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A novel CT reconstruction model is proposed, and the reconstruction is completed by this
kernel-based method. The reconstruction kernel can be obtained by combining the approximate
inverse method with the FDK algorithm. The computation of the kernel is moderate, and the
reconstruction results can be improved by introducing the compact support version of the kernel.
The efficiency and the accuracy are shown in the numerical experiments.

1. Introduction

In the last years, the approximate inverse method [1–3] is proposed and provides a general
strategy for inverse problem. In computed tomography field, the approximate inverse is to
process the measured data on the precomputed kernel to get an approximate reconstruction
result. Recently, Louis et al. have described the relation between the X-ray and the Radon
transform with the formula of Grangeat [4] by some proper operators and derived the kernel
of Radon transform for the easy-to-implement circular scanning trajectory [5].

At present, image reconstruction from X-ray cone-beam projections collected along
a single circular source trajectory is commonly done with the FDK reconstruction method
despite of the drawback that the FDK method is inaccurate [4, 6]. Due to its highly
computational efficiency, manymodifications for the FDKmethod have been proposed [7–9],
but many of them are concentrated on improving the trajectory to fulfill the data-sufficient
condition.

As the integral operators in most tomography problems are compact operators acting
on suitable infinite dimensional Hilbert spaces, their inverse operators are not continuous,
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which would amplify the unavoidable data errors. When a reconstruction work is processing,
the demand for highest possible accuracy and the necessary damping of the influence of the
unavoidable data errors should be balanced [5]. Compared with the exact reconstruction
algorithms, approximate algorithms can provide more flexible tradeoff between the image
quality and computational efficiency. Thus, the FDK reconstruction method is highlighted to
realize the approximate inversion for circular trajectory.

In this paper, a novel CT reconstruction model is proposed based on the approximate
inverse where the kernel of the FDK method is derived and is used to complete the
reconstruction. With the classical FDK method, the coordinate of the reconstruction point
is first transformed from the globe Cartesian coordinate system to the detector coordinate
system. It means that the reconstruction point is combined with the measured projection
directly, and, furthermore, the invariance and symmetries of the coordinate system are
preserved. Then the reconstruction kernel of the FDK method can be derived by defining
some operators while the simplicity is preserved. In some ways, it presents a modification
for the FDK method, and it is also a novel realization of the approximate inverse method.
With the FDK kernel, the reconstruction can be completed efficiently. However, imposed ring
artifacts arise around the area where the density is high.

Ring artifacts mainly arise in a third-generation CT system. They are caused by errors
in a single or multiple channels over an extended range of views. It can be found that even a
little projection errors can cause perceivable ring artifacts in the image. An error in an isolated
view is mapped to a streak by the backprojection process. If the same error is persistent over
a range of views, the streaks are blended, and an arc is generated [10].

From the figure of the FDK kernel, it can be observed that many minute oscillations
exist at the edge of the kernel, and the FDK kernel has infinite support set. In consideration of
the approximate inverse method, the oscillations present the contribution errors in multiple
channels. As the shift-invariant property of FDK kernel is utilized in the back-projection
process, and when the projections in the whole circle are considered, these errors generate
the ring artifacts. Thus, in order to eliminate the ring artifacts, we update the reconstruction
model by truncating the kernel with proper radiuses to make the kernel compact. For a given
radius, the values of the points far from the center are set as zero, and thus the errors are set
as zero. Reconstruction results show that the compact support FDK kernel is advantageous
to reduce the ring artifacts and enhance the edge clarity.

The remainder of this article is organized as follows. In Section 2, the approximate
inverse method and the kernel of the Radon transform are briefly introduced. In Section 3,
the FDK algorithm is combined with the approximate inverse, and the FDK kernel is derived.
Then the kernel is truncated to be compact and the compact kernel-based reconstruction
model is introduced. And at last some properties of the FDK kernel are discussed.
Experiments results and conclusion are presented in Sections 4 and 5.

2. Approximate Inverse Method and Radon Kernel
Reconstruction Model

2.1. Approximate Inverse Method

In this section, the approximate inverse method is briefly introduced. For more details, we
refer to [1–3, 5].
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Let A : X → Y be a compact operator between real Hilbert spaces X and Y . The
approximate inverse means a solution operator Sγ , which maps the data g to fγ(x), a stable
approximation of the solution f(x) of the ill-posed problem

Af = g, (2.1)

as follows:

fγ(x) = Sγg(x). (2.2)

The approximation of fγ(x) is determined with a mollifier eγ(x, ·),

fγ(x) =
〈
f, eγ(x, ·)

〉
X
, (2.3)

where the mollifier eγ(x, ·) is an approximation of the delta function δx(·), for example the
Gaussian function. And the parameter γ is a regularization parameter.

With the auxiliary function

A∗Ψγ(x, ·) = eγ(x, ·), (2.4)

we can get the following:

fγ(x) =
〈
f, eγ(x, ·)

〉
X
=
〈
f,A∗Ψγ(x, ·)

〉
X

=
〈
Af,Ψγ(x, ·)

〉
Y
=
〈
g,Ψγ(x, ·)

〉
Y

=: Sγg(x),

(2.5)

where A∗ is the adjoint operator of A. The solution of the auxiliary function: Ψγ(x, ·) is called
the reconstruction kernel, and the measured data can be directly processed with the kernel to
get the reconstruction results.

2.2. Radon Kernel Reconstruction Model

In [5], Louis et al. gave the reconstruction kernel based on the Radon transform with the
formula of Grangeat.

In circular tomography, let the condition of Tuy-Kirillove be fulfilled, the inversion of
the 3D Radon transform is given as

f =
1

8π2
D∗TMΓTDf, (2.6)

hence, we can get the solution of the auxiliary function D∗Ψγ = eγ as

Ψγ =
1

8π2
TMΓTDeγ , (2.7)
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and the Ψγ is the reconstruction kernel, where

Df(a, θ) =
∫∞

0
f(a + tθ)dt, (2.8)

is the cone-beam transform of f ∈ L2(R), and its adjoint operator is

D∗g(r) =
∫

Γ
‖r − a‖−2g

(
a,

r − a

‖r − a‖
)
da. (2.9)

The integral operator Tg(ω) and multiplication operator MΓh(a, θ) are defined as

Tg(ω) =
∫

S2
g(θ)δ(〈θ,ω〉)dθ,

MΓh(a, θ) = |〈ȧ, ω〉|m(ω, 〈a,ω〉)h(ω),

(2.10)

which are defined from the inverse of the 3D Radon transform

f(r) = − 1
8π2

∫

S2

∂2

∂s2
Rf(ω, s)|s=〈x,ω〉da, (2.11)

with the formula of Grangeat [4]

∂2

∂s2
Rf(ω, s)|s=〈x,ω〉 = −

∫

S2
Df(a, θ)δ′(〈θ,ω〉)dθ. (2.12)

Let n(ω, s) denote the Crofton symbol, and setting m = 1/n: (2.11) can be expressed
as follows,

f(r) =
1

8π2

∫

Γ

1

‖r − a‖2
∫∫

S2
Df(a, θ)δ′(〈θ,ω〉)dθ

× δ′
(〈

r − a

‖r − a‖2
, ω

〉)

|〈ȧ, ω〉|m(ω, 〈a,ω〉)dadω.

(2.13)

With operators above, the inverse formula of the 3D Radon transform shown as (2.11)
can be expressed as the operator equation as (2.6), and the reconstruction kernelΨγ is derived
as (2.7).

As we know that the circular trajectory could not fulfill the sufficient condition, only
approximate results are possible. At present, FDK reconstruction method is the most popular
method for circular reconstruction. In next section, we concentrate on deriving the FDK
kernel from the well-known FDK method and then proposed the compact support FDK
kernel reconstruction model.
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3. Compact Support FDK Kernel Reconstruction Model

3.1. FDK Reconstruction Method

The 3D FDK reconstruction method is a heuristic development of the 2D Radon transform
[6]. From the measured projection data along the intersection of the detector plane and the
midplane, the density at points that lie in the midplane can be calculated. Then for a tilted
plane which intersect the detector plane along a line parallel to the midplane, it is treated as
the midplane of another tilted arrangement CT system. Making the corrections of the rotation
and the distance between the actual midplane and the tilted plane, the density at the point r
in the tilted plane is the sum of the increment contributions from all planes that pass through
r. The FDK reconstruction method can be expressed as follows:

fFDK(r) =
1

4π2

∫2π

0
dβ

d2

(d + r · x̂)2
∫+∞

0
ωdω

∫+∞

−∞
dY

× d√
d2 + Y 2 + Z2

Dβ(Y,Z) exp
[
iw

(
dr · ŷ

d + r · x̂
)
− Y

]
,

(3.1)

where x̂ =
−−−→
AO, ŷ = ˙−−−→

AO and the axis of rotation ẑ direction composed the local Cartesian
coordinate system, O is the origin, A is the source point, d is the distance from the source
point A to the hypothetic detector which contains the rotation axis and is parallel to the
real detector, (Y,Z) is the coordinate of the hypothetic detector plane, Dβ(Y,Z) denotes the
projection acquired at the point (Y,Z), and β denotes the rotate angle of the source A.

3.2. FDK Kernel Reconstruction Model

Let a ∈ Γ denotes the position of the source point A on the circular trajectory Γ, given a fixed
reconstruction point r(x, y, z), where x, y, z is the globe coordinate of the point. Then on the
local Cartesian coordinate system of 〈x̂, ŷ, ẑ〉, the square of distance from the source A to the
reconstruction point r(x, y, z) is

‖r − a‖2 = (d + r · x̂)2 + (r · ŷ)2 + (r · ẑ)2, (3.2)

then (3.1) is revised into

fFDK(r) =
1

4π2

∫2π

0
dβ‖r − a‖−2

[
(d + r · x̂)2 + (r · ŷ)2 + (r · ẑ)2

] d2

(d + r · x̂)2

×
∫+∞

0
ωdω

∫+∞

−∞
dY

d√
d2 + Y 2 + Z2

Dβ(Y,Z) exp
[
iω

(
dr · ŷ

d + r · x̂
)
− Y

]

=
1

4π2

∫2π

0
dβ‖r − a‖−2

[

d2 +
(

dr · ŷ
d + r · ŷ

)2

+
(

dr · ẑ
d + r · ẑ

)2
]

×
∫+∞

0
ωdω

∫+∞

−∞
dY

d√
d2 + Y 2 + Z2

Dβ(Y,Z) exp
[
iω

(
dr · ŷ

d + r · x̂
)
− Y

]
.

(3.3)
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Let

y′ =
dr · ŷ

d + r · x̂ , z′ =
dr · ẑ

d + r · x̂ , (3.4)

where y′, z′ are the coordinates of the intersection point on the hypothetic detector of the line
from the source to the reconstruction point: −→ar. Then (3.3) above can be expressed as

fFDK(r) =
∫2π

0
dβ‖r − a‖−2 1

4π2

[
d2 + y′2 + z′2

]

×
∫+∞

−∞
dY

d√
d2 + Y 2 + Z2

∫+∞

0
ωdω exp

[
iωy′ − Y

]
Dβ(Y,Z).

(3.5)

Define three new operators:

M(r, a, θ) = d2 + y′2 + z′2,

H(r, a) =
∫+∞

0
ωdω exp

[
iωy
]
,

W(r, a, θ) =
d√

d2 + Y 2 + Z2
,

(3.6)

where the unit vector θ ∈ S2 denotes the direction of the projection. With the cone-beam
transform as (2.8) and its adjoint operator as (2.9), the FDK reconstruction method can be
denoted as follows:

fFDK =
1

4π2
D∗MH ∗WDf, (3.7)

and the inverse of the projection is given as

D−1 =
1

4π2
D∗MH ∗W. (3.8)

According to the auxiliary problem D∗Ψγ(x, ·) = eγ(x, ·), the kernel based on the FDK
reconstruction method is derived,

ΨFDK(r, a, θ) =
1

4π2
MH ∗WDeγ . (3.9)

Thus for a suitable mollifier eγ(x, y), a novel reconstruction kernel can be obtained. In
this work, we choose a translational and rotational invariant function, the Gaussian function
as the mollifier

eγ
(
x, y
)
= (2π)−3/2

1
γ3

e−‖x−y‖
2/2γ2 . (3.10)
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Figure 1: Kernel of the FDK method with the CT geometry in Table 1.

Table 1: Parameters of Measurement.

Measurement parameters
Detector 255 × 255
Projections 180
Source-Detector ∼100 cm
Source-Object ∼87.3 cm

Reconstruction parameters
Reconstruction grid 255 × 255
γ 0.00165 cm

Then according to the approximate inverse method, the projections can be processed
on the FDK kernel for reconstruction. Then we obtain the FDK kernel reconstruction model
as:

fγ(x) =
〈
g,ΨFDK(x)

〉
. (3.11)

The FDK kernel is computed in numerical experiments, and the shape of the original
FDK kernel is shown in Figure 1.

3.3. Compact Support FDK Kernel and the Reconstruction Model

With the FDK kernel reconstructionmodel, we reconstruct the Shepp-Logan phantom and the
Turbell clock phantom in numerical experiments. Reconstruction results are shown in Figures
2(c), 4(c), and 5(c). According to these results, we can see that the results based on the original
FDK kernel have ring artifacts. Beside the ring artifacts, the results have homogenous density
on the whole.

As we all know, the FDK reconstruction method is a filtered back-projection recon-
struction method. From the formula of the kernel as (3.9), the FDK kernel is a convolution
type operator. In computing the FDK kernel, as a result of the approximate inverse method,
shown in Figure 1, many minute oscillations exist at the edge which make the support set of
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(a) (b) (c)

(d) (e) (f)

Figure 2: Original phantom and reconstruction results of the middle plane. (a) is the original phantom of
the midplane. (b) is the reconstruction result with the Radon kernel. (c) is the result with the original FDK
kernel model. Results with the compact FDK kernel model where the radius ρ = 80, 40, and 4 are shown in
(d) (e) (f), respectively.
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Figure 3: Profiles along the midline of the midplane where the dashed and solid curves represent the true
and reconstructed values with the compact FDK kernel with ρ = 4.

the FDK kernel infinite. The oscillations locate in two vertical directions passing through the
center. And at other points, the values are very little as zero. The kernel gives the contribution
of the projections around the reconstruction point. In a practical reconstruction work, based
on the theory of the approximate inverse, the projections are managed on the kernel with a
convolution. These oscillations present the contribution errors in multiple channels. When
the projections in the whole circle is managed in the back-projection process, these errors
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(a) (b) (c)

(d) (e) (f)

Figure 4: Original phantom and reconstruction results of the plane parallel and 20mm apart from the
midplane. (a) is the original phantom of the plane. (b) is the reconstruction result with the Radon kernel.
(c) is the result with the original FDK kernel model. Results with the compact FDK kernel model where
the radius ρ = 80, 40 and 4 are shown in (d), (e), (f), respectively.

generate the ring artifacts. Especially when reconstructing a point near a high-value area, the
value of the point is influenced by the high-value points and these oscillations, and the value
is enlarged, which gives rise to the ring artifacts.

In our study, we employ a simple but useful method to reduce the ring artifacts. In
order to eliminate the oscillations and make the kernel compact, the kernel is truncated with
different radius. A truncation operator Lρ acting on the kernel is present to reach this aim.
For a given radius ρ, the values of the point p far away from the center o is set to zero, as

Ψρ = Lρ

(
Ψ, p
)
=

⎧
⎨

⎩

0,
∣∣op
∣∣ > ρ,

Ψ
(
p
)
,
∣∣op
∣∣ ≤ ρ.

(3.12)

p is the point on where Ψ is the kernel to be truncated, |op| is the distance from the center o
to the point p.

Then projections are processed on the compact kernel for reconstruction according to
the approximate inverse method and then we can denote our compact reconstruction model
as follows:

fρ(x) =
〈
g,Ψρ(x)

〉
=
〈
g, LρΨγ(x)

〉
, (3.13)

where fρ is the reconstruction result with the compact kernel, g is the measured projection
data.

Results with the compact kernel are also shown in Figures 2(d)–2(f), 4(d)–4(f), and
5(d)–5(f). With the compact kernel, the ring artifacts are all eliminated sufficiently.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Original Turbell clock and reconstruction results. (a) is the original Turbell clock. (b) is the
reconstruction result with the Radon kernel. (c) is the result with the original FDK kernel model. Results
with the compact FDK kernel model where the radius ρ = 80, 40, and 4 are shown in (d), (e) and (f),
respectively.

3.4. Some Invariances of the Kernel

As the kernel is a function of the reconstruction point r, every point may have a different
kernel. If the kernel has the invariance property, the efficient of the reconstruction can be
improved. In [5], the invariance of the Radon kernel is introduced. Fortunately, the FDK
kernel has the property of invariance like the Radon kernel.

From the derivation of the kernel, we can see that the kernel is expressed with the
coordinate system on the detector plane. And as coordinate system on the detector plane is
shift invariant, the invariance and symmetries of the chose reconstruction relation operator
are all directly inherited by the kernel. And with the translational and rotational invariant
Gaussian function as the mollifier, the FDK kernel has the invariance below.

For the fixing point r = 0, from the explicit formula of the operators M, H, W , D,
and eγ , for another source point a′, we can see that these operators are all rotation invariant
depending on the local coordinates of the direction θ(Y,Z). With the unit rotation IM defined
as a′ = IMa, the θ(Y,Z) also rotates to θ′(Y ′, Z′) coming from a′ with the relation: θ′(Y ′, Z′) =
IMθ(Y,Z), then the local coordinates of the points on the kernel keep unchanged, and the
kernel keeps unchanged. Thus, we get the following invariance:

ΨFDK
(
0, a′, θ(Y,Z)

)
= ΨFDK

(
0, a, ITMθ(Y,Z)

)
. (3.14)

As the position r /= 0 is considered, the direction −→ra is so close to the direction −→oa. Thus,
for simplicity, the corresponding kernel can be represented by the kernel of the position r = 0
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with a scale [d2 + y′2 + z′2]/d2, where y′ and z′ are defined in (3.4), then we get the following
equation:

ΨFDK(r, a, θ(Y,Z)) =
d2 + y′2 + z′2

d2
ΨFDK(0, a, θ(Y,Z)). (3.15)

With the above two results, the kernel of an arbitrary point r with the source rotates to
a′ can be represented as

ΨFDK
(
r, a′, θ(Y,Z)

)
=

d2 + y′2 + z′2

d2
ΨFDK

(
0, a, ITMθ(Y,Z)

)
. (3.16)

Then for the reconstruction work, we are needed to compute the kernel at the r = 0
with the fixed source position a for the all directions come from a only once, and the kernels
for other r and a′ can be obtained just with a scale. And these kernels are adopted in the
numerical experiments to test our compact FDK kernel reconstruction model.

4. Numerical Experiments

In the experiments, the original FDK kernel reconstruction model and the compact FDK
kernel reconstruction model are employed for comparison. We choose the well-known
Shepp-Logan phantom and the Turbell clock phantom [11] for experiments. Simulation
results with these model are shown in Figures 2, 4, and 5. Table 1 shows the reconstruction
parameters about the CT geometry. The number of the acquisition views we choose is 180.
More works with other numbers of acquisition views are also carried out, and the same
contrast can be getting.

Figure 2 shows the reconstruction results of the midplane of the Shepp-Logan
phantom. Figure 2(a) is the original midplane of the Shepp-Logan phantom. For comparison,
we reconstruct the phantom with the Radon kernel, and the results are shown in Figure 2(b).
Figure 2(c) shows the reconstruction result of the middle plane with the original FDK kernel
model. The image is distinct, but many concentric ring artifacts arise in the image, and the
edge of the phantom is blurred by the ring artifacts.

Reconstruction results with compact FDK kernel model are shown in Figure 2(d)–2(f)
with the radius 80, 40, and 4, respectively. Different radiuses from nontruncation to 4 are
all compared to suppress the ring artifacts. And we present the results with radius 80, 40,
and 4, and the changing of the ring artifacts is obvious. As the ring artifacts are aroused by
the oscillations of the FDK kernel, when the radius gets small, the kernel is truncated to be
compact, the oscillations are removed, and the ring artifacts are eliminated simultaneously.
We can see that with the compact FDK kernel reconstruction model of ρ = 4, in Figure 2(f),
the ring artifacts are suppressed, and the clarity of the image is preserved and not blurred
as the truncation is processed. Especially at the edge of the phantom, as the ring artifacts are
suppressed, the influence of the ring artifacts is eliminated, and the edge is deblurred. The
profiles along the midline of the midplane for the compact FDK kernel reconstruction moedl
with ρ = 4 are shown in Figure 3.

Figure 4 shows the original phantom and the reconstruction results of the plane apart
from the middle plane by 20mm. Similar details can be seen as Figure 2.
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Figure 5 is the results of the Turbell clock phantom. The Turbell clock phantom is a high
contrast phantom with many sharp density variations in the z-direction. Figure 5 shows the
original and reconstruction slice of z = 0. Figure 5(a) is the original Turbell clock. Figure 5(b)
is the reconstruction result with the Radon kernel. Figure 5(c) is the result with the original
FDK kernel model. Results with the compact FDK kernel model where the radius ρ = 80, 40,
and 4 are shown in Figures 5(d), 5(e), and 5(f), respectively.

5. Conclusion

In this paper, a novel CT reconstruction model is proposed based on the approximate inverse
where the kernel of the FDK method is derived and is used to complete the reconstruction.
In order to eliminate the imposed ring artifacts, the kernel is truncated with proper radius.
Reconstruction results show that the compact support FDK kernel reconstruction model can
suppress the ring artifacts. The proposed reconstruction model preserves the simplicity of
the FDK reconstruction method and also provides an alternative to realize the approximate
inverse method for circular trajectory. And when the kernel of an algorithm is modified, the
corresponding reconstruction formula is also modified accordingly. And this gives us another
way to improve the existing reconstruction methods.
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