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The paper presents a new method for designing optimal and feasible control strategies for
time-variant dynamical processes. The key point of the presented idea lies in utilizing a flow
graph structure for representing pertinent properties of the autonomous dynamics of a given
dynamical process in a time-and-state space, which is composed of certain elementary segments.
The structure is referred to as a time-and-state space toolgraph. In the procedure, each segment of
the temporary state space is assigned a node of the time-and-state space toolgraph. The flow values
are proportional to the cost of driving the operational point of the dynamical process between the
centers of adjacent segments. Any of the discrete optimization algorithms can be applied to search
for a cheapest path connecting the initial and terminal points of the sought optimal piecewise-
linear trajectory of the operational points in the considered time-and-state space. Additional
assumptions or restrictions concerning arbitrary forbidden zones for the operational points can be
easily taken into account. In such cases the nodes representing the segments partially or entirely
belonging to the finite forbidden zones are deposed from the toolgraph structure.

1. Introduction

The general idea of representing a continuous workspace by means of a graph structure has
recently been explored, for instance, for searching optimal trajectories of robot movements in
2D [1] and 3D [2] workspaces, as well as for designing optimal control in multidimensional
spaces [3].

The presented method is a consequent extension of our research track of designing
optimal and feasible control by means of discrete optimization methods [4–6]. In particular,
certain deterministic time variations of the controlled process are taken into consideration by
extending the common state space with an additional time dimension.
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The algorithm consists in finding a trajectory in such an extended state space (called
henceforth the time-state space), which should satisfy two principal prerequisites. First, the
sought trajectory circumvents certain finite areas (called the forbidden zones) which can, for
instance, represent some failures previously identified. Second, the autonomous dynamics of
the process is used in the process of minimizing the adopted indicator of control cost, which
is a part of the problem definition and an input to a corresponding minimization procedure.
The procedure starts with segmenting the defined operational workspace, which is a subset
of the time-and-state space taken into consideration during the process of optimal trajectory
design. For each segment a set of representative values is determined. The representative
values (representatives) are all the quantities which are necessary to calculate the cost
of an operational point movement in a given segment area. The next step is based on a
formulation of a flow graph structure (called toolgraph), which reflects the arrangement
of the segments along with their appropriate representatives. Any discrete optimization
algorithm that performs optimal search for the cheapest path can be utilized for searching
the time-and-state space toolgraph for the cheapest path connecting the initial and terminal
nodes representing the segments, which contain initial and terminal points of the sought
trajectory, respectively.

This paper is organized as follows: Section 2 gives a formal description of the present-
ed idea and in Section 3 an extended example is presented. The paper ends by the Conclusions
section.

2. Problem and Solution Description

This section provides some basic definitions (confer [5]) and gives a raw description of the
presented method.

2.1. Problem Statement

Definition 2.1 (autonomous and forced dynamics). A dynamical and time-variant process is
described by the following function:

ẋ(t) = f(x(t),u(t), t), (2.1)

f : Rl × Rm × R −→ Rl, (2.2)

where x = [x1, . . . , xl] is a state vector and u = [u1, . . . , um] is a control vector, and l,m ∈ N.
Let the autonomous dynamics be described by

ẋx(t) = fx(x(t), t) (2.3)

and let the forced dynamics be defined by a simple centroaffine transformation

ẋu(t) = fu(x(t),u(t)) = Fu(t), (2.4)
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where F is a fixed (time-invariant) l × m input control matrix, and the above contributors
satisfy the following additivity condition:

ẋ(t) = ẋx(t) + ẋu(t), (2.5)

where xx and xu are two, autonomous and forced state components.

Definition 2.2 (operational subspace P). A subset P = D1×D2×· · ·×Dl, whereDi, for i = 1, . . . , l,
represents a range along the axis xi, which is taken into account while seeking an optimal
trajectory, is said to be an operational subspace.

Definition 2.3 (forbidden zoneZ). A subsetZ of P prohibited for operational points is referred
to as a forbidden zone. This means that the sought optimal trajectory cannot enter it.

Definition 2.4 (system trajectory E(u)). Any sequence E(u) of consecutive states of a given
dynamical system for a feasible control input u from a setU is said to be a system’s trajectory
or a trajectory of operational points in the system state space P \ Z.

Definition 2.5 (transition vector Λ). A transition vector Λ is an ordered set of two elements
{x0, xk}

Λ = {(x0, xk) : x0, xk ∈ E(u)}, (2.6)

where x0 is the first element and xk is the last element of the sought (optimal) trajectory.

Definition 2.6 (cost function J(E(u)) of the system and control trajectory). LetA be a set of all
trajectories E ∈ A ⊂ P \Z. Any real function of the classA → R+ is said to be a cost function
J(E(u)) of this trajectory.

Definition 2.7 (optimal trajectory E∗). Let Ξ ⊂ A be the subset of all possible trajectories that
perform the desired transition Λ (i.e., which start at x0 and terminate at xk). We say that a
trajectory E∗ is (costly) optimal if it satisfies the following conditions:

∀E∈ΞJ(E) ≥ J(E∗),

∀x∈E∗x ∈ P \ Z.
(2.7)

Definition 2.8 (autonomous dynamics map M). The image ẋx of the whole space P in the
transformation fx is said to be an autonomous dynamics map M(= ẋx).

Our ultimate objective is to find the optimal and feasible control u∗(t) along with its
corresponding state trajectory E∗ = E(u∗(t)) ∈ (P \ Z), which implements the complete
transition Λ of the dynamical system (2.1) from its initial state x(t0) = x0 to the target state
x(tk) = xk and at the same time minimizes the cost functional of the following form:

J(E(u)) =
∫ tk

t0

(
m∑
i=1

βi|ui(t)|
)
dt, (2.8)
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where βi, i = 1, . . . , m are nonnegative factors often used for weighting, and tk is a suitable
transition-time interval resulting from the applied optimal control procedure.

2.2. Solution Method

For the dynamical systems described in Definition 2.1, we consider its simple discrete-time
variability of the computationally-convenient jump type allowing for the state-space system
approximation scheme depicted in Figure 1.

Leaving apart the initial conditions defined for a certain t0, let us consider consecutive
continuous-time computational time moments tn, for n = 1, . . . ,N, with tn − tn−1 = h = Δt,
being a computation step (or a simulation insight), where N ∈ N is a discrete-time horizon
under consideration.

Definition 2.9 (temporary workspace Pn). At each of the above-mentioned computational
moments, a separate temporary duplicate Pn of the operational subspace P will be associated,
as shown in Figure 1.

Definition 2.10 (snapshots Mn of the dynamics map). The multiplication of the subspace P
allows us to define separate snapshots Mn of the dynamics map M assigned to consecutive
time moments n = 0, . . . ,N.

Themap snapshotsMn are thus assigned to each of the temporaryworkspaces Pn. This
is, however, difficult to be portrayed on the composite scheme given in Figure 1. Instead, there
are only shaded planes illustrating this effect. A better portray of map snapshots is given in
the following example (see Figure 2).

Definition 2.11 (continuous-time dynamic system with discrete-time variability). The tempo-
rary (potentially time-variant) system dynamics composed of the autonomous and forced
dynamics can be defined in the computational moments as

ẋ(tn) = ẋx(tn) + ẋu(tn) (2.9)

which by the power of (2.3) and (2.4) allows for simple modeling of the system variability
(which can be arbitrary induced by redefining the functions fx and fu).

Note that the snapshotsMn of the map are included in (2.9) as ẋx, whereas the control
part ẋu represents the forced component (2.4) of the complete state derivative ẋ. Clearly, this
means that not just the snapshot Mn forms the derivative of the state.

Definition 2.12 (process computation). The procedure of calculating the operational-point
trajectory in the state-space for the assumed discrete-time variability model (which can also
be treated as a kind of real-system approximation) consists of the following derivative-based
prediction and numerical integration steps:

(i) take ẋ(tn) and treat it as a local estimation of the system dynamics for the future
time interval 〈tn, tn+1),
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Figure 1: Continuous-time dynamic system with discrete-time variability.
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Figure 2: Autonomous dynamics map of the process for the time moment t = 0. Background color:
the absolute value of the autonomous dynamics vector; small arrows: the direction of the autonomous
dynamics vector; dotted lines: the orbits of the centers of attraction; solid lines: the borders of the forbidden
zones; big arrows: the direction of the movement of the centers of attraction.

(ii) calculate the next state vector for the time moment tn+1 as

x(tn+1) = x(tn) + hẋ(tn). (2.10)

Note that the rectangular integration scheme applied above for modeling the time-
variability of dynamical systems is widely utilized in the procedures of computer simulation
of variant or invariant continuous-time systems [7].

Definition 2.13 (segmentation of the temporary operational subspaces). Segmentation of
the temporary operational subspace Pn consists in dividing it, for the time moments tn,
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n = 0, . . . ,N, into a set Sn of S segments denoted as Φn
j , for j = 1, . . . , S, according to the

following relation:

Pn =
S⋃
j=1

Φn
j , (2.11)

where each pair of segments for any discrete time n satisfies the following separability
condition:

(
Φn

i − δΦn
i

) ∩ (
Φn

j − δΦn
j

)
= ∅ (2.12)

for i, j = 1, . . . , S; i /= j, where δ denotes the closure of the corresponding set. Clearly, the size
of the segments is typically selected in accordance with some fidelity criteria of the applied
discrete approximation of the original process.

For the computational purposes we need a definition of a segment neighborhood and
a generic concept of a distance (norm). Let us thus assume the common Euclidean norm ‖ · ‖e
and the following definition.

Definition 2.14 (segment’s neighborhood). Any segmentΦn
B is in the neighborhood of another

segment Φn
A, that is, Φ

n
B ∈ H(Φn

A), if their geometrical centers xB and xA satisfy a simple
neighboring condition:

‖xB − xA‖e ≤ r, (2.13)

where ‖ · ‖e means the Euclidean norm, and r is a fixed neighborhood size.

Definition 2.15 (representatives). Any variable used in optimization and assigned to a seg-
ment is said to be a representative.

The autonomous dynamics map of Definition 2.8, being the derivative of the vector
function x(t), makes a principal source of candidates for a rational selection of the segment
representatives. Note that in accordance to the common idea of domain and codomain of
the transformation fx, from a practical implementation viewpoint, the map means a kind of
doubling of the problem dimensioning with respect to Pn. This fact is merely represented in
Figure 1 by the colors (or rather shades) applied to different temporary subspaces Pn. When
the local evolution ẋ of some of the coordinates of the state vector is not relevant for the
optimization considered, the co-domain can be reduced. At the same time the designer can
introduce other representatives relevant for the optimization procedure and criterion.

Definition 2.16 (predecessor and successor workspaces). For any pair (Pn, Pn+1), Pn is called a
predecessor and Pn+1 is referred to as a successor (on the time scale).

Definition 2.17 (time-and-state operational space). The time-and-state operational
(sub)space, concerning all the time moments tn, n = 0, . . . ,N, is composed as follows:

P = {P1, P2, . . . , Pn, . . . , PN}. (2.14)
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In spite of the above definition of the (global) time-and-state operational space, and
according to the scheme depicted in Figure 1, the principal optimization takes place in
particular temporary workspaces Pn. Clearly, based on the procedure judgment shown in
Figure 1, the time domain has to be treated separately.

Definition 2.18 (state-space graph Gn). A flow graph representing the arrangement of the
segments of the temporary operational workspace Pn, n = 0, . . . ,N, is said to be a state-space
graph. According to the common idea [8] of flow graphs:

Gn = (Wn,Dn,Kn), (2.15)

we interpret its basic structure as a set Wn of nodes, each of which is assigned a set of the
values of the representatives of its corresponding segments. Only the edges connecting two
nodes representing segments located in theirmutual neighborhood form a setDn of the edges.
Each edge d ∈ Dn is assigned a flow value k ∈ Kn.

Definition 2.19 (time-and-state space toolgraph). According to the definition of the time-and-
state operational space, and based on the state-space graphs of all the workspaces Pn, a time-
and-state space toolgraph is composed by adding costless, directed edges connecting all the
pairs of equivalent (in the subspace geometry) segments in the predecessor and successor
workspaces.

2.3. Algorithm Description

Basically, the presented algorithm takes the above-defined principal notions (the time-and-
state space P composed of the temporary operational workspaces Pn, the transition vector Λ,
and the segmentation form) to minimize the adopted cost function J(E(u)). Optionally, we
can determine the feasible control set U and the forbidden zone Z. The latter can be used to
represent some constraints portraying, for instance, faults previously detected in the system.

Definition 2.20 (the toolgraph optimization algorithm). Initialization with the input data:
dynamic process description, operational time-and-state space, forbidden zones, initial and
terminal trajectory points, and time horizon is as follows.

(i) Step 1. Segmentation.

(ii) Step 2. Determination of the representatives.

(iii) Step 3. Are the fidelity conditions met?

(1) If yes, go to Step 4.
(2) If no, resize the segments, introduce new forbidden zones, and go to Step 1.

(iv) Step 4. Creation of the toolgraph.

(v) Step 5. T-graph search for the cheapest path connecting the initial and the terminal
nodes.

(vi) Step 6. Has the cheapest path been found?

(1) If yes, go to Step 7.
(2) If no, terminate the algorithm.
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(vii) Step 7. The reference trajectory synthesis (based on the path found in the previous
step).

As can be seen in Definition 2.20, we start the procedure by segmenting the temporary
subspaces Pn which results in a limited set of S segments, for n = 0, . . . ,N. Each segment of a
set of representatives is assigned. Certainly, the size of the segments is chosen in accordance
to an assumed discretization error, or fidelity index (discussed later on in the examples).

Next, the state space graphs are formed. According to Definition 2.18, each node from
Wn is associated with a certain segment of Pn. Its edges connect only nodes representing the
segments neighboring in Pn. The edge flow values are determined according to the adopted
function cost. Consequently, the time-and-state space toolgraph is built as a composition of
the “consecutive” state-space graphs according to Definition 2.19.

For practical optimization problems, any discrete optimization algorithm, which is
suitable for finding the cheapest path between two selected nodes, can be utilized. If such
a path exists, it represents a sequence of segments, which should be visited by the optimal
trajectory. This sequence of segments implies a reference trajectory, which can be tracked by
an executive controller in a procedure of a suboptimal fulfillment of the stated control task.

3. Optimization Examples

This section provides an illustrative example which utilizes the above-mentioned formal
definitions and the optimization algorithm. The minimized criterion is given by (2.8) with
the restriction that the resulting trajectory is piecewise linear in the considered time-and-state
space. The example concerns a two-dimensional time-variant dynamical process described in
the following subsection.

3.1. Process Description

The exemplary process is described by the following set of equations:

ẋ1(t) =
GMAx1

dA(x1(t), x2(t))2
− GMB(x1(t) − x1B(t))

dB(x1(t), x2(t))2

− GMC(x1(t) − x1C(t))

dC(x1(t), x2(t))2
− GMD(x1(t) − x1D(t))

dD(x1(t), x2(t))2
,

ẋ2(t) =
GMAx2

dA(x1(t), x2(t))2
− GMB(x2(t) − x2B(t))

dB(x1(t), x2(t))2

− GMC(x2(t) − x2C(t))

dC(x1(t), x2(t))2
− GMD(x2(t) − x2D(t))

dD(x1(t), x2(t))2
,

(3.1)

where G = 6.673 × 10−3, MA = 7.9891 × 102, MB = 4.8685 × 102, MC = 8.9736 × 102, and
MD = 7.3476 × 102 are the process constant parameters. The auxiliary model variables and
functions given above are defined as follows:

dA(x1(t), x2(t)) =
√
(x1(t))2 + (x2(t))2,

dB(x1(t), x2(t)) =
√
(x1(t) − x1B(t))2 + (x2(t) − x2B(t))2,
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dC(x1(t), x2(t)) =
√
(x1(t) − x1C(t))2 + (x2(t) − x2C(t))2,

dD(x1(t), x2(t)) =
√
(x1(t) − x1D(t))2 + (x2(t) − x2D(t))2,

(3.2)

where

x1B(t) = RB sinαB(t), x2B(t) = RB cosαB(t),

x1C(t) = RC sinαC(t), x2C(t) = RC cosαC(t),

x1D(t) = RD sinαD(t) + RC sinαC(t),

x2D(t) = RD cosαD(t) + RC cosαC(t),

RB = 50,

RC = 120,

RD = 40

(3.3)

and αB, αC, αD are the internal process state variables characterized by derivatives

α̇B(t) = ΩB,

α̇C(t) = ΩC,

α̇D(t) = ΩD

(3.4)

of the following constant values: ΩB = 65.306 × 10−3, ΩC = 17.56 × 10−3, ΩD = 96.728 × 10−3.
The autonomous dynamics map of the described process is shown in Figure 2, where

certain three (B,C,D) centers of attraction can be seen, which circulating with the angular
velocities (ΩB,ΩC,ΩD, resp.) around the center (A) are the source of process time-variability.
Additionally, the forbidden zones ZA, ZB, ZC, ZD are defined in the forms of circular areas,
which have the radii rA = 10, rB = 20, rC = 15, and rD = 10, respectively. The midpoints of the
forbidden zones cover the midpoints of the respective centers of “attraction.”

3.2. Algorithm Implementation

In theory, an infinite time horizon of optimization is a simple and trivial solution for the
time horizon setting. In computer applications, we prefer the concept of “sufficiently” large
horizons, which is determined according to our prior knowledge on the optimization process
and the limitations of available computing power, whereas the time step size was chosen
empirically so as to obtain the desired “granularity” of the solution.

According to Definition 2.13, the segmentation procedure consists of dividing the
operational subspaces Pn, n = 0, . . . ,N, being, in this case, hypercubes described byD1×D2 =
(−250, 250) × (−250, 250), into the set of segments of diameters (rx1 = 10, rx2 = 10), all located
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along the time axis at a step size Δt = 10. For each segment the representative values are
calculated as the averages of the autonomous dynamics computed for particular directions:

FAVRΦn
j,i
=

1
Np

Np∑
k=1

FDYNn
i,k
, (3.5)

where FDYNn
i,k
denotes the kth sample of the coordinate xi of the autonomous dynamics map

for the discrete time moments n, andNp = 25 denotes the number of samples per segment in
this following examples.

The fidelity of the applied discrete representation for the segment Φn
j,i is assessed as

eΦn
j,i
=

Np∑
k=1

∣∣∣FDYNn
i,k
− FAVRΦn

j,i

∣∣∣. (3.6)

If eΦn
j,i
exceeds some given threshold, which can be an empirically estimated value,

we assume that the segment Φn
j,i along with its representatives constitutes an infeasible

representation of the autonomous dynamics in the area of the time-and-state space occupied
by this segment. In such cases either the size of the segment is changed or the segment is
included to the forbidden zone (as an area of high dynamics).

Having defined the neighborhood of the segments, the construction of the state-space
graphs and time-and-state space toolgraph comes according to Definitions 2.18 and 2.19,
respectively. The flow values are determined as the cost of driving the operational point
between each two neighboring segments according to (2.8).

The last stage consists in searching the above-defined time-and-state space toolgraph
for the cheapest path connecting the initial and the terminal node. We can use, for instance,
the Dijkstra’s algorithm [9] for this purpose.

3.3. Problem 1

The first problem concerns finding a trajectory of the operational point, which minimizes
(2.8), with the initial location at (x1o = −250, x2o = −250, t0 = 0) and the terminal point
(x1k, x2k, tk) satisfying the following condition:

√
(x1k − x1D)2 + (x2k − x2D)2 ≤ 1.5rd,

(x1k, x2k) /∈ ZD,

tk ≤ tN,

(3.7)

where the assumed time horizon is tN = 2000. The results are presented in Figure 3. The total
cost indicator is equal to J1 = 43.454 × 10−2. It can be clearly seen that the optimal strategy
consists in keeping the operational point at the initial location till a certain time moment
(t∗ = 1405) and then to start the transition process.
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Figure 3: Resulting optimal trajectory for Problem 1 (solid black line); the forbidden zones of the respective
centers of attractions: A, B, C, D (colored areas).

3.4. Problem 2

In this case the time horizon was shortened to tN = 1600, which resulted in a higher value J2 =
52.494 × 10−2 of the total cost indicator as compared to the one of Problem 1. The remaining
parameters are the same as in Problem 1. The results are depicted in Figure 4.

3.5. Problem 3

Further shortening of the time horizon tN = 1000 leads to a greater control cost J3 = 150.744×
10−2 with the trajectory of the operational point depicted in Figure 5.

3.6. Problem 4

This time the problem of driving the operational point from the initial condition (x1o =
0, x2o = 0, t0 = 0) to the terminal point (x1k > 180, x2k > 180, tk ≤ tN) is considered. The
time horizon is tN = 1000. The resulting total cost is equal to J4 = 275.368×10−2. The designed
trajectory is presented in Figure 6.

3.7. Problem 5

This case is a variation of Problem 4 with the time horizon lengthened to tN = 4000, which
resulted in a reduction of the total cost J5 = 202.905 × 10−2. The computed trajectory is
presented in Figure 7.
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Figure 4: Optimal trajectory for Problem 2 (solid black line); the forbidden zones of the respective centers
of attractions: A, B, C, D (colored areas).
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3.8. Problem 6

The last example presents the design of the optimal trajectory with the initial point at (x1o =
2.5, x2o = −17.5, t0 = 0) and the terminal point satisfying (3.7) with the time horizon tN =
4000. The total cost J5 = 24.752 × 10−2. The gained results are depicted in Figure 8.

4. Conclusions

This work presents an effective concept of designing optimal and feasible control strategies
for time-varying dynamical processes based on discrete optimization approach and its
solutions.

After segmenting the composed time-and-state workspace of the process dynamics,
a time-and-state space toolgraph (made of temporary state-space graphs) is constructed
that represents all the pertinent properties of the autonomous dynamics of the considered
dynamical process. Additional assumptions or restrictions concerning arbitrary forbidden
zones for the operational points can be easily taken into account. Numerical computations
are performed by means of any discrete optimization algorithm which searches for the
cheapest path connecting the node initial and terminal nodes. The presented work has been
implemented based on the basic form of the Dijkstra’s algorithm, whose performance can be
improved by applying various modifications given in the literature, for instance, in [10].

The resulting cheapest path describes an optimal piecewise-linear trajectory of the
operational points in the considered time-and-state space. Note that such a solution may
need some kind of smoothing for most real-time process cases.
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A clear suboptimal property of the proposed approach results from the fact that the
computed reference trajectory can only pass through the centers of the segments. In this
context the size of segments has a key influence on the quality of the ultimate optimal solution
being sought.

Thus, in general, this interdisciplinary paper concerns research into formal opti-
mization methods and tools. Namely, it shows how to constructively predefine the control
optimisation problem or to convert complex optimal control problems for nonlinear time-
variant objects with constraints into a graph structure ready to be processed by any of the
discrete optimization methods, in particular, by the standard numerical methods of graph
optimisation. In the light of theory application to problems arising in engineering, this
method can be used for on- or off-line numerically solved practical optimal control or path-
finding problems for time-varying objects or environments.

Though this paper is an investigative proposition of a new numerical optimization
method, an abstract but nontrivial and imaginative example of several variations has
also been given to illustrate the effectiveness of the proposed methodology. The example
presented inclusive of a system of variant attraction centers is a rough analog to the solar
system. Other business and industry applications are to be developed in order to give a
wider proof of the advantages of the proposed method in a confrontation with the scientific
challenges of the real world. We also hope that this paper should encourage scientists and
engineers to apply both this approach and the discrete optimisation methods.

Complexity of the presented method principally results from the complexity of the
algorithm applied for searching the toolgraph. Some clues concerning the possibilities of
improving the graph search process can be found in [11, 12], for instance. It is clear that
the difficulty of the proposed method is shaped mostly by the numerical complexity of
searching the T-graph. In a straightforward tactic one makes use of the Dijkstra algorithm
(O(n2)). Other, mostly heuristic enhancements (like the renowned algorithm A∗) can also
be employed in order to improve the efficiency of the proposed numerical optimisation
procedure.

In spite of the presented feasibility of the approach, a general problem of the so-called
curse of dimensionality has always to be taken into account in all research of this type. This
means that there are limits which render such approaches infeasible in some problems of
practical interest. Nevertheless, nowadays, in view of the persistent progress in computer
technology, finding constructive methods of solving problems appears to be most substantial
in science, technology, and engineering.
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