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An incompressible Newtonian fluid is forced through the porous of a circular slider which is
moving laterally on a horizontal plan. In this paper, we introduce and apply the one step Optimal
HomotopyAnalysisMethod (one step OHAM) to the problem of the circular porous slider where a
fluid is injected through the porous bottom. The effects of mass injection and lateral velocity on the
heat generated by viscous dissipation are investigated by solving the governing boundary layer
equations using one step optimal homotopy technique. The approximate solution for the coupled
nonlinear ordinary differential equations resulting from the momentum equation is obtained and
discussed for different values of the Reynolds number of the velocity field. The solution obtained
is also displayed graphically for various values of the Reynolds number and it is shown that the
one step OHAM is capable of finding the approximate solution of circular porous slider.

1. Introduction

An interesting subject in mathematical physics is the study and analysis of flow between
plates [1–6]. An analytical overview of study of porous bearing has been carried out by
Morgan and Cameron in [3]. Gorla [7] discussed the fluid dynamical and heat transfer of the
circular porous slider bearing. The study of the effects of the Reynolds number on circular
porous slider has been investigated in [8] by using the Variational Iteration Method (VIM)
which is one of the semi analytical methods. The fluid dynamics in a slider bearing have been
discussed in [9] by using the series expansion and asymptotic expansion. Wang [9], in fact,
discussed the numerical solution for the porous slider for the large Reynolds number. As it
is well known the numerical methods such as finite difference and finite element are time
consuming and may be difficult due to stability constraints. Toward this end, in this paper,
we introduce and apply an effective method (so-called one step Homotopy Analysis Method)
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that provides accurate solution and has advantage over the finite difference and finite element
methods.

Semi analytical schemes such as Variational Iteration Method (VIM), Adomian
Decomposition Method (ADM), Homotopy Perturbation Method (HPM), and Homotopy
Analysis Method (HAM) have been widely employed to solve various linear and nonlinear
ordinary and partial differential equations. One of the advantages of the semi approximate
analytical methods is that these methods generate an infinite series solution and, unlike
finite difference methods, semi approximate analytical methods do not have the problem
of rounding error. Therefore, in contrast to implicit finite difference methods that require
the solution of systems of equation, the semi analytical schemes require only the solution of
recursive process.

The HAMwas developed by Liao [10]who utilized the idea of homotopy in topology.
The interested reader can refer to the much cited book [11] for a systematic and clear
exposition on the HAM. It has been reported that HAM, as an analytical method, has an
advantage over perturbation methods in that it is not dependent on small or large parameters
[12]. According to [12], perturbation methods are based on the existence of small or large
parameters and they cannot be applied to all nonlinear equations. Nonperturbative methods,
such as δ-expansion and ADM, are independent of small parameters. According to [13], both
perturbation techniques and nonperturbative methods cannot provide a simple procedure to
adjust or control the convergence region and rate of given approximate series. HAM allows
for fine tuning of convergence region and rate of convergence by allowing an auxiliary
parameter � to vary [14, 15]. The proper choice of the initial condition, the auxiliary linear
operator, and auxiliary parameter � will guarantee the convergence of the HAM solution
series [16]. According to [13], compared to the HPM, the HPM solution series will be
convergent by considering two factors: the auxiliary linear operator and initial guess [13].

In a series of papers, Marinca et al. [17–20] have introduced and developed a new
method, called Optimal Homotopy Asymptotic Method (OHAM). The HPM and HAM are
known to be special cases of OHAM. An advantage of OHAM over the HAM is that there
is no necessity to identify the �-curve. The control and adjustment of the convergence region
are also provided in a convenient way. Furthermore, there is a built-in convergence criteria
similar to HAM but with greater flexibility [21]. Marinca et al. [17–20] have used this method
successfully on problems in mechanics and have also shown its effectiveness and accuracy.

The OHAM have also some disadvantages. A disadvantage of this method is the
necessity to solve a set of nonlinear algebraic equations at each order of approxima-
tions. Another disadvantage is that OHAM includes many unknown convergence-control
parameters which makes it time consuming for calculating. To overcome of this difficulty,
Niu and Wang [22] presented a new modification of OHAM called one step optimal
homotopy analysis method, to improve the computational efficiency of the HAM. In their
approach, only one nonlinear algebraic equation with one unknown variable is solved at
each order approximations. An optimal homotopy analysis approach that contains at most
three convergence-control parameters at any order of approximations has been introduced
by Liao [23].

Our goal of this paper is to apply the one step OHAM introduced by Niu and Wang
in [22] for the circular porous slider. The general framework for solving this kind of problem
is introduced. Several cases have been given to demonstrate the efficiency of the framework.
So far as we are aware, this is the first time that the coupled nonlinear ordinary differential
equation resulting from the momentum equations has been solved approximately using the
one step OHAM.
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Figure 1: Schematic diagram of the problem.
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Figure 2: System of coordinate axes.

Our paper is organized as follows. In Section 2, we present description of conservation
mass and momentum density Navier-Stokes equations and also transformation. In Section 3,
we have introduced the one step OHAM to nonlinear system of equations. In Section 4,
solutions are given to illustrate capability of one step OHAM. Finally, in Section 5, we give
the conclusion of this study.

2. Formulation

In this paper, the flow field due to a circular porous slider (Figure 1) is calculated by using
one step OHAM. A fluid of constant density is forced through the porous bottom of the slider
and thus separates the slider from the ground. An incompressible fluid is forced through the
porous wall of the slider with a velocity W . Figure 2 shows the slider which is fixed at the
plane z = d, with a viscous fluid injected through it. The base is the plane at z = 0, which is
moving in the x-direction with velocity U. For detail, please see [7, 24].

As the gap d is small, it can be assumed that both planes are extended to infinity
[24]. Considering the u, v, and w to be the velocity components in the direction x, y, and
z, respectively, the conservation mass and conservation momentum density Navier-Stokes
equations are as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1)

x
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
= −1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (2.2)
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x
∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
= −1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (2.3)

x
∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −1

ρ

∂P

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
, (2.4)

where ρ is density of fluid, ν is kinematic viscosity, and P is pressure. The boundary condi-
tions are as follows:

z = 0, u = U, v = w = 0,

z = d, u = v = 0, w = −W,
(2.5)

whereU is velocity of the slider in lateral and longitudinal direction andW is velocity of fluid
injected through the porous bottom of the slider. For transforming (2.2)–(2.4), the following
equations are defined [7, 8, 24]:

η =
z

d
, (2.6)

u = Uf
(
η
)
+W

x

d
h′(η), (2.7)

v =
W

d
h′(η), (2.8)

w = −2Wh
(
η
)
. (2.9)

By substituting (2.7)–(2.9) into Navier-Stoks equations (2.2)–(2.4), it can be obtained that
[7, 8, 24]

h′′′′(η) + 2Rh
(
η
)
h′′′(η) = 0, (2.10)

f ′′(η) + 2Rh
(
η
)
f ′(η) − Rh′(η)f(η) = 0, (2.11)

−P
ρ

=
WK

2d2

(
x2 + y2

)
+
1
2
w2 − ν

∂w

∂z
+A, (2.12)

where R = Wd/ν is the cross-flow Reynolds number, A andK are constants which will have
to be determined. The boundary conditions for the transformation are as follows:

h(0) = h′(0) = h′(1) = 0, h(1) =
1
2
,

f(0) = 1, f(1) = 0.
(2.13)

The series solution for small values of R was obtained by Wang in [9]. Gorla [7] solved non-
linear equation (2.10) and (2.11) by using the fourth-order Runge-Kutta method together
with the shooting method.
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3. One Step Optimal Homotopy Analysis Method

To illustrate the basic idea of the one step Optimal Homotopy Analysis Method, we consider
the system of nonlinear differential equation

Ai(u1, u2, . . . , un) + fi
(
η
)
= 0, η ∈ Ω, i = 1, 2, . . . , n, (3.1)

Bi,j

(
uj,

duj

dη

)
= 0, η ∈ Γ, i, j = 1, 2, . . . , n, (3.2)

where Ai are differential operators and Bi are boundary operators, ui(η) are unknown
functions, η denotes independent variable, Γ is the boundary of the domain Ω, and fi(η)
are known analytic functions. In general, Ai, i = 1, 2, . . . , n can be decomposed as

Ai = Li +Ni, (3.3)

where Li are linear operators and Ni are nonlinear operators. The optimal φi(x; q) : Ω ×
[0, 1] → R which satisfies

Hi

(
φ1

(
η; q

)
, . . . , φn

(
η; q

)
, q
)
=
(
1 − q

){
Li

(
φ1

(
η; q

)
, . . . , φn

(
η; q

))
+ fi

(
η
)}

−Hi

(
q
){
A
(
φ1

(
η; q

)
, . . . , φn

(
η; q

))
+ fi

(
η
)}

.
(3.4)

Here η ∈ Ω and q ∈ [0, 1] is an embedding parameter, Hi(q) are nonzero auxiliary functions
for q /= 0, and Hi(0) = 0. For q = 0 and q = 1

Hi

(
φ1

(
η; 0

)
, . . . , φn

(
η; 0

)
, 0
)
= Li

(
φ1

(
η; 0

)
, . . . , φn

(
η; 0

))
+ fi

(
η
)
,

Hi

(
φ1

(
η; 1

)
, . . . , φn

(
η; 1

)
, 1
)
= Hi(1)

{
A
(
φ1

(
η; 1

)
, . . . , φn

(
η; 1

))
+ fi

(
η
)}

= 0.
(3.5)

When q = 0 and q = 1, φi(η; 0) = ui,0(η) and φi(η; 1) = ui(η), respectively. The zeroth-order
problem ui,0(η) is obtained from (3.2) and (3.4)with q = 0 giving

Li

(
φi

(
η; 0

))
+ fi

(
η
)
= 0, Bi

(
ui,0,

dui,0

dx

)
= 0. (3.6)

The auxiliary functions Hi(q) are chosen in the form

Hi

(
q
)
=

∞∑
j=1

Ci,jq
j , (3.7)

where Ci,j are constants. The (3.7), in fact, is a simple case of auxiliary function H(τ, q) in
[25, 26]. Marinca and Herişanu [25, 26] proposed the auxiliary function H(τ, q) that has the
following form:

Hi

(
q
)
= qCi,1 + q2Ci,2 + · · · + pmCi,m(τ), (3.8)
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whereCi,1,Ci,2, . . .,Ci,m−1 can be constants and the last valueCi,m(τ) can be a function depend-
ing on the variable τ . To get an approximate solution, φi(η; q, Ci,j), i, j = 1, 2, . . . , n are
expanded in a Taylor’s series about q as

φi

(
η; q, Ci,j

)
= ui,0

(
η
)
+

∞∑
j=1

ui,j

(
η;Ci,j

)
qj , j = 1, 2, 3, . . . . (3.9)

Substituting (3.9) into (3.4) and equating the coefficient of like powers of q, the first- and
second-order problems are given as [21]

Li

(
ui,1

(
η
))

= Ci,1Ni,0
(
ui,0

(
η
))
, Bi

(
ui,1,

dui,1

dη

)
= 0,

Li

(
ui,2

(
η
)) − L

(
ui,1

(
η
))

= Ci,2Ni,0
(
ui,0

(
η
))

+ Ci,1
[
L
(
ui,1

(
η
))

+Ni,1
(
ui,0

(
η
)
, ui,1

(
η
))]

,

Bi

(
ui,2,

dui,2

dη

)
= 0,

(3.10)

and the general governing equations for ui,j(η) are given as [21]

Li

(
ui,j

(
η
))

= Li

(
ui,j−1

(
η
))

+ Ci,jNi,0
(
ui,0

(
η
))

+
j−1∑
k=1

Ci,k

[
L
(
ui,j−k

(
η
))

+Ni,j−k
(
ui,0

(
η
)
, . . . , ui,j−k

(
η
))]

, j = 2, 3, . . . ,

Bi

(
ui,j ,

dui,j

dη

)
= 0,

(3.11)

where Ni,j−k(ui,0(η), ui,1(η), . . . , ui,j−k(η)) is the coefficient of qj−i in the expansion of N(φ
(x; q)) about the embedding parameter q and

Ni

(
φi

(
η; q, Ci,j

))
= Ni,0

(
ui,0

(
η
))

+
∑
j≥1

Ni,j

(
ui,0, ui,1, . . . , ui,j

)
qj . (3.12)

It can be seen in the number of papers that the convergence of the series (3.9) depends upon
the auxiliary constants Ci,1, Ci,2, Ci,3, . . . [17–21]. If the series is convergent at q = 1, then

ũi

(
η; q

)
= ui,0(x) +

m∑
j=1

ui,j

(
η;Ci,j

)
, (3.13)

which m denotes the mth order of approximation. Substituting (3.13) into (3.1) gives the
following expression for the residual:

Ri

(
η;Ci,j

)
= Li

(
ũi

(
η;Ci,j

))
+ fi

(
η
)
+N

(
ũi

(
η;Ci,j

))
. (3.14)
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If Ri(η;Ci,j) = 0, then ũi(η;Ci,j) are the exact solutions of nonlinear system differential
equations. For the determination of auxiliary constants Ci,j , the least squares can be used.
Consider

Δi,j

(
Ci,j

)
=
∫
Ω
R2

i

(
η;Ci,j

)
dx. (3.15)

It is to be noted that, at the first order of approximation, the square residual error Δi,1

only depends on Ci,1. To obtain the optimal value of Δi,1, we need to solve the following
system of nonlinear algebraic equation:

dΔi,1

dCi,1
= 0, i = 1, 2, . . . , n. (3.16)

For the second-order approximation, the square residual error Δi,2 are functions with respect
to Ci,1 and Ci,2. The values of Ci,1 have been obtained. To obtain the optimal value of Δi,2, we
need to solve the following system of nonlinear algebraic equations:

dΔi,2

dCi,2
= 0, i = 1, 2, . . . , n. (3.17)

By repeating the above process, the square residual error Δi,n will contain only the unknown
convergence-control parameter Ci,n. To obtain the optimal value of square residual error Δi,n,
we should solve the following system of nonlinear algebraic equations:

dΔi,n

dCi,n
= 0, i = 1, 2, . . . , n. (3.18)

Contrary to Marinca’s approach which requires the solution of a set of m nonlinear
algebraic equation for m unknown convergence-control parameters C1, C2,. . ., Cm, in one
step OHAM the square residual error is minimized at each equation of system and each
order so as to obtain the optimal convergence-control parameter only one by one. In fact,
it is needed to solve only one nonlinear algebraic equation to obtain the Ci,n at each order of
approximation. An advantage of one step OHAM is that it is easy to implement and obtain
high order of approximation with less CPU time [22]. The disadvantage of the OHAM is the
need to solve a set of coupled nonlinear algebraic equations for the unknown convergence-
control parametersC1,C2, C3, . . .,Cm whichwill be obtained from relation (3.9). For low order
of m, the nonlinear algebraic system can be easily solved but for large m it is more difficult.
Therefore, the necessary CPU time increases exponentially [22].
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Table 1: The values of C1,n, C2,n, Δ1,n, and Δ2,n given by one step OHAMwith R = 0.01.

Order h(η) f(η)
C1,n Δ1,n C2,n Δ2,n

1 −0.998447 2.62513 × 10−9 −0.998305 1.37745 × 10−10

2 1.25250 × 10−6 1.08397 × 10−14 1.01375 × 10−6 4.53986 × 10−16

3 2.31374 × 10−9 7.26901 × 10−20 1.56460 × 10−9 2.43297 × 10−21

4 5.43527 × 10−12 5.93503 × 10−25 2.90453 × 10−12 1.58185 × 10−26

5 1.27548 × 10−14 5.36086 × 10−30 2.88430 × 10−15 1.24666 × 10−31

Table 2: The values of C1,n, C2,n, Δ1,n, and Δ2,n given by one step OHAMwith R = 0.1.

Order h(η) f(η)
C1,n Δ1,n C2,n Δ2,n

1 −0.984506 2.55432 × 10−5 −0.983137 1.33655 × 10−6

2 1.23397 × 10−4 1.04900 × 10−8 1.96362 × 10−5 4.38245 × 10−10

3 2.25989 × 10−6 6.95465 × 10−12 1.52751 × 10−6 2.32214 × 10−13

4 5.26737 × 10−8 5.60423 × 10−15 2.82907 × 10−8 1.49055 × 10−16

5 1.37987 × 10−9 5.03925 × 10−18 5.59958 × 10−10 1.05699 × 10−19

Table 3: The values of C1,n, C2,n, Δ1,n, and Δ2,n given by one step OHAM with R = 1.

Order h(η) f(η)
C1,n Δ1,n C2,n Δ2,n

1 −0.852494 0.195328 −0.843116 9.97874 × 10−3

2 0.0100734 7.10009 × 10−3 7.9411 × 10−3 2.88876 × 10−4

3 1.63641 × 10−3 3.95865 × 10−4 1.09686 × 10−3 1.28659 × 10−5

4 3.41259 × 10−4 2.63846 × 10−6 1.87783 × 10−4 6.84637 × 10−7

5 8.02990 × 10−5 1.94829 × 10−7 3.53364 × 10−5 4.01397 × 10−8
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Figure 3: Effect of the various Reynolds number on vertical velocity profile h(η).
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Figure 5: Effect of the various Reynolds number on lateral velocity profile f(η).

Table 4: The values of residual functions given by 6 terms of one step OHAM.

t/R
Eh Ef

R = 0.01 R = 0.1 R = 0.01 R = 0.1
0.1 6.22549 × 10−16 6.01324 × 10−10 3.64726 × 10−16 3.37381 × 10−10

0.3 3.55792 × 10−15 3.44806 × 10−9 5.68122 × 10−16 5.25215 × 10−10

0.5 3.12250 × 10−15 3.06883 × 10−9 6.76542 × 10−17 5.02513 × 10−11

0.7 8.53484 × 10−16 7.32369 × 10−10 3.55618 × 10−16 3.39019 × 10−10

0.9 1.84575 × 10−15 1.77685 × 10−9 1.89085 × 10−16 1.51579 × 10−10
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4. Application of One Step OHAM

According to OHAM formulation described in Section 3, we start with

L1
(
φ1

(
η; q

)
, φ2

(
η; q

))
=

d4φ1
(
η; q

)
dη4

,

L2
(
φ1

(
η; q

)
, φ2

(
η; q

))
=

d2φ2
(
η; q

)
dη2

,

N1
(
φ1

(
η; q

)
, φ2

(
η; q

))
= 2Rφ1

(
η; q

)d3φ1
(
η; q

)
dη3

,

N2
(
φ1

(
η; q

)
, φ2

(
η; q

))
= 2Rφ1

(
η; q

)dφ2
(
η; q

)
dη

− Rφ2
(
η; q

)dφ1
(
η; q

)
dη

.

(4.1)

We can easily choose the initial approximation as

h0
(
η
)
= −η3 + 1.5η2, f0

(
η
)
= 1 − η. (4.2)

By applying the OHAM, we can obtain components of OHAM series solution (3.9). By
substituting the solution obtained into (2.10) and (2.11), we can obtain the following residual
function as

Eh = h̃′′′′(η) + 2Rh̃
(
η
)
h̃′′′(η),

Ef = f̃ ′′(η) + 2Rf̃ ′(η)h̃(η) − Rf̃
(
η
)
h̃′(η). (4.3)

The square residual errors at them order of approximation are defined by [22]

Δ1,m =
∫1

0
(Eh)2dη,

Δ2,m =
∫1

0

(
Ef

)2
dη,

(4.4)

where

h̃
(
η
)
= h0

(
η
)
+

m∑
k=1

hk

(
η
)
,

f̃
(
η
)
= f0

(
η
)
+

m∑
k=1

fk
(
η
)
.

(4.5)



Mathematical Problems in Engineering 11

Table 5: Wall gradients of vertical functions for various Reynolds number.

R
One step OHAM Runge-Kutta in [7]

h′′(0) h′′(1) h′′(0) h′′(1)
0.01 3.001857 −2.99685 3.001855 −2.99685
0.1 3.018610 −2.96882 3.018610 −2.96866
1 3.18914 −2.71042 3.189800 −2.71104
5 3.983929 −1.96626 3.984910 −1.96266

For m = 1, it is found that

Δ1,1 = 13.3714R2 + 26.7429R2C1,1 + 4.15547R3C1,1 + 13.3714R2C2
1,1

+ 4.15547R4C1,1 − 0.01459R4C3
1,1 − 0.00402R5C3

1,1 + 2.37546 × 10−5R6C4
1,1,

Δ2,1 = 0.6428R2 − 0.01686R3C1,1 + 0.0002378R4C2
1,1 + 1.28571R2C2,1 + 0.2349R2C2,1

− 0.01686R3C1,1C2,1 − 9.07251R4C1,1C2,1 − 2.56612 × 10−6R5C2
1,1C2,1 + 0.6428R2C2

2,1

+ 0.2349R3C2
2,1 + 0.035057R4C2

2,1 + 7.32839 × 10−4C1,1C
2
2,1

+ 5.06569 × 10−7R5C1,1C
2
2,1 + 8.27189 × 10−9R6C2

1,1C
2
2,1,

...,
(4.6)

and so on. By considering (4.6), it is clear that the Δ1,1 and Δ2,1 contain convergence-control
parameter C1,1, C2,1, C1,2. Thus the approach introduced in Section 3 gives optimal value of
the first convergence-control parameter C1,1 and C2,1 by solving the system of equation

dΔ1,1

dC1,1
= 0,

dΔ2,1

dC2,1
= 0.

(4.7)

For m = 2, the square residual error Δ2,1 and Δ2,2 are only dependent C1,2 and C2,2 since C1,1

and C1,2 are known. Thus, the optimal values of C1,2 and C2,2 are obtained by solving the
following system of equations:

dΔ2,1

dC1,2
= 0,

dΔ2,2

dC2,2
= 0,

(4.8)

and so on.
In this approach, the optimal values of convergence-control parameters C1,1, C2,1,

C1,2, . . . are obtained one by one until an accurate enough approximation [22].
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Table 6: Wall gradients of vertical functions for various Reynolds number.

R
One step OHAM Runge-Kutta in [7]

h′′′(0) h′′′(1) h′′′(0) h′′′(1)
0.01 −6.00771 −5.97774 −6.00771 −5.97774
0.1 −6.077462 −5.78058 −6.077400 −5.78052
1 −6.802182 −4.09444 −6.805200 −4.09418
5 −10.80969 −0.733029 −10.805200 −0.72054

Table 7:Wall gradients of lateral functions for various Reynolds number.

R
One step OHAM Runge-Kutta in [7]

f ′(0) f ′(1) f ′(0) f ′(1)
0.01 −1.00300 −0.995509 −1.00300 −0.995512
0.1 −1.029842 −0.955911 −1.029859 −0.955942
1 −1.285961 −0.632878 −1.285215 −0.632150
5 −2.19631 −0.0838189 −2.198724 −0.085460

In Tables 1, 2, and 3, we have calculated the convergence-control parameters Ci,j (i, j =
1, . . . , n) and square residual errorΔi,j for various orders of n atR = 0.01,R = 0.1, andR = 1 by
using one step OHAM introduced in Section 3. It is to be noted that the square residual error
decreases quickly as the order of approximation increases. In Table 4, we have calculated the
residual functions Eh and Ef for various t ∈ (0, 1) and R = 0.01 and R = 0.1. It can be seen
that the errors are very small.

In Tables 5 and 6, we have compared the values of h′′(0), h′′(1), h′′′(0) and h′′′(1)
between the solution obtained by using one step OHAM and solution obtained by using
fourth-order Rung-Kutta method in [7].

In Table 7, we have compared the values of f ′(0) and f ′(1) between the solution
obtained by using one step OHAM and solution obtained by using fourth-order Runge-Kutta
method in [7].

In Figure 3, we have displayed the vertical velocity h(η) for various Reynolds number.
It can be seen that h(η) increases within the gap width as the Reynolds number increases. In
Figure 4, we have shown the lateral velocity h′(η). It is clear from Figure 4 that for increasing
the Reynolds number R, the h′(η) increases whereas the position of maximum velocity tends
to move closer to the moving wall. In Figure 5, it can be seen that in the case of R = 0.01, the
lateral velocity f(η) is linear. These results are consistent with those obtained in [7].

5. Conclusion

In this paper, the one step Optimal Homotopy Analysis Method (one step OHAM) has
been successfully introduced and applied for solving the problem of circular porous slider.
The influence of the Reynolds number has been discussed through graphs. The graphical
behavior of f , h, and h′ for different values of the Reynolds number (small and big Reynolds
number) is presented graphically for fifth-order approximation solution using one step
OHAM. In optimal homotopy asymptotic method (OHAM), the control and adjustment
of the convergence of the series solution using the control parameters Ci’s are achieved in
a simple way. A disadvantage of OHAM is that it is necessary to solve a set of nonlinear
algebraic equations with m unknown convergence-control parameters C1, . . . , Cm and this is
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time consuming, specially for large m. In contrast to OHAM, in one step OHAM introduced
in this paper, algebraic equations with only one unknown convergence-control parameter at
each level should be solved. In fact, the one step OHAM is easy to implement and obtain high
order of approximation with less CPU time.
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