
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 132597, 16 pages
doi:10.1155/2012/132597

Research Article
Stabilization of Time-Varying System by
Controllers with Internal Loop

Yufeng Lu and Chengkai Shi

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Correspondence should be addressed to Chengkai Shi, shichengkai2001@163.com

Received 18 April 2012; Accepted 10 May 2012

Academic Editor: Zidong Wang

Copyright q 2012 Y. Lu and C. Shi. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study the concept of stabilization with internal loop for infinite-dimensional discrete time-
varying systems in the framework of nest algebra. We originally give a parametrization of all
stabilizing controllers with internal loop, and it covers the parametrization of canonical or dual
canonical controllers with internal loop obtained before. We show that, in practical application,
the controller with internal loop overcomes the awkwardness brought by the extra invertibility
condition in the parametrization of the conventional controllers. We also prove that the strong
stabilization problem can be completely solved in the closed-loop system with internal loop. Thus
the advantage of the controller with internal loop is addressed in the framework of nest algebra.

1. Introduction

The closed-loop system whose stability is achieved by the controller with internal loop
has attracted the attention of many authors in recent years (see [1–5]). This system was
originally introduced by Weiss and Curtain in 1997 in [1]. When they extended the theory of
dynamic stabilization to regular linear systems (a subclass of the well-posed linear systems),
it was shown in Example 6.5 of [1] that even the standard observer-based controller is not
a well-posed linear system as needed, correspondingly, its transfer function is not well-
posed. To overcome this difficulty, a new type of controller, the so-called stabilizing controller
with internal loop, was introduced. This controller is more general and useful than the
standard feedback controller. Until now, only a special class of stabilizing controllers with
internal loop called canonical controllers is widely investigated. In [1], a procedure was
developed to design the canonical controllers for stabilizable and detectable plants. In [6],
the parametrization for all canonical controllers is given which is clean and avoids the extra
invertibility condition in the parametrization for the controller in the standard feedback
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system. In [7], the author extended the theory to non-well posed systems, and the robust
stabilization problem is considered by using the canonical controller.

In recent years, the study of time-varying systems using modern mathematical meth-
ods has come into its own. This was a scientific necessity. After all, many common physical
systems are time varying. In [8], A. Feintuch specifically introduced a framework of nest
algebra and the control theory for linear time-varying systemswas studied in this framework.
Meanwhile, many stabilization problems for various nonlinear time-varying systems were
widely considered as well (see [9–16]). Based on these cases, we are motivated to consider
the new model of closed-loop feedback system with internal loop for time-varying systems.

In this paper, we study the concept of stabilization with internal loop for the linear
time-varying system under the framework of nest algebra. We extend our study of controllers
with internal loop to more general cases and originally give a parametrization of all sta-
bilizing controllers with internal loop. It is found that the parametrization of the canonical
controller obtained in [6] can be viewed as a special case of the parametrization obtained
here. As we know, the parametrization of the conventional controller is not clean, and there is
always an extra invertibility condition on the parameter. This in turnmakes it awkward to use
this parametrization to solve the practical problems. While the controller with internal loop
overcomes this awkwardness. We take the sensitivity minimization problem as an example to
show this advantage of the controller with internal loop. The strong stabilization problem is
known as the design of a stable controller which stabilizes the given plant. In the framework
of nest algebra, it is still an open problem and only a necessary condition is addressed in
[17] for this problem. We prove that any stabilizable plant can be strongly stabilized by
the controller with internal loop. This means that the strong stabilization problem can be
completely solved in the system with internal loop. We also give a simple example to show
how to design the strongly stabilizing controller with internal loop.

This paper is organized as follows. In Section 2, we recall some basic concepts of the
linear systems in the framework of nest algebra. In Section 3, we introduce the closed-loop
system whose stability is achieved by the controller with internal loop and firstly give a
parametrization for all stabilizing controllers with internal loop. In Section 4, we focus on the
canonical controller and show the benefit of the controller with internal loop in the practical
application. In Section 5, we define the strongly stabilizing controller with internal loop and
address an advantage of the controller with internal loop in the framework of nest algebra.

2. Preliminaries

Let H be the complex infinite dimensional Hilbert sequence space:

�2 =

{
(x0, x1, x2, . . .) : xi ∈ C,

∞∑
i=0

|xi|2 < ∞
}
, (2.1)

where | · | denotes the standard Euclidean norm on C with inner product (x, y) =
∑∞

i=0 xiyi.
He will denote the extended space:

He = {(x0, x1, x2, . . .) : xi ∈ C}. (2.2)
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Figure 1: Standard feedback configuration.

For each n ≥ 0, let Pn denote the standard truncation projection defined on H and He by

Pn(x0, x1, . . . , xn, xn+1, . . .) = (x0, x1, . . . , xn, 0, 0, . . .). (2.3)

A continuous linear transformation T on He with the standard seminorm topology ([8,
Chapter 5]) is a causal linear system (or a linear system) if for each n ≥ 0, PnT = PnTPn.
Let L be the set of all linear systems on He. Then any element of L is a lower triangular
matrix (with respect to the standard basis, see [8, Chapter 5]).

A linear system T is stable if its restriction toH is a bounded operator ([8, Chapter 5]).
We denote the set of stable systems by S, then S is a weakly closed algebra containing the
identity, referred to in the operator algebra literature as a nest algebra ([8, Chapter 5]).

For P,C ∈ L, we consider the standard feedback configuration with plant P and
controller C shown in Figure 1.

u1, u2 denote the externally applied inputs; e1, e2 denote the inputs to the plant and
compensator, respectively, and y1, y2 denote the outputs of the plant and compensator, re-
spectively. The closed loop system equations are

[
u1

u2

]
=
[
I C
−P I

][
e1
e2

]
. (2.4)

The system is well posed if the internal input e = [ e1
e2 ] can be expressed as a causal function

of the external input u = [ u1
u2 ]. This is equivalent to requiring that

[
I C
−P I

]
be invertible. This

inverse can be easily computed and is given by the transfer matrix

H(P,C) =

[
(I + CP)−1 −C(I + PC)−1

P(I + CP)−1 (I + PC)−1

]
. (2.5)

Definition 2.1 (see [8]). The closed loop system {P,C} is stable if all the entries ofH(P,C) are
stable systems on H. The plant P is stabilizable if there exists a causal linear system C such
that {P,C} is stable.

Recall that the graph of a linear transformation P with domain D(P) = {x ∈ H :
Px ∈ H} is G(P) = {[ x

Px ] : x ∈ D(P)}. Then we can give the definitions of strong right
representation and strong left representation.
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Definition 2.2 (see [8]). A plant P has a strong right representation
[
M
N

]
withM andN stable

if
(1) G(P) = Ran

[
M
N

]
,

(2) there exist X,Y ∈ S such that [YX]
[
M
N

]
= I.

A plant P has a strong left representation [−N̂M̂] with M̂ and N̂ stable if
(1) G(P) = Ker[−N̂M̂],
(2) there exist X̂, Ŷ ∈ S such that [−N̂M̂]

[
−X̂
Ŷ

]
= I.

The following result on strong right representation is proved in [8].

Theorem 2.3 (see [8]). Suppose M,N ∈ S. Then [M
N

]
is a strong right representation of P ∈ L if

and only if
(1) there exist X,Y ∈ S such that [YX]

[
M
N

]
= I,

(2)M is invertible in L.

We say that a plant P has a right coprime factorization if there exist M, N, X, Y ∈ S
such that P = NM−1 and YM + XN = I. The proof of Theorem 2.1 in [8] implies that

[
M
N

]
is a strong right representation of P if and only if NM−1 is a right coprime factorization of
P . Similarly, [−N̂M̂] is a strong left representation of P if and only if M̂−1N̂ is a left coprime
factorization of P .

The following theorem is the classical Youla Parametrization Theorem.

Theorem 2.4 (see [8]). A causal linear system P ∈ L is stabilizable if and only if P has a strong
right and a strong left representation. If this is the case, the representations can be chosen so that one
has the double Bezout identity

[
Y X

−N̂ M̂

][
M −X̂
N Ŷ

]
=

[
M −X̂
N Ŷ

][
Y X

−N̂ M̂

]
=
[
I 0
0 I

]
. (2.6)

A causal linear system C stabilizes P if and only if it has a strong right representation
[
Ŷ−NQ

X̂+MQ

]
and a

strong left representation [−(X +QM̂)Y −QN̂] for some Q ∈ S.

3. Controllers with Internal Loop

In this section, we investigate the stabilization of the time-varying system by controllers with
internal loop in the framework of nest algebra. This system is illustrated in Figure 2.

The intuitively interpretation of Figure 2: P ∈ L is the plant and KI is a transfer map
from [ e2

e3 ] to
[ y2
y3

]
when all the connections are open. Then the connection from y3 to e3 is

called internal loop. The closed loop system determined by the plant P and the controller KI

with internal loop is denoted by {P,KI}.
Partitioning KI into

[
C11 C12

C21 C22

]
, (3.1)
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Figure 2: The plant P connected to a controller KI with internal loop.

where Cij ∈ L, i, j = 1, 2, the closed loop system equations are

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣ I C11 C12

−P I 0
0 −C21 I − C22

⎤
⎦
⎡
⎣e1e2
e3

⎤
⎦. (3.2)

We say that the system is well posed if
[

I C11 C12
−P I 0
0 −C21 I−C22

]
is invertible and We denote this

inverse by H(P,KI).

Definition 3.1. The closed loop system {P,KI} determined by the plant P ∈ L and the
controller with internal loop KI is stable if all the entries of H(P,KI) are stable. The plant
P is stabilizable by a controller with internal loop if there exists a KI such that H(P,KI) is
stable. In this case, KI is called a stabilizing controller with internal loop for P .

In the previous papers, the study of stabilizing controller with internal loop is mainly
focused on the case that P and KI are both well-posed transfer functions (bounded and
analytic on some right half plane). And in all applications, the controller KI is assumed to
be stable and satisfy two conditions proposed in [1] (refer to Proposition 4.8 in [1]). While,
in the framework of nest algebra, we extend the study to the more general case that Cij ∈ L,
i, j = 1, 2 and KI need not to satisfy the two conditions proposed in [1].

Suppose I − C22 is invertible in L, then we have that

H(P,KI) =

⎡
⎢⎣ (I + CP)−1 −C(I + PC)−1 T13
P(I + CP)−1 (I + PC)−1 T23

T31 T32 T33

⎤
⎥⎦, (3.3)

where

C = C11 + C12(I − C22)−1C21,

T13 = − (I + CP)−1C12(I − C22)−1,

T23 = − P(I + CP)−1C12(I − C22)−1,
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T31 = (I − C22)−1C21P(I + CP)−1,

T32 = (I − C22)−1C21(I + PC)−1,

T33 =
(
I − (I − C22)−1C21P(I + CP)−1C12

)
(I − C22)−1.

(3.4)

Remark 3.2. Notice that the upper left 2 × 2 corner of the above transfer matrix H(P,KI) is
just the transfer matrix H(P,C) of the standard feedback system with the plant P and the
controller C = C11 + C12(I − C22)

−1C21. This implies that the closed-loop system stabilized
by controllers with internal loop is more general than the standard feedback system and its
transfer matrix provides more information.

Now we can give a parametrization of all stabilizing controllers with internal loop
with I − C22 invertible in L.

Theorem 3.3. Suppose P ∈ L and there exist M, N, X, Y , M̂, N̂, X̂, Ŷ ∈ S such that
[
M
N

]
and

[−N̂M̂] are, respectively, strong right and left representation for P that satisfy the double Bezout
identity

[
Y X

−N̂ M̂

][
M −X̂
N Ŷ

]
=

[
M −X̂
N Ŷ

][
Y X

−N̂ M̂

]
=
[
I 0
0 I

]
. (3.5)

Then all stabilizing controllers with internal loop KI =
[
C11 C12
C21 C22

]
are parameterized by

C11 =
(
X̂ +MQ

)(
Ŷ −NQ

)−1

−
(
Y −QN̂

)−1
R1

(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
R2

(
Ŷ −NQ

)−1
,

C12 =
(
Y −QN̂

)−1
R1

(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
,

C21 =
(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
R2

(
Ŷ −NQ

)−1
,

C22 = I −
(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
,

(3.6)

for some Q,R1, R2, R3 ∈ S.

In order to prove this theorem clearly, we need the following result which is an
improvement of Theorem 2.4. It is interesting that while the two representations for the
controller in Theorem 2.4 are independent, the same Q will in fact work for both.

Theorem 3.4. Suppose P satisfies the assumption in Theorem 2.4. Then the stabilizing controller C
for P has the form C = (Y −QN̂)−1(X +QM̂) = (X̂ +MQ)(Ŷ −NQ)−1 for some Q ∈ S.
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Proof. Suppose C stabilizes P . By Theorem 2.4, we have that C has a right coprime factoriza-
tion C = (X̂ +MQ)(Ŷ −NQ)−1 for some Q ∈ S. It is easy to check that

[
−
(
X +QM̂

)
Y −QN̂

M̂ N̂

][
−N Ŷ −NQ

M X̂ +MQ

]
=

[
−N Ŷ −NQ
M X̂ +MQ

][
−
(
X +QM̂

)
Y −QN̂

M̂ N̂

]

=
[
I 0
0 I

]
.

(3.7)

Thus,

[
−
(
X +QM̂

)
Y −QN̂

][ Ŷ −NQ

X̂ +MQ

]
= 0. (3.8)

This implies that

G(C) = Ran

[
Ŷ −NQ

X̂ +MQ

]
⊆ Ker

[
−
(
X +QM̂

)
Y −QN̂

]
. (3.9)

On the other hand, for any
[ x
y
] ∈ Ker[−(X +QM̂) Y −QN̂], we have

[
x
y

]
=

[
−N Ŷ −NQ

M X̂ +MQ

][
−
(
X +QM̂

)
Y −QN̂

M̂ N̂

][
x
y

]

=

([−N
M

][
−
(
X +QM̂

)
Y −QN̂

]
+

[
Ŷ −NQ

X̂ +MQ

][
M̂ N̂

])[x
y

]

=

[
Ŷ −NQ

X̂ +MQ

][
M̂ N̂

][x
y

]
∈ G(C),

(3.10)

that is,

Ker
[
−
(
X +QM̂

)
Y −QN̂

]
⊆ G(C). (3.11)

Thus,

G(C) = Ker
[
−
(
X +QM̂

)
Y −QN̂

]
. (3.12)

Since

[
−
(
X +QM̂

)
Y −QN̂

][−N
M

]
= I, (3.13)
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we obtain that [−(X + QM̂) Y − QN̂] is a strong left representation of C and C = (Y −
QN̂)−1(X +QM̂). This completes the proof.

Now we can give the proof of Theorem 3.3.

Proof of Theorem 3.3. Suppose {P,KI} is stable, then every entry of the matrix

[
(I + CP)−1 −C(I + PC)−1

P(I + CP)−1 (I + PC)−1

]
(3.14)

is in S and T13, T23, T31, T32, T33 ∈ S. Note that (3.14) is just the transfer matrixH(P,C) for the
standard feedback system. By Theorem 3.4, we see that C has the following representation:

C =
(
Y −QN̂

)−1(
X +QM̂

)
=
(
X̂ +MQ

)(
Ŷ −NQ

)−1
, (3.15)

for some Q ∈ S. In this case,

T13 = − (I + CP)−1C12(I − C22)−1

= −M
(
Y −QN̂

)
C12(I − C22)−1 ∈ S,

T23 = − P(I + CP)−1C12(I − C22)−1

= −N
(
Y −QN̂

)
C12(I − C22)−1 ∈ S,

(3.16)

if and only if

(
Y −QN̂

)
C12(I − C22)−1 ∈ S. (3.17)

It follows that

C12(I − C22)−1 =
(
Y −QN̂

)−1
R1 (3.18)

for some R1 ∈ S.
In the same way, we obtain that

(I − C22)−1C21 = R2

(
Ŷ −NQ

)−1
, (3.19)

for some R2 ∈ S. So we get

C12 =
(
Y −QN̂

)−1
R1(I − C22),

C21 = (I − C22)R2

(
Ŷ −NQ

)−1
.

(3.20)



Mathematical Problems in Engineering 9

Since

T33 =
(
I − (I − C22)−1C21P(I + CP)−1C12

)
(I − C22)−1

= (I − C22)−1 − R2

(
Ŷ −NQ

)−1
N
(
Y −QN̂

)(
Y −QN̂

)−1
R1

= (I − C22)−1 − R2

(
Ŷ −NQ

)−1
NR1 ∈ S,

(3.21)

we have

(I − C22)−1 = R3 + R2

(
Ŷ −NQ

)−1
NR1, (3.22)

for some R3 ∈ S. Thus,

C22 = I −
(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
. (3.23)

Then we can obtain the following representations for C12 and C21:

C12 =
(
Y −QN̂

)−1
R1

(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
,

C21 =
(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
R2

(
Ŷ −NQ

)−1
.

(3.24)

Substituting the representations of C, C12, C21, and C22 into C11 = C − C12(I − C22)
−1C21, we

obtain

C11 =
(
X̂ +MQ

)(
Ŷ −NQ

)−1 − (Y −QN̂
)−1

× R1

(
R3 + R2

(
Ŷ −NQ

)−1
NR1

)−1
R2

(
Ŷ −NQ

)−1
.

(3.25)

This completes the proof.

It was said in [1] that the controller with internal loop was particularly well suited for
tracking, and a physical interpretation was given for the system with internal loop. In [6], the
author described a seemingly impossible problem, the “intriguing control problem”, which
can be easily solved by the system with internal loop. In the next two sections, we will show
the other great advantages of the controller with internal loop.
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4. Canonical Controllers and Dual Canonical Controllers

In this section, we focus on two special classes of controllers with internal loop called canon-
ical controllers and dual canonical controllers, respectively. Here below it is given their
definitions in the framework of nest algebra.

Definition 4.1. A controller with internal loop is called the canonical controller for the plant
P if it is of the form KI =

[ 0 I
C21 C22

]
with C21,C22 ∈ S. Analogously, a controller with internal

loop is called a dual canonical controller for the plant P if it is of the form
[
0 C12
I C22

]
with C12,

C22 ∈ S.
For canonical controllers, we have the following results.

Theorem 4.2. The canonical controllerKI =
[ 0 I
C21 C22

]
stabilizes P ∈ L with internal loop if and only

if Δ = I − C22 + C21P is invertible in L and Δ−1, PΔ−1 ∈ S.
If P has a strong right representation

[
M
N

]
, then the canonical controllerKI stabilizes P if and

only if D = M − C22M + C21N is invertible in S.

Proof. According to the system equations in (3.2), we have that, for the canonical controllers
KI =

[ 0 I
C21 C22

]
, the transfer matrix H(P,KI) can be given by

H(P,KI) =

⎡
⎣ I −Δ−1C21P −Δ−1C21 −Δ−1

P
(
I −Δ−1C21P

)
I − PΔ−1C21 −PΔ−1

Δ−1C21P Δ−1C21 Δ−1

⎤
⎦. (4.1)

Thus,H(P,KI) ∈ M3(S) if and only if Δ−1, PΔ−1, Δ−1C21P , and P(I −Δ−1C21P) are all
in S. SinceΔ−1C21P = Δ−1(Δ+C21P)−I = Δ−1(I−C22)−I and P(I−Δ−1C21P) = PΔ−1(I−C22).
We have that all the entries of H(P,KI) are in S if and only if Δ−1 and PΔ−1 are in S. Thus
the first statement is proved.

Let us prove the second assertion in the theorem. If P = NM−1 and D−1 ∈ S, we have
that Δ−1 = M(M − C22M + C21N)−1 = MD−1 ∈ S and PΔ−1 = ND−1 ∈ S. By using the first
result, we have that KI =

[ 0 I
C21 C22

]
stabilizes P . Conversely, if KI =

[ 0 I
C21 C22

]
stabilizes P . By

the first result, we have that Δ−1, PΔ−1 are both in S. Suppose that M, N, X, and Y are as in
Definition 2.2, then

YΔ−1 +XPΔ−1 = (YM +XN)(M − C22M + C21N) = D−1. (4.2)

Since X and Y are in S, we see that D−1 ∈ S. This completes the proof.

There is a similar result for the dual canonical controller.

Theorem 4.3. The dual canonical controller KI =
[
0 C12
I C22

]
stabilizes P ∈ L with internal loop if and

only if Δ̂ = I − C22 + PC12 is invertible in L and Δ̂−1, Δ̂−1P ∈ S.
If P has a strong left representation [−N̂ M̂], then the dual canonical controllerKI stabilizes

P if and only if D̂ = M̂ − M̂C22 + N̂C12 is invertible in S.

In [6], the parametrization of all canonical controllers and dual canonical controllers
is given and it can be easily extended to our framework.
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Theorem 4.4. Suppose P ∈ L satisfies the assumption of Theorem 3.3. Then all canonical controllers
that stabilize P are parameterized by

[
0 I

E
(
X +QM̂

)
I − E

(
Y −QN̂

)], (4.3)

where Q ∈ S and E is invertible in S.
Analogously, all dual canonical controllers that stabilize P are parameterized by

⎡
⎣0

(
X̂ +MQ

)
R

I I −
(
Ŷ −NQ

)
R

⎤
⎦, (4.4)

where Q ∈ S and R is invertible in S.

Remark 4.5. Indeed, if we choose the parameters in Theorem 3.3 such that R1 = E−1, R2 =
X̂ +MQ, and R3 = ME−1, we can obtain the same result of the above theorem. This implies
that the result derived in [6] can be regarded as a special case of Theorem 3.3.

The following theorem gives a strong relation between the stabilization with canonical
controller and the usual concept of stabilization.

Theorem 4.6. Suppose I − C22 is invertible in L, then P can be stabilized by a canonical controller
with internal loop if and only if P is stabilizable in the framework of standard feedback system.

Proof . Suppose P is stabilized by a canonical controllerKI =
[
0 C12
I C22

]
with I −C22 invertible in

L. Then all entries ofH(P,KI) in (4.1) are in S. By computation, we can easily obtain that the
upper left 2×2 corner of the transfer matrixH(P,KI) is just the transfer matrixH(P,C) in the
standard feedback system with the plant P and the controller C = (I − C22)

−1C21. It follows
that P is stabilizable in the standard feedback system.

On the other hand, suppose P is stabilizable in the standard feedback system. Then,
from Theorem 2.4, all the stabilizing controllers can be given by C = (Y − QN̂)−1(X + QM̂)
with some Q ∈ S. Let C21 = X + QM̂, C22 = Y − QN̂, then we obtain a canonical controller
KI =

[
0 I

X+QM̂ Y−QN̂

]
and it is easy to verify that KI stabilizes P .

Naturally, there exists a dual result for the dual canonical controller.
Now we can explain the advantage of the controller with internal loop in the practical

application.
Recall the parametrization of the conventional controllers in Theorem 2.4, it is not

clean and an extra invertibility condition is imposed on the Youla parameter. This in turn
makes it awkward to use this parametrization to solve the practical problems. For example,
in [8, Section 7], the sensitivity minimization problem for the system described in Figure 3 is
studied. The weighted sensitivity operator for this system is defined by SW = (I + PC)−1W
and the weighted sensitivity minimization problem is to find

inf{‖SW‖ : C stabilizes P}. (4.5)
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Figure 3: Standard feedback system with outside disturbance d and W invertible.

Suppose P ∈ L satisfy the condition in Theorem 2.4, then all stabilizing controllers can
be given by C = (X̂ +MQ)(Ŷ −NQ)−1 with Q ∈ S and Ŷ −NQ is invertible in L. By simple
computation, we can obtain that the weighted sensitivity minimization problem is to find

inf
{∥∥∥ŶM̂W −NQM̂W

∥∥∥ : Q ∈ S, Ŷ −NQ is invertible in L
}
. (4.6)

Obviously, the extra condition that Ŷ − NQ is invertible in L makes the practical control
engineers difficult to continue their computations. So they have to choose to ignore the fact
that the Youla parameter can not be taken for all the elements in S.

Fortunately, the controller with internal loop overcomes this awkwardness. Let us
consider the sensitivity minimization problem for the system with internal loop as described
in Figure 4. We consider this problem for the dual canonical controller KI =

[
0 C12
I C22

]
with C12,

C22 ∈ S. When u1 = u2 = u3 = 0, it is easy to check that the weighted sensitivity operator for
this system is

SW =
[
I − PC12(I − C22 + PC12)−1

]
W, (4.7)

and the weighted sensitivity minimization problem is to find

inf
{
‖SW‖ : KI =

[
0 C12

I C22

]
stabilizes P

}
. (4.8)

By using the parametrization of the dual canonical controller given in Theorem 4.4, the
weighted sensitivity minimization problem is to find

inf
{∥∥∥ŶM̂W −NQM̂W

∥∥∥ : Q ∈ S
}
. (4.9)

Obviously, it avoids the extra invertibility condition for the parameter Q as it appears in
the standard feedback system. This overcomes the difficulty arisen in the standard feedback
system.
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Figure 4: System with internal loop with outside disturbance d and W invertible.

5. Strong Stabilization with Internal Loop

Practicing control engineers is reluctant to use unstable compensators for the purpose of
stabilization. This motivated considering the strong stabilization problemwhether among the
stabilizing controllers for a given stabilizable plant P , there exist stable ones. If there exists
such a controller, P is said to be strongly stabilizable and the stable controller is called the
strongly stabilizing controller. In this section, we consider the strong stabilization problem for
the system with internal loop and address another advantage of the controller with internal
loop.

Definition 5.1. P ∈ L is said to be strongly stabilizable with internal loop if it can be stabilized
by the controllerKI =

[
C11 C12
C21 C22

]
with Cij ∈ S, i, j = 1, 2. This controllerKI is called the strongly

stabilizing controller with internal loop.
Obviously, the canonical controller and dual canonical controller are both the strongly

stabilizing controller with internal loop. From the parametrization of controllers with internal
loop given in Theorem 3.3, we see that the strongly stabilizing controller with internal loop
can be characterize by choosing the parameters Q, R1, R2, and R3 in Theorem 3.3 such that
Ŷ − NQ and R3 + R2(Ŷ − NQ)−1NR1 are invertible in S. The following theorem shows the
existence of the strongly stabilizing controller with internal loop.

Theorem 5.2. Suppose P ∈ L is stabilizable, then P can be strongly stabilized by the controller with
internal loop.

Proof. Suppose P is stabilizable. From Theorem 2.4, the controller stabilizes P has the
parametrization that C = (Y − QN̂)−1(X + QM̂) for some stable Q. Set C11 = 0, C12 = I,
C21 = (X + QM̂) and C22 = I − (Y − QN̂), then KI =

[
0 I

X+QM̂ I−(Y−QN̂)

]
is a stable controller

with internal loop and it strongly stabilizes the plant P .

Remark 5.3. In [17], it is proved that a given plant P with left coprime factorization P = M̂−1N̂
can be strongly stabilized in the standard feedback system if N̂ is compact. While in the
case where N̂ is not compact, it is still an open problem whether or not there exists a stable
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controller that stabilizes the plant. Theorem 5.2 shows that any stabilizable plant can be
stabilized by a stable controller with internal loop. It implies that the strong stabilization
problem can be completely solved by the controller with internal loop. And this addresses an
advantage of the controller with internal loop in the framework of nest algebra.

From the proof of Theorem 5.2, we see that it also provides a method to design the
strongly stabilizing controller with internal loop. We end our paper with a simple example to
show this design method.

Example 5.4. Suppose P = I, it is obviously stabilizable. Take

N = N̂ = M = M̂ = I,

Y = Ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0
1
2

0 0
1
3

0 0 0
1
4

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X = X̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
1
2

0 0
2
3

0 0 0
3
4

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.1)

From Theorem 2.4, we obtain the parametrization of the stabilizing controller C = (Y −
QN̂)−1(X +QM̂) for some stable Q. Take Q = 0, then

C = Y−1X stabilizes P and C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0 1
0 0 2
0 0 0 3
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.2)

is unstable. In order to satisfy the practicing control engineers’ requirement, we set C11 = 0,
C12 = I, C21 = X and C22 = I−Y . Then we obtain a stable controllerKI =

[
0 I
X I−Y

]
with internal

loop which stabilizes the plant P .

6. Conclusion

In this paper, the closed-loop system whose stability is achieved by the controller with
internal loop is studied in the framework of nest algebra. The controllers with internal
loop considered here are more general than those in the previous paper and they are not
necessarily stable and need not to satisfy the two conditions proposed in [1]. We give a
parametrization for all stabilizing controllers with internal loopwhich has never been studied
before. Then we show that this parametrization covers the parametrization for canonical or
dual canonical controllers obtained in [6]. By taking the sensitivity minimization problem as
an example, we show that, in the practical application, the controller with internal loop solves
the difficulty brought by the invertibility condition in the parametrization of the conventional
controller. In the framework of nest algebra, the strong stabilization problem is still an open
problem, and no sufficient and necessary condition was found to characterize the plant
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which can be strongly stabilized. While, with the help of the concept of stabilization with
internal loop, we show that any stabilizable plant can be strongly stabilized by the controller
with internal loop. This addresses an advantage of the controller with internal loop in the
framework of nest algebra. By using the parametrization of the controller with internal loop,
we are considering other questions in the control theory for the this model of closed-loop
systems with internal loop.
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