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Synchronization of fractional-order chaotic dynamical systems is receiving increasing attention
owing to its interesting applications in secure communications of analog and digital signals and
cryptographic systems. In this paper, a drive-response synchronization method is studied for
“phase and antiphase synchronization” of a class of fractional-order chaotic systems via active
control method, using the 3-cell and Volta systems as an example. These examples are used to
illustrate the effectiveness of the synchronization method.

1. Introduction

The theory of fractional calculus is a 300-year-old topic which can trace back to Leibniz,
Riemann, Liouville, Grünwald, and Letnikov [1, 2]. However, the fractional calculus did
not attract much attention for a long time. Nowadays, the past three decades have
witnessed significant progress on fractional calculus, because the applications of fractional
calculus were found in more and more scientific fields, covering mechanics, physics,
engineering, informatics, and materials. Nowadays, it has been found that some fractional-
order differential systems such as the fractional-order jerk model [3], the fractional-order
Rössler system [4], and the fractional-order Arneodo system [5] can demonstrate chaotic
behavior.

Recently, synchronization of fractional-order chaotic systems has started to attract
increasing attention due to its potential applications in secure communication and control
processing [6, 7]. The concept of synchronization can be extended to generalized synchro-
nization [8], complete synchronization [9], lag synchronization [10], phase synchronization,
antiphase synchronization [11], and so on.
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Synchronization of fractional-order chaotic systems was first studied by Deng and Li
[12] who carried out synchronization in case of the fractional Lü system. Further, they have
investigated synchronization of fractional Chen system [13].

In this paper, phase and anti-phase synchronization using is introduced, which is used
to “phase and anti-phase synchronization” for a class of fractional-order chaotic systems
using active control method [14].

The outline of the rest of the paper is organized as follows. First, Section 2 provides
a brief review of the fractional derivative and the numerical algorithm of fractional-order
differential equation. Section 3 is devoted to 3-Cell and Volta systems description. Next, in
Section 4, the definition of phase and anti-phase synchronization is introduced. In Section
5, the proposed method is applied to synchronize two examples of fractional-order chaotic
systems. Finally, Section 6 is the brief conclusion.

2. Fractional Derivative and Numerical Algorithm of
Fractional Differential Equation

There are many definitions of fractional derivatives [15, 16]. Many authors formally use the
Riemann-Liouville fractional derivatives, defined by

Dαx(t) =
dm

dtm
Jm−αx(t), α > 0, (2.1)

wherem = [α], that is,m is the first integer which is not less than α·Jβ is the β-order Riemann-
Liouville integral operator, and Γ(·) is the gamma function which is described as follows:

Jαx(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1f(τ)dτ,

Γ(z) =
∫∞

0
tz−1e−tdt.

(2.2)

In this paper, the following definition is used:

Dα
∗x(t) = Jm−αx(m)(t), α > 0. (2.3)

It is common practice to call operator Dα
∗ the Caputo differential operator of order α

[17].
The numerical calculation of a fractional differential equation is not so simple as that

of an ordinary differential equation. Here, we choose the Caputo version and use a predictor-
corrector algorithm for fractional differential equations [18], which is the generalization of
Adams-Bashforth-Moulton one. When α > 0, the algorithm is universal. The following is
a brief introduction of the algorithm. The differential equation

Dα
∗x(t) = f(t, x(t)), 0 ≤ t ≤ T,

x(k)(0) = x
(k)
0 , k = 0, 1, . . . , m − 1.

(2.4)



Mathematical Problems in Engineering 3

1

0.5

0

−0.5

−1
1

10.5
0.50 0−0.5

−1−1 −0.5

z
(t
)

y(t)
x(t)

Figure 1: Chaotic attractor of 3-cell CNN’s system (3.1).

is equivalent to the Volterra integral equation

x(t) =
[a]−1∑
k−0

tk

k!
x
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f(τ, x(τ))dτ. (2.5)

3. Systems Description

Chua and Yang introduced the cellular neural network (CNN) in 1988 as a nonlinear
dynamical system composed by an array of elementary and locally interacting nonlinear
subsystems, so called cells [19].

Arena et al. introduced a new class of the CNN with fractional- (noninteger-) order
cells [20].

Hartley et al. introduced a fractional-order Chua’s system [21]. From this considera-
tion, the idea of developing a fractional-order CNN arose. This system is described as follows:

Dαx(t) = −x(t) + p1f(x(t)) − sf
(
y(t)

) − sf(z(t)),

Dαy(t) = −y(t) − sf(x(t)) + p2f
(
y(t)

) − rf(z(t)),

Dαz(t) = −z(t) − sf(x(t)) + rf
(
y(t)

)
+ p3f(z(t)),

(3.1)

where f(x) = 0.5(|x + 1| − |x − 1|). In Figure 1 is shown the chaotic behavior for fractional-
order chaotic system (3.1), where system parameters are p1 = 1.24, s = 3.21, p2 = 1.1, r = 4.4,
and p3 = 1, commensurate order of the derivatives is α = 0.99, and the initial conditions are
x(0) = 0.1, y(0) = 0.1, and z(0) = 0.1 for the simulation time Tsim = 100 s and time step
h = 0.005.

Petráš [22, 23] has pointed out that system (3.2) shows chaotic behavior for suitable a,
b, and c. Fractional-order Volta system can be written in the form of (3.2) as

Dαx(t) = −x(t) − ay(t) − z(t)y(t),

Dαy(t) = −y(t) − bx(t) − x(t)z(t),

Dαz(t) = cz(t) + x(t)y(t) + 1.

(3.2)
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Figure 2: Chaotic attractor of Volta’s system (3.2).

In Figure 2 is shown the chaotic behavior for fractional-order chaotic system (3.2),
where system parameters are a = 19, b = 11, and c = 0.73, commensurate order of the
derivatives is α = 0.99, and the initial conditions are x(0) = 8, y(0) = 2, and z(0) = 1 for
the simulation time Tsim = 20 s and time step h = 0.0005.

4. Phase Synchronization

In this section, we study the phase synchronization between the two fractional-order 3-cell
CNN and Volta systems by means of active control.

Consider 3-cell CNN system as the drive system

Dαx1(t) = −x1(t) + p1f(x1(t)) − sf
(
y1(t)

) − sf(z1(t)),

Dαy1(t) = −y1(t) − sf(x1(t)) + p2f
(
y1(t)

) − rf(z1(t)),

Dαz1(t) = −z1(t) − sf(x1(t)) + rf
(
y1(t)

)
+ p3f(z1(t)).

(4.1)

and Volta system as the response system

Dαx2(t) = −x2(t) − ay2(t) − z2(t)y2(t) + u1(t),

Dαy2(t) = −y2(t) − bx2(t) − x2(t)z2(t) + u2(t),

Dαz2(t) = cz2(t) + x2(t)y2(t) + 1 + u3(t).

(4.2)

Define the error functions as e1 = x2 − x1, e2 = y2 − y1, and e3 = z2 − z1. For phase
synchronization, it is essential that the errors ei tend to a zero as t → ∞. In order to determine
the control functions ui, we subtract (4.1) from (4.2) and obtain

Dαe1(t) = −e1 − ae2 − ay1 − e3e2 − z1e2 − e3y1 − z1y1 − p1f(x1) + sf
(
y1
)
+ sf(z1) + u1(t),

Dαe2(t) = −e2 − be1 − bx1 − e1z1 − x1z1 − e1e3 − x1e3 + sf(x1) − p2f
(
y1
)
+ rf(z1) + u2(t),

Dαe3(t) = 1 + ce3 + cz1 + e1e2 + x1e2 + e1y1 + x1y1 + z1 + sf(x1) − rf
(
y1
) − p3f(z1)+u3(t).

(4.3)
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Choosing the control functions

u1(t) = ay1 + e3e2 + z1e2 + e3y1 + z1y1 + p1f(x1) − sf
(
y1
) − sf(z1) + V1(t),

u2(t) = bx1 + e1z1 + x1z1 + e1e3 + x1e3 − sf(x1) + p2f
(
y1
) − rf(z1) + V2(t),

u3(t) = −cz1 − e1e2 − x1e2 + e1y1 − x1y1 − z1 − sf(x1) + rf
(
y1
)
+ p3f(z1)+V 3(t).

(4.4)

Equation (4.3) leads to

Dαe1(t) = −e1 − ae2 + V1(t),

Dαe2(t) = −e2 − be1 + V2(t),

Dαe3(t) = 1 − ce3 + V3(t).

(4.5)

The linear functions V1, V2, and V3 are given by

V1(t) = e1 + ae2 + λ1e1,

V2(t) = e2 + be1 + λ2e2,

V3(t) = −1 + ce3 + λ3e3,

(4.6)

where λ1, λ2, and λ3 are the eigenvalues of the linear system (4.5).

4.1. Simulation Results

Parameters of 3-cell CNN and Volta systems are p1 = 1.24, s = 3.21, p2 = 1.1, r = 4.4, and
p3 = 1 and a = 19, b = 11, and c = 0.73, respectively. The initial conditions for drive and
response systems are x1(0) = 0.1, y1(0) = 0.1, and z1(0) = 0.1 and x2(0) = 8, y2(0) = 2, and
z2(0) = 1, respectively. By choosing (λ1, λ2, λ3) = (−1, −1, −1), the control functions can be
determined, and phase synchronization between signals (x1, x2), (y1, y2), and (z1, z2) will
be achieved, respectively. Numerical results are illustrated in Figures 3(a)–3(c) for fractional-
order α = 0.99. The curves of synchronization errors are shown in Figure 4, and the phase
diagrams of (4.1) and (4.2) are plotted together in Figure 5.

5. Antiphase Synchronization

In this section, we study the anti-phase synchronization between the two fractional-order
3-cell CNN and Volta systems by means of active control.

Consider 3-cell CNN system as the drive system

Dαx1(t) = −x1(t) + p1f(x1(t)) − sf
(
y1(t)

) − sf(z1(t)),

Dαy1(t) = −y1(t) − sf(x1(t)) + p2f
(
y1(t)

) − rf(z1(t)),

Dαz1(t) = −z1(t) − sf(x1(t)) + rf
(
y1(t)

)
+ p3f(z1(t)).

(5.1)
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Figure 3: Phase synchronization with fractional-order α = 0.99 for signals (x1, x2) in (a), (y1, y2) in (b), and
(z1, z2) in (c).

and Volta system as the response system

Dαx2(t) = −x2(t) − ay2(t) − z2(t)y2(t) + u1(t),

Dαy2(t) = −y2(t) − bx2(t) − x2(t)z2(t) + u2(t),

Dαz2(t) = cz2(t) + x2(t)y2(t) + 1 + u3(t).

(5.2)
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Figure 4: Synchronization errors of drive system (4.1) and response system (4.2).
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Figure 5: The attractors of drive system (4.1) and response system (4.2).

Define the error functions as e1 = x2 + x1, e2 = y2 + y1, and e3 = z2 + z1. For phase
synchronization, it is essential that the errors ei tend to a zero as t → ∞. In order to determine
the control functions ui, we subtract (5.1) from (5.2) and obtain

Dαe1(t) = −e1−ae2−ay1−e3e2 − z1e2 − e3y1 − z1y1 − 2x1 + p1f(x1) − sf
(
y1
) − sf(z1) + u1(t),

Dαe2(t) = −e2−be1−bx1−e1z1 − x1z1 − e1e3 − x1e3 − 2y1 − sf(x1) + p2f
(
y1
) − rf(z1) + u2(t),

Dαe3(t) =1 + ce3 +cz1 + e1e2 + x1e2 + e1y1 + x1y1 − z1 − sf(x1) + rf
(
y1
)
+ p3f(z1) + u3(t).

(5.3)

Choosing the control functions

u1(t) = ay1 + e3e2 + z1e2 + e3y1 + z1y1 + 2x1 − p1f(x1) + sf
(
y1
)
+ sf(z1) + V1(t),

u2(t) = bx1 + e1z1 + x1z1 + e1e3 + x1e3 + 2y1 + sf(x1) − p2f
(
y1
)
+ rf(z1) + V2(t),

u3(t) = −e1e2 − x1e2 − e1y1 − x1y1 − cz1 + z1 + sf(x1) − rf
(
y1
) − p3f(z1)+V 3(t).

(5.4)
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Figure 6: Antiphase synchronization with fractional-order α = 0.99 for signals (x1, x2) in (a), (y1, y2) in
(b), and (z1, z2) in (c).

Equation(5.3) leads to

Dαe1(t) = −e1 − ae2 + V1(t),

Dαe2(t) = −e2 − be1 + V2(t),

Dαe3(t) = 1 + ce3+V 3(t).

(5.5)

The linear functions V1, V2, and V3 are given by

V1(t) = e1 + ae2 + λ1e1,

V2(t) = e2 + be1 + λ2e2,

V3(t) = −1 − ce3 + λ3e3,

(5.6)

where λ1, λ2, and λ3 are the eigenvalues of the linear system (5.5).
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5.1. Simulation Results

Parameters of 3-cell CNN and Volta systems are p1 = 1.24, s = 3.21, p2 = 1.1, r = 4.4, and
p3 = 1 and a = 19, b = 11, and c = 0.73, respectively. The initial conditions for drive and
response systems are x1(0) = 0.1, y1(0) = 0.1, and z1(0) = 0.1, and x2(0) = 8, y2(0) = 2, and
z2(0) = 1, respectively. By choosing (y1, y2, y3) = (−1, −1, −1), the control functions can be
determined and phase synchronization between signals (x1, x2), (y1, y2), and (z1, z2) will be
achieved, respectively. Numerical results are illustrated in Figures 6(a)–6(c) for fractional-
order α = 0.99. The curves of synchronization errors are shown in Figure 7, and the phase
diagrams of (5.1) and (5.2) are plotted together in Figure 8.

6. Conclusion

This paper investigated the phase and anti-phase synchronization for the fractional-
order chaotic systems. Based on the stability criterion of the fractional-order system and
tracking control, a synchronization approach is proposed. Finally, the phase and anti-phase
synchronization between the fractional-order 3-cell CNN system and fractional-order Volta
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system are used to demonstrate the effectiveness of phase and anti-phase synchronization
schemes.
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