+j = αI+j + τd. (2.5)

When j = 1, . . . , (R − I), gP+j ≡ hI+j ,

kP+j = −nI+j , βP+j = γI+j + τd. (2.6)

Assumption 2.3. Nonlinearity fi (i = 1, . . . , I) satisfies Lipshitz condition; that is, there exists a
positive constant L for all time variables a and b, such that |fi(a+b)−fi(a)| ≤ L|b| (i = 1, . . . , I).

Here we give the sufficient condition for system synchronization.

Theorem 2.4. If the system (2.1), (2.2), and (2.3) satisfies Assumptions 2.1, 2.2, and 2.3 and if

−α −W +
1
2
I +

1
2

I∑

i=1

n2
i L

2 < 0, (2.7)

then limt→∞[y(t) − x(t − τd)] = 0.

Proof. The dynamics of synchronization error is

de(t)
dt

=
dy(t)
dt

− dx(t − τd)
dt

= − αe(t) +
R∑

i=1

nihi

[
y
(
t − γi

)]
+

Q∑

i=1

kigi
[
x
(
t − βi

)]
+Wx(t − τd) −Wy(t)

−
P∑

i=1

mifi[x(t − αi − τd)].

(2.8)

By applying Assumption 2.1, (2.8) can be rewritten as

de(t)
dt

= − αe(t) −We(t) +
I∑

i=1

nifi
[
y
(
t − γi

)] −
I∑

i=1

(mi − ki)fi[x(t − αi − τd)]

+
R∑

i=I+1

nihi

[
y
(
t − γi

)]
+

Q∑

i=I+1

kigi
[
x
(
t − βi

)] −
P∑

i=I+1

mifi[x(t − αi − τd)].

(2.9)
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By applying Assumption 2.2, ifQ−I = (P−I)+(R−I) and y(t−γi) = x(t−γi−τd)+e(t−γi),
we have

R∑

i=I+1

nihi

[
y
(
t − γi

)]
+

Q∑

i=I+1

kigi
[
x
(
t − βi

)] −
P∑

i=I+1

mifi[x(t − αi − τd)]

=
R−I∑

j=1

nI+jhI+j
[
x
(
t − γI+j − τd

)
+ e

(
t − γI+j

)]
+

P−I∑

j=1

kI+jgI+j
[
x
(
t − βI+j

)]

+
R−I∑

j=1

kP+jgP+j
[
x
(
t − βP+j

)] −
P−I∑

j=1

mI+jfI+j
[
x
(
t − αI+j − τd

)]
= 0,

(2.10)

where e(t − γI+j) = 0 as well as synchronization established, in fact, e(t − γI+j) reduces during
establishing the synchronization regime.

From (2.10) and (2.9)we get

de(t)
dt

= (−α −W)e(t) +
I∑

i=1

ni

(
fi[x(t − αi − τd) + e(t − αi)] − fi[x(t − αi − τd)]

)
. (2.11)

Define a Lyapunov function [26] as

V =
1
2
e2(t) +

1
2

I∑

i=1

∫ t

t−αi

e2(s)ds. (2.12)

Then, we obtain

dV

dt
= e(t)

de(t)
dt

+
1
2

I∑

i=1

e2(t) − 1
2

I∑

i=1

e2(t − αi). (2.13)

Here, we have

dV

dt
= (−α −W)e2(t) +

I∑

i=1

nie(t)fi[x(t − αi − τd) + e(t − αi)]

−
I∑

i=1

(mi − ki)e(t)fi[x(t − αi − τd)] +
1
2

I∑

i=1

e2(t) − 1
2

I∑

i=1

e2(t − αi).

(2.14)

According to Assumption 2.1, we have

dV

dt
= (−α −W)e2(t) +

I∑

i=1

nie(t)
{
fi[x(t − αi − τd) + e(t − αi)] − fi[x(t − αi − τd)]

}

+
1
2

I∑

i=1

e2(t) − 1
2

I∑

i=1

e2(t − αi).

(2.15)
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In our model, (1/2)
∑I

i=1 e
2(t) can be rewritten as (1/2)Ie2(t). By Assumption 2.3, we

have

dV

dt
≤
(
−α −W +

1
2
I

)
e2(t) +

I∑

i=1

nie(t)Le(t − αi) − 1
2

I∑

i=1

e2(t − αi). (2.16)

According to 2xy ≤ x2 + y2, where x, y ∈ �, we get

dV

dt
≤
(
−α −W +

1
2
I

)
e2(t) +

1
2

I∑

i=1

n2
i L

2e2(t) +
1
2

I∑

i=1

e2(t − αi) − 1
2

I∑

i=1

e2(t − αi). (2.17)

Finally, we obtain

dV

dt
≤
(
−α −W +

1
2
I +

1
2

I∑

i=1

n2
i L

2

)
e2(t). (2.18)

The proof is completed.

Note 1. The advantages of our lag synchronization model are as follows.

(1) The nonlinear function f(·) satisfies |f(a + b) − f(a)| ≤ L|b|, so the zero solution of
lag synchronization error system is globally asymptotically stable. The condition for
synchronization is easy to be realized.

(2) We can choose nonlinear function in many ways, and fi, gi, hi vary as i changes.
Moreover, the format of function can be different even if i is the same value.

(3) In order to enhance the complexity of the system, P,Q,R can be different positive
integers, and the number of multiple time delays can be chosen as many values.

3. Numerical Simulations

The following example will demonstrate synchronization between systems with multidelay.
Functions of systems are chosen from the set of {sinu, u/(1+u8), u/(1+u10)}. Let us consider
synchronization model with the master’s and slave’s equations defined as.

Master:

dx(t)
dt

= − αx(t) +m1 sin[x(t − α1)] +m2 sin[x(t − α2)] +m3 sin[x − (t − α3)]

+m4
x(t − α4)

1 + x8(t − α4)
+m5

x(t − α5)
α + x10(t − α5)

.

(3.1)
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Slave:

dy(t)
dt

= − αy(t) + n1 sin
[
y
(
t − γ1

)]
+ n2 sin

[
y
(
t − γ2

)]
+ n3 sin

[
y
(
t − γ3

)]

+ n4 sin
[
y
(
t − γ4

)]
+DS(t) −Wy(t).

(3.2)

Therefore the equation for driving signal is chosen as.
Driving signal:

DS(t) = k1 sin
[
x
(
t − β1

)]
+ k2 sin

[
x
(
t − β2

)]
+ k3 sin

[
x
(
t − β3

)]
+ k4

x
(
t − β4

)

1 + x8
(
t − β4

)

+ k5
x
(
t − β5

)

1 + x10
(
t − β5

) + k6 sin
[
x
(
t − β6

)]
+ k7 sin

[
x
(
t − β7

)]
+Wx(t − τd),

(3.3)

where P = 5, Q = 7, R = 4, I = 2 satisfy Q = P + R − I.
According to (2.4)–(2.6), the relation of the delays and parameters is expressed as

m1 − k1 = n1, m2 − k2 = n2, k3 = m3, k4 = m4, k5 = m5, k6 = −n3, k7 = −n4,

β1 = α1 + τd = γ1 + τd, β2 = α2 + τd = γ2 + τd, β3 = α3 + τd, β4 = α4 + τd, β5 = α5 + τd,
β6 = γ3 + τd, β7 = γ4 + τd.

The value of parameters for simulation is adopted as

α = 2.0, W = 100, m1 = −15.4, m2 = −16.0, m3 = −0.35, m4 = −20.0, m5 = −18.5,
n1 = −0.2, n2 = −0.1, n3 = −0.25, n4 = −0.4,
k1 = −15.2, k2 = −15.9, k3 = −0.35, k4 = −20.0, k5 = −18.5, k6 = 0.25, k7 = 0.4,

τd = 3.0, α1 = 3.4, α2 = 4.5, α3 = 6.5, α4 = 5.3, α5 = 2.9,

γ1 = 3.4, γ2 = 4.5, γ3 = 2.0, γ4 = 7.3,

β1 = 6.4, β2 = 7.5, β3 = 9.5, β4 = 8.3, β5 = 5.9, β6 = 5.0, β7 = 10.3.

In Figure 1, the portrait of x(t − τd) versus y(t) illustrates that the lag synchronization
of coupled partly nonidentical systems is established. However their trajectories do not
remain in step with each other during a short part of evolution, because they are not in syn-
chronization as t < τd.

It is clear to observe from Figure 2 that synchronization error e(t) leaps at a sudden as
τd = 3.0 and vanishes eventually in a short time. Then e(t) stays at zero.

As shown in Figure 3, the slave’s state variable is retarded with the time length of τd =
3.0 in comparison with master’s. The desired lag synchronization is realized.

4. Conclusions

In this paper, we have presented a lag synchronization model as well as researched on it.
Based on Lyapunov theory, the sufficient conditions of the synchronization model are given.
Simulation results of the lag synchronization model are provided to illustrate the effective-
ness and feasibility of the proposed method.
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Figure 1: Portrait of x(t − 3.0) versus y(t).
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Figure 2: Synchronization error e(t) = y(t) − x(t − 3.0).
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