
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 107059, 11 pages
doi:10.1155/2012/107059

Research Article
On the Perturbation Bounds of Projected
Generalized Continuous-Time Sylvester Equations

Yujian Zhou,1 Liang Bao,2 and Yiqin Lin1

1 Department of Mathematics and Computational Science, Institute of Computational Mathematics,
Hunan University of Science and Engineering, Yongzhou 425100, China

2 Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

Correspondence should be addressed to Liang Bao, nlbao@yahoo.cn

Received 28 February 2012; Revised 19 September 2012; Accepted 7 October 2012

Academic Editor: Mohammed Chadli

Copyright q 2012 Yujian Zhou et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper is devoted to the perturbation analysis for a projected generalized continuous-time
Sylvester equation. Perturbation bounds of the solution based on the Euclidean norm are pre-
sented.

1. Introduction

In this paper we study the sensitivity of and derive perturbation bounds for the projected
generalized continuous-time Sylvester equation

AXC +DXB + Pl,1EPr,2 = 0,

X = Pr,1XPl,2,
(1.1)

where A, D are n × n matrices, B,C are m × m matrices, E is an n × m matrix, and X is the
unknown n × m matrix, respectively, with real entries. Here, Pr,1 and Pr,2 are the spectral
projectors onto the right deflating subspaces corresponding to the finite eigenvalues of the
pencils λD − A and λC − B, respectively, while Pl,1 and Pl,2 are the spectral projectors onto
the left deflating subspaces corresponding to the finite eigenvalues of λD − A and λC − B,
respectively. We assume that the pencils λD −A and λC − B are regular, that is, det(λD −A)
and det(λC−B) are not identically zero. Under the assumption, the pencils λD−A and λC−B
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have the Weierstrass canonical forms [1]: there exist nonsingular n × n matrices W1, T1 and
m ×m matrices W2, T2 such that

D = W1

[
I 0
0 N(A)

]
T1, A = W1

[
J(A) 0
0 I

]
T1,

C = W2

[
I 0
0 N(B)

]
T2, B = W2

[
J(B) 0
0 I

]
T2,

(1.2)

where J(A), J(B), N(A), and N(B) are block diagonal matrices with each diagonal block being
the Jordan block. The eigenvalues of J(A) and J(B) are the finite eigenvalues of the pencils
λD − A and λC − B, respectively. N(A) and N(B) correspond to the eigenvalue at infinity.
Using (1.2), Pl,1, Pl,2, Pr,1, and Pr,2 can be expressed as

Pl,1 = W1

[
I 0
0 0

]
W−1

1 , Pl,2 = W2

[
I 0
0 0

]
W−1

2 ,

Pr,1 = T−1
1

[
I 0
0 0

]
T1, Pr,2 = T−1

2

[
I 0
0 0

]
T2.

(1.3)

If D and C are nonsingular, then Pr,1 = Pl,1 = In, Pr,2 = Pl,2 = Im, and (1.1) reduces to
the generalized Sylvester equation AXC +DXB +E = 0. Asm = n, B = AT , and C = DT , (1.1)
is referred to as the projected generalized continuous-time Lyapunov equation. The projected
generalized continuous-time Lyapunov equation plays an important role in stability analysis
and control design problems for descriptor systems including the characterization of
controllability and observability properties, computing H2 and Hankel norms, determining
the minimal and balanced realizations as well as balanced truncation model order reduction;
see [2–6] and the references therein. If the pencil λD − A is c-stable, that is, all its finite
eigenvalues have negative real parts, then the projected generalized Lyapunov equation has
a unique solution for each E, and if, additionally, E is symmetric and positive semidefinite,
then the solution X is symmetric and positive semidefinite see, for example, [4] for details.
In [7], the generalized Bartels-Stewart method and the generalized Hammarling method
are presented for solving the projected generalized Lyapunov equation. The generalized
Hammarling method is designed to obtain the Cholesky factor of the solution. These
two methods are based on the generalized real Schur factorization (generalized Schur
factorization if the matrix entries are complex) of the pencil λD −A.

Zhou et al. [8] considered the projected generalized continuous-time Sylvester
equation (1.1). They firstly presented one sufficient condition for the existence and unique-
ness of the solution of this equation. Then, several numerical methods were proposed for
solving (1.1). Finally, they shew that the solution of this equation is useful for computing the
HL2 inner product of two descriptor systems.

The perturbation analysis for Sylvester-type equations has been considered by several
authors. Higham [9] presented a perturbation analysis of the standard Sylvetser equation
AX − XB = C. By taking into account its specific structure, he derived expressions for the
backward error and a normwise condition number which measures the worst-case sensitivity
of a solution to small perturbations in the data A,B, and C. In [10], a complete perturbation
analysis of the nonsingular general Lyapunov equation was presented. Stykel [7] discussed
the perturbation theory for the projected generalized continuous-time algebraic Lyapunov
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equation. Konstantinov et al. considered the perturbation analysis for several types of matrix
equations in their monograph [11]. They presented the framework of the perturbation ana-
lysis and derived condition numbers, first-order homogeneous bounds, componentwise
bounds, and nonlocal normwise and componentwise bounds for the general Sylvester equa-
tion and the general Lyapunov equation.

In this paper, we study the perturbation theory for the projected generalized con-
tinuous-time Sylvester equation (1.1) and derive a perturbation bound for its solution.

Throughout this paper, we adopt the following notation. Il denotes the l × l identity
matrix and 0 denotes the zero vector or zero matrix. If the dimension of Il is apparent from
the context, we drop the index and simply use I. The space of m × n real matrices is denoted
by R

n×m. The Euclidean norm for a vector or its associated induced matrix norm is denoted
by ‖ ·‖2. The superscript T denotes the transpose of a vector or a matrix andA−1 is the inverse
of nonsingular A.

The remainder of the paper is organized as follows. In Section 2, we present the pertur-
bation results for the projected generalized continuous-time Sylvester equation and the gen-
eralized continuous-time Sylvester equation. Conclusions are given in Section 3.

2. Perturbation Results for the Projected Generalized
Continuous-Time Sylvester Equation

In this section, we firstly review and introduce one important theorem, for example, [12],
which gives sufficient conditions for the existence, uniqueness, and analytic formula of the
solution of the projected generalized continuous-time Sylvester equation (1.1).

Theorem 2.1. Let λD − A and λC − B be regular pencils with finite eigenvalues {μ1, μ2, . . . , μn1}
and {ν1, ν2, . . . , νm1} counted according to their multiplicities, respectively. Let Pr,1 and Pr,2 be the
spectral projectors onto the right deflating subspaces corresponding to the finite eigenvalues of the
pencils λD − A and λC − B, respectively, and let Pl,1 and Pl,2 be the spectral projectors onto the left
deflating subspaces corresponding to the finite eigenvalues of λD −A and λC − B, respectively. Then,
the projected generalized continuous-time Sylvester equation (1.1) has a unique solution for every E
if μi + νj /= 0 for any i = 1, 2, . . . , n1 and j = 1, 2, . . . , m1.

Moreover, if λD −A and λC − B are c-stable, that is, all their finite eigenvalues have negative
real part, then X can be expressed as

X =
1
2π

∫∞

−∞
(−iωD −A)−1Pl,1EPr,2(iωC − B)−1dω. (2.1)

Now let us define a linear operator

S− : R
n×m → R

n×m, (2.2)

which satisfies the following: for a matrix E ∈ R
n×m, X = S−(E) is the unique solution of the

projected generalized continuous-time Sylvester equation (1.1), that is,

X = S−(E) =
1
2π

∫∞

−∞
(−iωD −A)−1Pl,1EPr,2(iωC − B)−1dω. (2.3)
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The following result shows that the linear operator S− is bounded and is very useful
for the perturbation analysis of the projected generalized continuous-time Sylvester equation.
Although the proof is similar to that of Lemma 3.6 in [7], we include it in this paper for
completeness.

Lemma 2.2. Assume that the pencils λD −A and λC − B are c-stable. Then

∥∥S−∥∥
2 ≤

√
‖H1‖2‖H2‖2, (2.4)

whereH1 and H2 are the solutions of the projected generalized continuous-time Lyapunov equations

AH1D
T +DH1A

T + Pl,1P
T
l,1 = 0,

H1 = Pr,1H1P
T
r,1,

(2.5)

BTH2C + CTH2B + PT
r,2Pr,2 = 0,

H2 = PT
l,2H2Pl,2,

(2.6)

respectively.

Proof. Let u ∈ R
n and v ∈ R

m be the left and right singular vectors of unit length correspond-
ing to the largest singular value of the solution X. Then, for any E ∈ R

n×m,

∥∥S−(E)
∥∥
2 = ‖X‖2 = uTXv

=
1
2π

∫∞

−∞
uT (−iωD −A)−1Pl,1EPr,2(iωC − B)−1vdω

≤ 1
2π

‖E‖2
∫∞

−∞

∥∥∥uT (−iωD −A)−1Pl,1

∥∥∥
2

∥∥∥Pr,2(iωC − B)−1v
∥∥∥
2
dω

≤ 1
2π

‖E‖2
(∫∞

−∞

∥∥∥uT (−iωD −A)−1Pl,1

∥∥∥2

2
dω

)1/2

·
(∫∞

−∞

∥∥∥Pr,2(iωC − B)−1v
∥∥∥2

2
dω

)1/2

.

(2.7)

Here, we have used the Cauchy-Schwarz inequality. It holds that

∫∞

−∞

∥∥∥uT (−iωD −A)−1Pl,1

∥∥∥2

2
dω =

∫∞

−∞
uT (−iωD −A)−1Pl,1P

T
l,1

(
iωDT −AT

)−1
udω

≤
∥∥∥∥
∫∞

−∞
(−iωD −A)−1Pl,1P

T
l,1

(
iωDT −AT

)−1
dω

∥∥∥∥
2

= 2π‖H1‖2,

(2.8)
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where

H1 =
1
2π

∫∞

−∞
(−iωD −A)−1Pl,1P

T
l,1

(
iωDT −AT

)−1
dω (2.9)

is the unique solution of (2.5).
Similarly, we obtain

∫∞

−∞

∥∥∥Pr,2(iωC − B)−1v
∥∥∥2

2
dω ≤ 2π‖H2‖2, (2.10)

where

H2 =
1
2π

∫∞

−∞

(
−iωCT − BT

)−1
Pl,1P

T
l,1(iωC − B)−1dω (2.11)

is the unique solution of (2.6).
From (2.7), (2.8), and (2.10), it follows that for any E ∈ R

n×m,

∥∥S−(E)
∥∥
2 ≤ ‖E‖2

√
‖H1‖2‖H2‖2. (2.12)

Hence,

∥∥S−∥∥
2 = sup

E∈Rn×m,E /= 0

‖S−(E)‖2
‖E‖2

≤
√
‖H1‖2‖H2‖2. (2.13)

Let A, B, C, D, and E be slightly perturbed to

Ã = A + ΔA, B̃ = B + ΔB, C̃ = C + ΔC, D̃ = D + ΔD, Ẽ = E + ΔE, (2.14)

respectively, where ΔA,ΔD ∈ R
n×n, ΔB,ΔC ∈ R

m×m, ΔE ∈ R
n×m with

‖ΔA‖2 ≤ ε‖A‖2, ‖ΔB‖2 ≤ ε‖B‖2, ‖ΔC‖2 ≤ ε‖C‖2,
‖ΔD‖2 ≤ ε‖D‖2, ‖ΔE‖2 ≤ ε‖E‖2.

(2.15)

Then the projected generalized continuous-time Sylvester equation (1.1) is perturbed to:

ÃX̃C̃ + D̃X̃B̃ + P̃l,1ẼP̃r,2 = 0,

X̃ = P̃r,1X̃P̃l,2,
(2.16)

where X̃ = X + ΔX with ΔX ∈ R
n×m, P̃r,1 and P̃r,2 are the spectral projectors onto the

right deflating subspaces corresponding to the finite eigenvalues of the pencils λD̃ − Ã
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and λC̃ − B̃, respectively, and P̃l,1 and P̃l,2 are the spectral projectors onto the left deflating
subspaces corresponding to the finite eigenvalues of λD̃ − Ã and λC̃ − B̃, respectively.

We assume in this paper that the spectral projectors of the pencils λD −A, λC − B and
the perturbed pencils λD̃ − Ã, λC̃ − B̃ satisfy

Ker(Pr,i) = Ker
(
P̃r,i

)
, Ker

(
PT
l,i

)
= Ker

(
P̃ T
l,i

)
, i = 1, 2. (2.17)

Such an assumption is reasonable in some applications; see, for example, [13]. We further
assume that

∥∥∥P̃l,i − Pl,i

∥∥∥
2
≤ εK,

∥∥∥P̃r,i − Pr,i

∥∥∥
2
≤ εK, i = 1, 2, (2.18)

where K is a constant.
From (2.17), it follows that for i = 1, 2,

Pr,iP̃r,i = Pr,i, P̃r,iPr,i = P̃r,i, P̃l,iPl,i = Pl,i, Pl,iP̃l,i = P̃l,i. (2.19)

Moreover, it is not difficult to verify that

Pl,1D = Pl,1DPr,1 = DPr,1, Pl,1A = Pl,1APr,1 = APr,1, (2.20)

Pl,2C = Pl,2CPr,2 = CPr,2, Pl,2B = Pl,2BPr,2 = BPr,2, (2.21)

P̃l,1D̃ = P̃l,1D̃P̃r,1 = D̃P̃r,1, P̃l,1Ã = P̃l,1ÃP̃r,1 = ÃP̃r,1, (2.22)

P̃l,2C̃ = P̃l,2C̃P̃r,2 = C̃P̃r,2, P̃l,2B̃ = P̃l,2B̃P̃r,2 = B̃P̃r,2. (2.23)

We reformulate the first equation of the perturbed equation (2.16) as

AX̃C +DX̃B + P̃l,1ẼP̃r,2 + F
(
X̃
)
= 0, (2.24)

where F(X̃) ∈ R
n×m is defined by

F
(
X̃
)
= ÃX̃ΔC + ΔAX̃C + D̃X̃ΔB + ΔDX̃B. (2.25)

Then we have the following lemma.

Lemma 2.3. The following relation holds

P̃l,1ẼP̃r,2 + F
(
X̃
)
= Pl,1

(
P̃l,1ẼP̃r,2 + F

(
X̃
))

Pr,2. (2.26)

Proof. The equality P̃l,1ẼP̃r,2 = Pl,1P̃l,1ẼP̃r,2Pr,2 follows directly from (2.19).



Mathematical Problems in Engineering 7

Since X̃ = P̃r,1X̃P̃l,2, we have

P̃r,1X̃ = P̃r,1P̃r,1X̃P̃l,2 = P̃r,1X̃P̃l,2 = X̃. (2.27)

Similarly, X̃P̃l,2 = X̃.
By using (2.19), (2.20), (2.21), and (2.23), we obtain

X̃ΔCPr,2 = X̃P̃l,2

(
C̃ − C

)
Pr,2 = X̃P̃l,2C̃Pr,2 − X̃Pl,2C

= X̃C̃P̃r,2Pr,2 − X̃Pl,2C = X̃C̃P̃r,2 − X̃Pl,2C

= X̃P̃l,2C̃ − X̃Pl,2C = X̃ΔC,

Pl,1ÃX̃ = Pl,1ÃP̃r,1X̃ = Pl,1P̃l,1ÃX̃ = P̃l,1ÃX̃ = ÃP̃r,1X̃ = ÃX̃.

(2.28)

Hence,

Pl,1ÃX̃ΔCPr,2 = ÃX̃ΔCPr,2 = ÃX̃ΔC. (2.29)

Using the similar manipulation, we can show that

Pl,1D̃X̃ΔBPr,2 = D̃X̃ΔB, Pl,1ΔAX̃CPr,2 = ΔAX̃C, Pl,1ΔDX̃BPr,2 = ΔDX̃B. (2.30)

Then, the equality (2.26) follows.

The following theorem provides the result on the relative error bound for the solution
of the projected generalized continuous-time Sylvester equation (1.1).

Theorem 2.4. Assume that the pencils λD −A and λC −B are c-stable. Let X be the unique solution
of the projected generalized continuous-time Sylvester equation (1.1). Define

α = (‖A‖2‖C‖2 + ‖D‖2‖B‖2)
√
‖H1‖2‖H2‖2, β = ‖E‖2

√
‖H1‖2‖H2‖2. (2.31)

If ε(2 + ε)α < 1, then the perturbed equation (2.16) has a unique solution X̃. Moreover, the
relative error satisfies the following inequality:

∥∥∥X̃ −X
∥∥∥
2

‖X‖2
≤ ε(2 + ε)α

1 − ε(2 + ε)α
+
εβ

[
(1 + ε)K

(
εK + ‖Pr,2‖2

)
+ (1 + ε)K‖Pl,1‖2 + ‖Pl,1‖2‖Pr,2‖2

]
(1 − ε(2 + ε)α)‖X‖2

.

(2.32)

Proof. By (2.26), the perturbed equation can be rewritten as

AX̃C +DX̃B + Pl,1

(
P̃l,1ẼP̃r,2 + F

(
X̃
))

Pr,2 = 0,

X̃ = P̃r,1X̃P̃l,2.

(2.33)



8 Mathematical Problems in Engineering

It follows from (2.33) and Theorem 2.1 that the perturbed solution X̃ can be expressed as

X̃ =
1
2π

∫∞

−∞
(−iωD −A)−1Pl,1

(
P̃l,1ẼP̃r,2 + F

(
X̃
))

Pr,2(iωC − B)−1dω ≡ Φ
(
X̃
)
. (2.34)

For any X̃ ∈ R
n×m, we have

∥∥∥F(X̃)∥∥∥
2
≤
(∥∥∥Ã∥∥∥

2
‖ΔC‖2 + ‖ΔA‖2‖C‖2 +

∥∥∥D̃∥∥∥
2
‖ΔB‖2 + ‖ΔD‖2‖B‖2

)∥∥∥X̃∥∥∥
2

≤ ε(2 + ε)(‖A‖2‖C‖2 + ‖D‖2‖B‖2)
∥∥∥X̃∥∥∥

2
.

(2.35)

According to the definition of the linear operator Φ, by making use of Lemma 2.2 and
(2.35), we get, for any X̃1, X̃2 ∈ R

n×m,

∥∥∥Φ(
X̃1

)
−Φ

(
X̃2

)∥∥∥
2
≤
∥∥∥∥ 1
2π

∫∞

−∞
(−iωD −A)−1Pl,1F

(
X̃1 − X̃2

)
Pr,2(iωC − B)−1dω

∥∥∥∥
2

≤
∥∥∥F(X̃1 − X̃2

)∥∥∥
2

√
‖H1‖2‖H2‖2

≤ ε(2 + ε)(‖A‖2‖C‖2 + ‖D‖2‖B‖2)
√
‖H1‖2‖H2‖2

∥∥∥X̃1 − X̃2

∥∥∥
2
.

(2.36)

It shows that if ε(2+ε)(‖A‖2‖C‖2+‖D‖2‖B‖2)
√
‖H1‖2‖H2‖2 < 1, thenΦ is a contractive

linear operator. At this moment, by the fixed point theorem [14], Φ(X̃) = X̃ has a unique
solution.

It holds that

∥∥∥P̃l,1ẼP̃r,2 − Pl,1EPr,2

∥∥∥
2

=
∥∥∥P̃l,1ẼP̃r,2 − Pl,1ẼP̃r,2 + Pl,1ẼP̃r,2 − Pl,1ẼPr,2 + Pl,1ẼPr,2 − Pl,1EPr,2

∥∥∥
2

≤
∥∥∥P̃l,1 − Pl,1

∥∥∥
2

∥∥∥Ẽ∥∥∥
2

∥∥∥P̃r,2

∥∥∥
2
+ ‖Pl,1‖2

∥∥∥Ẽ∥∥∥
2

∥∥∥P̃r,2 − Pr,2

∥∥∥
2

+ ‖Pl,1‖2‖ΔE‖2‖Pr,2‖2
≤ εK(1 + ε)‖E‖2

(
εK + ‖Pr,2‖2

)
+ ε(1 + ε)K‖Pl,1‖2‖E‖2 + ε‖Pl,1‖2‖E‖2‖Pr,2‖2

= ε
[
(1 + ε)K

(
εK + ‖Pr,2‖2

)
+ (1 + ε)K‖Pl,1‖2 + ‖Pl,1‖2‖Pr,2‖2

]‖E‖2.

(2.37)

It follows from (2.35) that

∥∥∥F(X̃)∥∥∥
2
≤ ε(2 + ε)(‖A‖2‖C‖2 + ‖D‖2‖B‖2)

(
‖X‖2 +

∥∥∥X̃ −X
∥∥∥
2

)
. (2.38)
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By using (2.1), (2.34), (2.37), (2.38), and Lemma 2.2, we obtain

∥∥∥X̃ −X
∥∥∥
2
=
∥∥∥∥ 1
2π

∫∞

−∞
(−iωD −A)−1Pl,1

(
F
(
X̃
)
+ P̃l,1ẼP̃r,2 − Pl,1EPr,2

)
Pr,2(iωC − B)−11dω

∥∥∥∥
2

≤
∥∥∥F(X̃)

+ P̃l,1ẼP̃r,2 − Pl,1EPr,2

∥∥∥
2

√
‖H1‖2‖H2‖2

≤ ε(2 + ε)α‖X‖2 + ε(2 + ε)α
∥∥∥X̃ −X

∥∥∥
2

+ εβ
[
(1 + ε)K

(
εK + ‖Pr,2‖2

)
+ (1 + ε)K‖Pl,1‖2 + ‖Pl,1‖2‖Pr,2‖2

]
,

(2.39)

where α and β are defined in (2.31). Then, the inequality (2.32) of the relative error bound
results from the above inequality.

If D and C are also nonsingular, then Pr,1 = Pl,1 = In and Pr,2 = Pl,2 = Im. In this case,
the projected generalized continuous-time Sylvester equation (1.1) reduces to the generalized
continuous-time Sylvester equation

AXC +DXB + E = 0. (2.40)

The corresponding perturbed equation is

ÃX̃C̃ + D̃X̃B̃ + Ẽ = 0. (2.41)

Let H1 and H2 be the solutions of the generalized continuous-time Lyapunov equa-
tions

AH1D
T +DH1A

T + In = 0,

BTH2C + CTH2B + Im = 0,
(2.42)

respectively.
Note that (2.37) reduces to

∥∥∥Ẽ − E
∥∥∥
2
= ‖ΔE‖2 ≤ ε‖E‖2. (2.43)

Hence, we have

∥∥∥X̃ −X
∥∥∥
2
≤
∥∥∥F(X̃)

+ Ẽ − E
∥∥∥
2

√
‖H1‖2‖H2‖2

≤ ε(2 + ε)α‖X‖2 + ε(2 + ε)α
∥∥∥X̃ −X

∥∥∥
2
+ ε‖E‖2

√
‖H1‖2‖H2‖2
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≤ ε(2 + ε)α‖X‖2 + ε(2 + ε)α
∥∥∥X̃ −X

∥∥∥
2
+ εα‖X‖2

= ε(3 + ε)α‖X‖2 + ε(2 + ε)α
∥∥∥X̃ −X

∥∥∥
2
.

(2.44)

From the above inequality, we obtain the relative error bound for the generalized
continuous-time Sylvester equation (2.40).

Theorem 2.5. Assume that D and C are nonsingular, and the pencils λD − A and λC − B are c-
stable. Let X be the unique solution of the generalized continuous-time Sylvester equation (2.40). Let
α = (‖A‖2‖C‖2 + ‖D‖2‖B‖2)

√
‖H1‖2‖H2‖2, where H1 and H2 are the solutions of the generalized

continuous-time Lyapunov equation (2.42), respectively. If ε(2+ ε)α < 1, then the perturbed equation
(2.41) has a unique solution X̃. Moreover, the relative error satisfies the following inequality:

∥∥∥X̃ −X
∥∥∥
2

‖X‖2
≤ ε(3 + ε)α

1 − ε(2 + ε)α
. (2.45)

This result shows that (‖A‖2‖C‖2 + ‖D‖2‖B‖2)
√
‖H1‖2‖H2‖2 may be used to measure

the sensitivity of the solution of the generalized continuous-time Sylvester equation (2.40).

3. Conclusions

In this paper, we have studied the perturbation analysis for the projected generalized con-
tinuous-time Sylvester equation and the generalized continuous-time Sylvester equation.
By making use of solutions of two special projected generalized continuous-time Sylvester
equations, we obtain the perturbation bounds based on the Euclidean norm for their sol-
utions.

Acknowledgments

The authors would like to thank Professor Mohammed Chadli and the referees for their
useful comments. Y. Zhou is supported by the Science and Technology Planning Project
of Hunan Province under Grant 2010JT4042. L. Bao is supported by the National Natural
Science Foundation of China under Grants 10926150 and 11101149. Y. Lin is supported by the
National Natural Science Foundation of China under Grant 10801048, the Natural Science
Foundation of Hunan Province under Grant 11JJ4009, the Scientific Research Foundation of
Education Bureau of Hunan Province for Outstanding Young Scholars in University under
Grant 10B038, and the Chinese Postdoctoral Science Foundation under Grant 2012M511386.

References

[1] F. R. Gantmacher, Theory of Matrices, Chelsea, New York, NY, USA, 1959.
[2] D. J. Bender, “Lyapunov-like equations and reachability/observability Gramians for descriptor sys-

tems,” IEEE Transactions on Automatic Control, vol. 32, no. 4, pp. 343–348, 1987.



Mathematical Problems in Engineering 11

[3] V. Mehrmann and T. Stykel, “Balanced truncation model reduction for large-scale systems in
descriptor form,” inDimension Reduction of Large-Scale Systems, vol. 45 of Lecture Notes in Computational
Science and Engineering, pp. 83–115, Springer, Berlin, Germany, 2005.

[4] T. Stykel, “Stability and inertia theorems for generalized Lyapunov equations,” Linear Algebra and its
Applications, vol. 355, pp. 297–314, 2002.

[5] T. Stykel, “Gramian-based model reduction for descriptor systems,” Mathematics of Control, Signals,
and Systems, vol. 16, no. 4, pp. 297–319, 2004.

[6] T. Stykel, “On some norms for descriptor systems,” IEEE Transactions on Automatic Control, vol. 51, no.
5, pp. 842–847, 2006.

[7] T. Stykel, “Numerical solution and perturbation theory for generalized Lyapunov equations,” Linear
Algebra and its Applications, vol. 349, pp. 155–185, 2002.

[8] Y. Zhou, L. Bao, Y. Lin, and Y.Wei, “The projected generalized Sylvester equations: numerical solution
and applications,” Preprint.

[9] N. J. Higham, “Perturbation theory and backward error forAX−XB = C,” BIT. Numerical Mathematics,
vol. 33, no. 1, pp. 124–136, 1993.

[10] M. Konstantinov, P. Petkov, D. Gu, and V. Mehrmann, “Sensitivity of general lyapunov equaions,”
Tech. Rep. 98-15, Department of Engineering, University of Leicester, Leicester, UK, 1998.

[11] M.Konstantinov, D. Gu, V.Mehrmann, and P. Petkov, Perturbation Theory forMatrix Equations, Elsevier,
2003.

[12] Y. Lin, L. Bao, and Y. Wei, “Matrix sign function methods for solving projected generalized con-
tinuous-time Sylvester equations,” IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2629–
2634, 2010.

[13] R. Byers and N. K. Nichols, “On the stability radius of a generalized state-space system,” Linear
Algebra and its Applications, vol. 188-189, pp. 113–134, 1993.

[14] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, UK, 1982.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


