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Existing sinogram restoration methods cannot handle noises and nonstationary artifacts simul-
taneously. Although bilateral filter provides an efficient way to preserve image details while
denoising, its performance in sinogram restoration for low-dosed X-ray computed tomography
(LDCT) is unsatisfied. The main reason for this situation is that the range filter of the bilateral filter
measures similarity by sinogram values, which are polluted seriously by noises and nonstationary
artifacts of LDCT. In this paper, we propose a simple method to obtain satisfied restoration results
for sinogram of LDCT. That is, the range filter weighs the similarity by Gaussian smoothed sino-
gram. Since smoothed sinogram can reduce the influence of both noises and nonstationary artifacts
for similarity measurement greatly, our new method can provide more satisfied denoising results
for sinogram restoration of LDCT. Experimental results show that our method has good visual
quality and can preserve anatomy details in sinogram restoration even in both noises and non-
stationary artifacts.

1. Introduction

Radiation exposure and associated risk of cancer for patients receiving CT examination
have been an increasing concern in recent years. Thus, minimizing the radiation exposure
to patients has been one of the major efforts in modern clinical X-ray CT radiology [1–8].
However, the presentation of strong noises and non-stationary artifacts degrades the quality
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of low-dose CT images dramatically and decreases the accuracy of diagnosis dose. Many
strategies have been proposed to reduce the noise, for example, by nonlinear noise filters
[8–19] and statistics-based iterative image reconstructions (SIIRs) [20–28].

The SIIRs utilize the statistical information of the measured data to obtain good
denoising results but are limited for their excessive computational demands for the large CT
image size. Moreover, the mottled noise and non-stationary artifacts in LDCT images cannot
be accurately modeled into one specific distribution, which makes it a difficult task to differ-
entiate between noise/artifact and informative anatomical/pathological features [29].

Although the nonlinear filters show effectiveness in reducing noise both in sinogram
space and image space, they cannot handle the noise-induced streak artifacts. Since existing
methods cannot handle noises and artifacts simultaneously, designing a method to reduce
noise and non-stationary artifacts simultaneously becomes an open problem in sinogram res-
toration of LDCT.

Recently, many new nonlinear filters are presented and show promising denoising
performance on space domain [29–44]. Bilateral filter (BF), which integrates range filter (gray
level) and domain filter (space) together, is a well-known one [35, 36]. However, BF cannot
obtain satisfied results in sinogram restoration of LDCT because of polluted sinogram values
for the range filter. To obtain satisfied denoising results in serious noises, some efforts on
image space are proposed [37–41].

Wong suggests that two parameters, σ2
s and σ2

r , the variances of Gaussian functions
in domain and range filters, should be modulated according to local phase coherence of the
image pixels [37]. But it blurs edges or leaves uncleaned noises.

Ming and Bahadir improve the performance of BF by multiresolution method [38].
That is, filtering LL subband uses BF while smoothing wavelet subbands uses SURE shrink-
age. It also leads to blur edges while denoising.

van Boomgaard and van deWeijer argue that themain reason for unsatisfied denoising
results is the polluted center pixel of BF [40]. Thus, the satisfied results can be obtained by
replacing polluted center pixel with an estimate of its true gray levels.

Following [40], median bilateral filter (MBF) is proposed in [41]. MBF replaces the
center pixel with the median of a 3× 3 window. However, only replacing the center pixel also
cannot obtain satisfied denoising results.

Although BF and its improvements can obtain satisfied results in general image de-
noising, all thesemethods cannot handle sinogram restorationwith noises and non-stationary
artifacts simultaneously. We think that the key to handle noises and artifacts simultaneously
is how to reduce the influence of both the noises and artifacts of sinogram of LDCT.

In this paper, we propose a new method to reduce the influence of the noises and
artifacts of sinogram simultaneously, named bilateral filter weighted by Gaussian filtered
sinogram (BFWGFS), which carried on BF on Gaussian smoothed sinogram. Note that,
proposed method is different to the method proposed in [40]. The proposed method in [40]
only replaces the gray levels of the center point with the median of a 3 × 3 square centered at
the center point, while our method replaces both the center point and all considering points
with their Gaussian smoothed sinogram values.

Since the smoothed sinogram can reduce the influence of both the noises and artifacts
of sinogram, the weight of the range filter defined on BFWGFS can measure the similarities
more precisely comparing to the original sinogram values in BF. Thus, the proposed method
can obtain satisfied results in noises and non-stationary artifacts simultaneously.

In the reminder of this paper, Section 2 will introduce the noise models; then in
Section 3, wewill discuss themeasurement of similarity and discussed the difference between
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the proposed method and method in [40]. Section 4 describes the denoising framework.
Section 5 is the experimental results and discussion. Section 6 gives conclusions and finally,
the acknowledgment part.

2. Noise Models

Based on repeated phantom experiments, low-mA (or low-dose) CT calibrated projection
data after logarithm transform were found to follow approximately a Gaussian distribution
with an analytical formula between the sample mean and sample variance, that is, the noise
is a signal-dependent Gaussian distribution [19].

In this section, we will introduce signal-independent Gaussian noise (SIGN), Poisson
noise, and signal-dependent Gaussian noise.

2.1. Signal-Independent Gaussian Noise (SIGN)

SIGN is a common noise for the imaging system. Let the original projection data be {xi},
i = 1, . . . , m, where i is the index of the ith bin. The signal has been corrupted by additive
noise {ni}, i = 1, . . . , m and one noisy observation

yi = xi + ni, (2.1)

where yi, xi, ni are observations for the random variables Yi,Xi, andNi where the upper-case
and letters denote the random variables and the lower-cased letters denote the observations
for respective variables. Xi is normal N(0, σ2

X), and Ni is normal N(0, σ2
N) and independent

of the Gaussian random variable Xi. Thus, Yi is normal N(0, σ2
X + σ2

N).

2.2. Poisson Model and Signal-Dependent Gaussian Model

The photon noise is due to the limited number of photons collected by the detector [30]. For
a given attenuating path in the imaged subject, N0(i, α) and N(i, α) denote the incident and
the penetrated photon numbers, respectively. Here, i denotes the index of detector channel or
bin, and α is the index of projection angle. In the presence of noises, the sinogram should be
considered as a random process, and the attenuating path is given by

ri = − ln
[
N(i, α)
N0(i, α)

]
, (2.2)

where N0(i, α) is a constant, and N(i, α) is Poisson distribution with mean N.
Thus, we have

N(i, α) = N0(i, α) exp(−ri). (2.3)

Both its mean value and variance are N.
Gaussian distributions of ployenergetic systems were assumed based on limited

theorem for high-flux levels, and following many repeated experiments in [19], we have

σ2
i

(
μi

)
= fi exp

(
μi

γ

)
, (2.4)
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where μi is the mean, and σ2
i is the variance of the projection data at detector channel or bin

i, γ is a scaling parameter, and fi is a parameter adaptive to different detector bins.
The most common conclusion for the relation between Poisson distribution and

Gaussian distribution is that the photon count will obey Gaussian distribution for the case
with large incident intensity and Poisson distribution with feeble intensity [19]. In addition,
in [30], the authors deduce the equivalency between Poisson model and Gaussian model.
Therefore, both theories indicate that these two noises have similar statistical properties and
can be unified into a whole framework.

3. Measure Similarity

The formula of bilateral filter is

B
(
yij

)
=

1
k
(
yij

)
∫∫∞

−∞
ystc
(
(s, t),

(
i, j
))
s
(
yst, yij

)
dsdt, (3.1)

where (s, t) and (i, j) are two pixels of sinogram. Here, sinogram is the observations of pro-
jection data, that is, the noisy projection data of LDCT. yst and yij are sinogram values of (s, t)
and (i, j), respectively. k(yij) is a normalized constant for two weighs and is defined as

k
(
yij

)
=
∫∫∞

−∞
c
(
(s, t),

(
i, j
))
s
(
yst, yij

)
dsdt, (3.2)

where c((s, t), (i, j)) and s(yst, yij) are measures of the spatial and range similarity between
the center pixel yij and its neighbor yst, respectively. Usually, these two measures are defined
as two Gaussian Kernel functions

c
(
(s, t),

(
i, j
))

= e(−1/2)(‖(s,t)−(i,j)‖/σd)
2
, (3.3)

s
(
yst, yij

)
= e(−1/2)(‖yst−yij‖/σr)

2
. (3.4)

Since the (i, j) value filtered by BF is the weighted average of nearby points weighted
by product of spatial distance and gray level difference, it was named by bilateral filter (BF)
to distinguish the general filter weighted only by spatial distance.

From (3.1)–(3.4), we can conclude that a pair of pixels yst, yij with both small
spatial distance and small sinogram value difference have high similarity and large-weighed
coefficients. It is plausible in slightly noisy projection data. For sinograms with serious noise
and non-stationary artifacts, it is unreal! That is, polluted sinogram values lead to incorrect
similarity measurement in the range filter of the bilateral filter. Thus, finding a measure of
similarity, which can measure similarity correctly in noise and non-stationary artifacts, is a
key problem in denoising using BF.

3.1. Gaussian Filter

Gaussian filter is defined as

G
(
yij

)
=

1∫∫∞
−∞e

(−1/2)(‖yst−yij‖/σ)2dsdt

∫∫∞

−∞
yste

−1/2(‖yst−yij‖/σ)2dsdt. (3.5)
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Since yst ∼ N(μij , σ
2
ij) for s = −∞, . . . ,∞ and t = −∞, . . . ,∞, noisy sinogram value Yij ∼

N(μij , σ
2
ij) and the Gaussian-dependent noise (GWN) Nij ∼ N(0, σ2

ij), the distribution of the
pixel (i, j) filtered by the low-passed filter defined in (3.5) is

Yij + e1/(−2σ
2)(Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1 + · · · )

∼ N

⎛
⎜⎝μij ,

1 +
(
4e1/(−2σ

2)
)2

+
(
4e2/(−2σ

2)
)2

+ · · ·
(
1 +
(
4e1/(−2σ2)

)
+
(
4e2/(−2σ2)

)
+ · · · )2σ

2
ij

⎞
⎟⎠

∼ N

⎛
⎜⎝μij ,

1 +
(
4e(−1)/σ

2
)
/
(
1 − e(−1)/σ

2
)

(
1 +
(
4e(−1)/2σ2

)
/
(
1 − e(−1)/2σ2))2σ

2
ij

⎞
⎟⎠.

(3.6)

Thus,

G
(
Yij

) ∼ N

⎛
⎜⎝μij ,

(
e1/σ

2
+ 3
)(

e1/2σ
2 − 1

)2
(
e1/σ2 − 1

)(
e1/2σ

2 + 3
)2 σ2

ij

⎞
⎟⎠. (3.7)

For example, in image denoising, generally, σ is set to 2; thus,

G
(
Yij

) ∼ N
(
μij , 0.0157σ2

ij

)
. (3.8)

From the above equation, the variance of the smoothed sinogram value becomes very
small (smaller than original variance 0.0157 times). It means that the Gaussian filter makes
smoothed sinogram value closer to real projection data than the noisy sinogram value. Since
most of non-stationary artifacts in image space are the high-light points in noisy sinogram,
most of non-stationary artifacts can be suppressed by Gaussian filter.

In the same way, the distribution of the median in an s × s window centered at the
pixel (i, j) is

median
(
Yij

) ∼ N

(
μij ,

σ2
ij

s × s

)
. (3.9)

Just as the above discussion, if the median filter has similar estimate precision to
Gaussian filter in image denoising, s should at least be 8, which is estimated by

√
1/0.0157 =√

63.6943 ≈ 8. However, so large window of median filter will delete some real lines in
sinogram, which will lead to many artifacts in denoising sinogram.

3.2. Similarity Discussion

From the second equation of (3.4), the similarity between the sinogram values of two
pixels (i, j) and (s, t) is defined as a Gaussian function of the difference to their sinogram
values. Thus, large difference has small similarity, while small difference has large similarity.
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Following this conclusion, similarity discussion can be accomplished by discussing the
difference for each pair of pixels of sinogram. In this subsection, we will discuss the dif-
ferences by variances of three denoising schemes for BF.

Assume that Yst and Yij are iid Gaussian random variables corresponding to a pair of
pixels with the same real gray levels, Yij ∼ N(μij , σ

2
ij), Yst ∼ N(μij , σ

2
ij), and their difference

Yij − Yst ∼ N
(
μij , 2σ2

ij

)
. (3.10)

In the same way, since median(Yij) ∼ N(μij , σ
2
ij/s × s), we can conclude that

median
(
Yij

) − Yst ∼ N

(
μij ,

1 + s2

s2
σ2
ij

)
. (3.11)

Since G(Yij) ∼ N(μij , (((e1/σ
2
+ 3)(e1/2σ

2 − 1)
2
)/(e1/σ

2 − 1)(e1/2σ
2
+ 3)

2
)σ2

ij), thus

G
(
Yij

) −G(Yst) ∼ N

⎛
⎜⎝μij , 2

(
e1/σ

2
+ 3
)(

e1/2σ
2 − 1

)2
(
e1/σ2 − 1

)(
e1/2σ2 + 3

)2 σ2
ij

⎞
⎟⎠. (3.12)

Just as discussed in the last subsection, if we set σ to 2,

G
(
Yij

) −G(Yst) ∼ N
(
μij , 0.0314σ2

ij

)
. (3.13)

It is obvious that the variance of the first scheme is the biggest in all three schemes,
while the variance of the last scheme is the smallest in all three schemes. Since s ≥ 3, we have

2 >
s2 + 1
s2

> 1 > 0.0314. (3.14)

The first scheme corresponds to the bilateral, which measures difference by the
sinogram values of (i, j) and (s, t) directly. The second scheme corresponds to the mean
bilateral proposed in [41] whose similarity is measured between the median of the center
pixel (i, j) and the sinogram value of its neighbor (s, t). The third scheme corresponds to the
scheme of measuring the difference on the Gaussian filtered sinogram value.

It is well-known that smallest variance corresponds to the best estimate of real
projection data value. According to this rule, our proposed method can provide the best
estimate of real projection data value. Thus, BFWGFS can reduce both the influence of noises
and non-stationary artifacts.

4. The Algorithm

Just as the above discussion, satisfied denoising results can be got by weighed range filter on
Gaussian filtered sinogram. The steps of the algorithm are as follows:
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(1) compute the Gaussian filtered sinogram value G(yij) for all sinogram pixels using
(3.5),

(2) give σd and σr ,

(3) for each of pixel,

(i) compute c((s, t), (i, j)) using the first equation of (3.4) and s(G(yst), G(yij))
using

s
(
G
(
yst

)
, G
(
yij

))
= e(−1/2)(‖G(yst)−G(yij)‖/σr)

2
, (4.1)

(ii) compute k(yij) using

k
(
yij

)
=
∫∫∞

−∞
c
(
(s, t),

(
i, j
))
s
(
G
(
yst

)
, G
(
yij

))
dsdt, (4.2)

(iii) compute GB(yij) using

GB
(
yij

)
=

1
k
(
yij

)
∫∫∞

−∞
ystc
(
(s, t),

(
i, j
))
s
(
G
(
yst

)
, G
(
yij

))
dsdt, (4.3)

(4) repeat step 3 until all sinogram pixels have been proceeded.

5. Experiments and Discussion

The main objective for smoothing L-CT images is to delete the noise and non-stationary
artifacts while to preserve anatomy details for the images. Thus, the image visual quality
can be improved, and the denoised image can help doctors make correct medical diagnosis
more easily.

5.1. Data

Four groups of CT images with different doses were scanned from a 16 multidetector row
CT unit (Somatom Sensation 16; Siemens Medical Solutions) using 120 kVp and 5 mm slice
thickness: a 58-year-old man, two groups of 62-year-old women with different reduced dose,
and a 60-year-old man. Other remaining scanning parameters are gantry rotation time, 0.5
second; detector configuration (number of detector rows section thickness), 16× 1.5mm; table
feed per gantry rotation, 24 mm; pitch, 1 : 1; reconstruction method, filtered back projection
(FBP) algorithm with the soft-tissue convolution kernel “B30f.” Different CT doses were
controlled by using two different fixed tube currents 30 mAs and 150 mAs (60 mA or 300
mAs) for LDCT and standard-dose CT (SDCT) protocols, resp.. The CT dose index volume
(CTDIvol) for LDCT images and SDCT images are in positive linear correlation to the tube
current and is calculated to be approximately ranged between 15.32 mGy and 3.16 mGy [29].
For additional visually illustration, we also put two groups of abdominal CT images of a
same woman with 60 mAs, and two groups of shoulder CT images with low dose 35 mAs
and standard dose 135 mAs (see Figure 2).
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5.2. Compared Methods

Bilateral filter (BF) is introduced at the beginning of Section 3. The main motivation for BF
is that the noisy image should be weighted not only by the position distance (spatial filter)
but also by the difference of sinogram values (range filter) [35]. The parameters of BF are
Gaussian Kernel for spatial filter σs = 1.8, Gaussian Kernel for range filter σr = 20/3, and
iteration time is 3.

Context is a term imported from image coding. The context of a pixel xij is always
defined as a vector used for describing the relationship between this pixels and other image
pixels. In this paper, in order to suppress the influence of noises, the context is defined as

ŷij =
1
9

s=i+1∑
s=i−1

t=j+1∑
t=j−1

yst. (5.1)

The context filter estimates real sinogram values from the points with similar context value.
In this paper, the threshold value for similar context is 10, that is,

xij and xst are similar points if
∣∣ŷij − ŷst

∣∣ ≤ 10,

xij and xst are not similar points otherwise,
(5.2)

where ŷij is defined on (5.1). Although context filter can provide more samples for real value
estimate, it will produce some artifacts for losing the spatial relationship of sinogram.

Median bilateral filter (MBF) replaces the center pixel with the median of an s × s win-
dow [41]. However, just as analysis in Section 3, only replacing the center pixel also cannot
obtain satisfied denoising results. Here, when s set to 5 has the best performance, σr = 20/3
and σs = 1.8.

Multiresolution bilateral filter (MRBF) filtering LL subband uses BF while smoothing
wavelet subbands uses SURE shrinkage [38]. The wavelet used in the experiment is 1-level
symlets with support 4. The noisy variance σ̂N is estimated using median of HH band of the
wavelet [45] and σr = 3σ̂N and σs = 2. Although authors report that MRBF can obtain good
denoising results, it also leads to blur some important details.

Weighted intensity averaging over large-scale neighborhoods (WIA-LNs) is a state-of-the-art
method for sinogram reconstruction [29]. The motivation for WIA-LN is that the two pixels
of the same organ or tissue should have surrounding patches with higher similarities than the
two pixels of different organs or tissues. Thus, the real sinogram value of fi can be estimated
as

f̂i =
∑
j∈Ni

ωijfi∑
j∈Ni

ωij
, (5.3)

where

ωij = exp

⎛
⎝−

‖ni − nj‖22,α
β|ni|

⎞
⎠. (5.4)
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Here, fi denotes the intensities of the neighboring pixels in the search neighborhood
Ni centered at pixel index i. The weight of WIA-LN is built by using a similarity criterion
between the two comparing patches ni and nj . This similarity metrics is calculated using
(5.4), in which α denotes the two-dimensional standard deviation of Gaussian kernel. |ni|
is the total pixel number in patch ni. β is a superparameter. In this paper, β is set to be
0.8, and the sizes ni are set to 11 × 11. Although better vision and quantitative performance
are reported, the authors also indicate that WIA-LN cannot handle noise and non-stationary
artifacts simultaneously (see Figure 3(g)).

Proposed method (BFWGFS) replaces all sinogram values used in range filter of BF by the
Gaussian filtered sinogram values. Just as discussed in Section 3, smoothed sinogram values
can reduce the influence of both noise and non-stationary artifacts greatly, and BFWGFS can
provide good visual results and preserve more anatomy details. The parameters are σr =
20/3, σs = 1.8, iteration number is set to 1, and Gaussian smoothed kernel is set to 1.8.

5.3. Visual Comparison

Three groups of SDCT images, LDCT images, and the processed LDCT images for the clinical
abdominal examinations are shown in Figures 1–3. The parameters for compared methods
have been given in the last subsection. In Figure 1, the original and processed abdominal CT
images of a 58-year-old man are illustrated. Figures 1(a) and 1(b) are one SDCT image and
one LDCT image acquired at tube current time product 150 mAs and 30 mAs, respectively.
Figures 1(c), 1(d), 1(e), 1(f), 1(g), and 1(h) show BF, context, MBF, MRBF, WIA-LN, and
proposed method processed LDCT images, respectively. Figure 2 illustrates the original
and processed abdominal CT images of a 62-year-old woman. Figure 2(a) is one SDCT
image acquired at tube current time product 150 mAs. Figures 2(b) and 2(c) are two LDCT
images acquired at reduced tube current time products 60 mAs and 30 mAs, respectively.
Figures 2(d), 2(e), 2(f), 2(j), 2(k), 2(l), 2(g), 2(h), 2(i), 2(m), 2(n), and 2(o) illustrate the two
groups of processed LDCT images of Figures 2(b) and 2(c) by using compared methods.
Figure 3 illustrates the original and processed images for one shoulder scan of a 60-year-
old man, from which we found that WIA-LN tends to smooth both the streak artifacts and
informative human tissues, while proposed method can reduce the noise and artifacts with
preservation of anatomy details.

Comparing all the original SDCT images and LDCT images in Figures 1–3, we found
that the LDCT images were severely degraded by noise and streak artifacts. In Figures 1(c)–
1(f), just as the discussion in Section 3, there are so many noises left in processed images
using BF, context, MBF, and MRBF. WIA-LN shown in Figure 1(g) also makes some obvious
artifacts, while we can observe better noise/artifacts suppression and edge preservation
for proposed methods in Figure 1(h). Both WIA-LN and proposed method have good
performance in noises. Especially, compared to corresponding original SDCT images, the fine
features representing the intrahepatic bile duct dilatation and the hepatic cyst (pointed by
the white circles in the images of Figures 1 and 2, resp.)were well restored by using WIA-LN
and proposed method. The fine anatomical/pathological features (the exemplary structures
pointed by circles in Figures 1 and 2) can be well preserved compared to the original SDCT
images (Figures 1(a) and 2(a)) under-standard dose conditions. In Figures 3(g) and 3(h), it
indicates that althoughWIA-LN cannot handle noises and artifacts simultaneously, proposed
method can obtain satisfied results in this complex situation. Especially, proposed method
not only can suppress noises and artifacts in original LDCT image (Figure 3(a)) but also
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1: Abdominal CT images of a 58-year-old man. (a) Original SDCT image with tube current time
product 150 mAs. (b) Original LDCT image with tube current time product 30 mAs. (c, d, e, f) BF, context,
MBF, and MRBF processed LDCT images, respectively. (g)WIA-LN processed LDCT image. (h) Proposed
method (BFWGFS) processed LDCT image. Note the obvious improvement of noise suppression and
preservation of the intrahepatic bile duct dilatation (white circles) for the WIA-LN and proposed method
processed LDCT images (g, h) compared to the original LDCT image in (b).

can preserve tiny anatomy details of subscapular arteries indicated by the white circles in
Figure 3(h) compared to the original SDCT image (Figure 3(b)).

6. Conclusions

In this paper, in order to improve the performance of LDCT imaging, we propose a new
method, named bilateral filter weighted by Gaussian filtered sinogram (BFWGFS) which
replaces the sinogram values of range filter of BF to the Gaussian filtered sinogram values.
Since carefully chosen parameters of Gaussian filter can reduce the influence both of noises
and non-stationary artifacts greatly, BFWGFS can provide a more reliable estimate sinogram
values for the range filter to improve the performance of classical BF in noises. Restoration
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 2: Abdominal CT images of a 62-year-old woman. (a) Original SDCT image with tube current time
product 150 mAs. (b) Original LDCT image with tube current time product 60 mAs. (c) Original LDCT
image with tube current time product 30 mAs. (d, e, f) LDCT images (60 mAs) processed by BF, context,
and MBF, respectively. (g, h, i) LDCT images (30 mAs) processed by BF, context, and MBF, respectively. (j,
k, l) LDCT images (60 mAs) processed by MRBF, WIA-LN and proposed method, respectively. (m, n, o)
LDCT images (30 mAs) processed by MRBF, WIA-LN, and proposed method, respectively. Compared to
the original LDCT images in (b) and (c), the improvement of preservation of the hepatic cyst (white circles)
for the WIA-LN, and proposed method in processed LDCT image (k), (l), and (n), (o) can be observed.

results for three real sinograms show that proposed method with suitable parameters can
obtain satisfied results even in both the noises and artifacts situation.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3: Shoulder CT images of a 60-year-old man. (a) Original SDCT image acquired at a standard
tube current-time product 135mAs. (b) Original LDCT image acquired at a reduced tube current-time
product 35mAs. (c, f, g, h) LDCT images processed by BF, context, MBF, andMRBF, respectively. (d) LDCT
image processed by WIA-LN. Note that both the streak artifacts and informative human tissues tend to be
smoothed. (e) LDCT image processed by the proposed method. Compared to the original LDCT images in
(a), the obvious improvement of noise suppression in the improvement of preservation of the subscapular
arteries (white circles) for the proposed method can be observed.
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dual source CT,” Fortschr. Röntgenstr, vol. 181, no. 4, pp. 339–348, 2009.

[8] P. Kropil, R. S. Lanzman, C. Walther et al., “Dose reduction and image quality in MDCT of the upper
abdomen: potential of an adaptive post-processing filter,” Fortschr. Röntgenstr, vol. 182, no. 3, pp. 284–
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