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This paper deals with classical dimensional reductions 3D-2D and 3D-1D in magnetoelastic
interactions. We adopt a model described by the Landau-Lifshitz-Gilbert equation for the
magnetization field coupled to an evolution equation for the displacement. We identify the limit
problem both for flat and slender media by using the so-called energy method.

1. Introduction

Magnetostrictive solids are those in which reversible elastic deformations are caused by
changes in themagnetization. Thesematerials have a coupling of ferromagnetic energies with
elastic energies. Magnetostriction is observed, to differing degrees, in all ferromagnetic
materials. To explain the observed magnetic behaviour, there have been a number of
theoretical developments for magnetostrictive materials, including the works by Brown [1]
and Landau and Lifshitz [2]. A well-established variational model, called Micromagnetics [1,
2], is in principle available to describe the magnetomechanical response of magnetostrictive
solids. Treatments on micromagnetic processes are also available in Aharoni [3] and Hubert
and Schäfer [4]. The general micromagnetic problem for reasonably large samples is,
however, difficult. That is because of the necessity of resolving exceedingly complex three-
dimensional domain structures. For sufficiently small thin films, numerical simulations are
now routinely used to explore the energy landscape. But simulations are simply experiments.
To interpret them, it is natural to do analysis as well. The understanding of thin film
behaviour has been helped by the mathematical asymptotic analysis of energies defined
on three-dimensional domains of vanishing thickness, through the use of Γ-convergence
techniques Gioia and James [5], Desimone [6], Desimone et al. [7], DeSimone and James
[8], Alicandro and Leone [9], Kohn and Slastikov [10], Alouges and Labbé [11], Chipot et
al. [12, 13]. The focus in all these papers is energy minimization both with and without
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magnetostriction, but the dynamics and switching of thin film ferromagnets is also an
important topic. The papers by Ammari et al. [14], Carbou [15] and Kohn and Slastikov
[16] propose a two-dimensional reduction of the Landau-Lifshitz-Gilbert (LLG) equations of
micromagnetic switching. For dynamics including magnetostriction we refer, for example, to
Visintin [17], Valente [18], Valente and Vergara Caffarelli [19] and Carbou et al. [20] where
some results concerning global existence of weak solutions are established. Finally, some
computational aspects of magnetostriction are presented in Cerimele et al. [21] and Baňas
[22].

The main goal of this paper is to combine the ideas of the references cited above from
the elasticity and micromagnetics literature to derive asymptotic models for magnetostrictive
films and nanowires. We are concerned with the passage 3D-2D and 3D-1D in the dynamical
theory of thin magnetoelastic films. Our investigation has its starting point in the work by
Valente and Vergara Caffarelli [19], where the authors establish the existence of weak sol-
utions to a three-dimensional model for the LLG equation with magnetostriction. We shall
assume antiplane displacement. We intend to analyze the behaviour of these solutions with
one and two diminishing edges. In order to identify the limit problem we make use of the
scaling techniques which are well known in elasticity, see, for example, Ciarlet [23], Ciarlet
and Destuynder [24]. Here we try to extend in some sense the work [25].

This paper is organized as follows. In Section 2 we present the general three-dimen-
sional model with corresponding energy estimate and a global existence result of weak
solutions. Section 3 describes the antiplane model equations which will be the subject of an
asymptotic study. In Section 4, we first consider the dimensional reduction from 3D to 2D.We
introduce the natural scaling for the problem and prove uniform bounds for the solutions,
with respect to vanishing parameter, which allows us to identify the limit problem. We then
consider the 3D-1D reduction and state the limit problem. The last section concludes the
paper and provides future directions for this work.

2. The 3D Model and Preliminary Results

To describe the model equations we consider Ω a bounded open set of R
3. The generic point

of Ω is denoted by (x̂, x3) with x̂ = (x1, x2). Here and throughout the paper we use bold
characters to denote the vector-valued functions. The model combines phenomenological
constitutive equations for the magnetization M and the displacement u. The nonlinear
parabolic hyperbolic coupled system describing the dynamics in Q = (0, T) × Ω is given
by (see [19])

γ−1∂tM −M × (aΔM − ∂tM − l(M,u)) = 0,

ρ∂ttu − div
(

S(u) +
1
2
L(M)

)

+ f = 0,
(2.1)

where the components of the vector l(M,u) and the tensors S(u),L(M) are given by

li(M,u) = λijklMjεkl(u),

Skl(u) = σijklεij(u),

Lkl(M) = λijklMiMj.

(2.2)
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Here εij stand for the components of the linearized strain tensor ε, λijkl = λ1δijkl + λ2δijδkl +
λ3(δikδjl + δilδjk) and σijkl = τ1(δijkl − δijδkl + δikδjl) + τ2δijδkl with δijkl = 1 if i = j = k = l and
δijkl = 0 otherwise. The elasticity tensor σijkl is assumed to satisfy the following symmetry
property,

σijkl = σjikl = σklij , (2.3)

and moreover the inequality

∑
(

σklijεklεij
)

≥ β
∑

|εkl|2 (2.4)

holds for some β > 0.
As initial and boundary conditions we assume

u(0, ·) = u0, ∂tu(0, ·) = u1, M(0, ·) = M0, |M0| = 1 in Ω, (2.5)

u = 0, ∂νM = 0 on Σ = (0, T) × ∂Ω, (2.6)

where ν is the outer unit normal at the boundary ∂Ω.
The first equation in (2.1), well known in the literature, is the modified LLG equation.

The modification lies in the presence of the term l(M,u). The unknownM, the magnetization
vector, is a map from Ω to S2 (the unit sphere of R

3). The symbol × denotes the vector cross
product in R

3. Moreover we denote by Mi, i = 1, 2, 3 the components of M. The constant γ
represents the damping parameter while a is the exchange coefficient. The second equation
in (2.1) describes the evolution of the displacement uwhere ρ is a positive constant and f is a
given external force.

We introduce the functional E(t) defined as

E(t) = a

2

∫

Ω
|∇M|2dΩ +

β

4

∫

Ω
|ε(u)|2dΩ +

ρ

2

∫

Ω
|∂tu|2 dΩ (2.7)

and put (τ > 0)

E0 =
a

2

∫

Ω
|∇M0|2dΩ +

τ

4

∫

Ω
|∇u0|2dΩ +

ρ

2

∫

Ω
|u1|2 dΩ. (2.8)

In the sequel and without loss of generality, we assume that f ≡ 0.

Lemma 2.1 (energy estimate). Let u0 ∈ H1
0(Ω,R

3), u1 ∈ L2(Ω,R3), M0 ∈ H1(Ω,R3) with
|M0| = 1 a.e inΩ, then there exist positive constants c1 and c2 depending on T such that the following
estimate holds:

E(t) +
∫ t

0

∫

Ω
|∂tM|2dΩdt ≤ c1E0 + c2. (2.9)
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Proof. We refer the reader to Valente and Vergara Caffarelli [19]. We mention that to obtain
the above energy estimate it is assumed that σijklεij(u)εkl(u) ≤ τ |∇u|2.

We have the following global existence result for problem (2.1)–(2.6).

Theorem 2.2 (global existence). (Valente and Vergara Caffarelli [19]). Given u0 ∈ H1(Ω),u1 ∈
L2(Ω) and M0 ∈ H1(Ω) with |M0| = 1 a.e. in Ω, there exists a weak solution (M,u) to the problems
(2.1)–(2.6) in the sense that

(i) M ∈ H1(Q) with |M| = 1 a.e. in Q,u ∈ L2(0, T ;H1
0(Ω)), ∂tu ∈ L2(0, T ;L2(Ω)),

(ii) for each couple (p,g) such that p ∈ C∞(Q) vanishing at t = 0 and t = T , and g ∈
H1(Q) ∩ C0(Q), one has

∫

Q

⎛

⎝γ−1∂tM · p + a
2
∑

j=1

M × ∂xjM · ∂xjp +M × (∂tM + l(M,u)) · p

⎞

⎠dΩdt = 0, (2.10)

∫

Q

[

−ρ∂tu∂tg +
(

S(u) +
1
2
L(m)

)

: ε(g)
]

dΩdt = 0, (2.11)

Moreover the energy estimate (2.9) holds true.

In the sequel, the operators ̂div, ĝrad, and ̂Δ will represent divergence, gradient, and
laplacian operators, respectively, with respect to the variable x̂.

3. The Antiplane Case

Our asymptotic analysis will be performed in the framework of a simplified model in which
we neglect the in-plane components of displacement; that is, we assume that u = (0, 0,W). So
the model (2.1) reduces to the following system (we let τ2 = 0, λ1 = 0, τ1 = 2τ and λ2 = λ3 = λ):

γ−1∂tM −M × (aΔM − ∂tM − λV) = 0 (3.1)

coupled with

ρ∂ttW − τ ̂ΔW − 2τ∂x3x3W − λ
(

∂x1(M1M3) + ∂x2(M2M3) + ∂x3
(

M2
3

))

= 0,

2τ∂x1x3W − λ∂x1M2
1 − λ∂x2(M1M2) − τ∂x3∂x1W − λ∂x3(M1M3) = 0,

−λ∂x1(M1M2) + 2τ∂x2x3W − λ∂x2
(

M2
2

)

− τ∂x3x2W − λ∂x3(M2M3) = 0

(3.2)

in Q = (0, T) ×Ω, where the vector V = V(M,∇W) is given by

V = (M3∂x1W +M1∂x3W, M3∂x2W +M2∂x3W, M1∂x1W +M2∂x2W + 3M3∂x3W). (3.3)
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The associated initial and boundary conditions writes

W(0, ·) =W0, ∂tW(0, ·) =W1, M(0, ·) = M0, |M0| = 1 in Ω, (3.4)

W = 0, ∂νM = 0 on Σ = (0, T) × ∂Ω. (3.5)

4. Dimensional Reduction

4.1. Flat Domains

Let ε be a real parameter taking values in a sequence of positive numbers converging to zero.
We consider flat magnetoelastic domains represented byΩε = ω × (0, ε), where ω is a regular
and bounded subset of R

2. We shall be interested in getting the asymptotic behaviour of the
solutions, when ε → 0.

4.1.1. Scaling and Uniform Bounds

Let (M,W) be a solution of the problem (3.1)–(3.5) posed in Ωε. We introduce the change of
variables (x1, x2, x3) = (x, y, εz)with (x, y, z) = X ∈ Ω = ω × (0, 1). For functions R(x1, x2, x3)
and S(x1, x2, x3) defined in Ωε we introduce the functions rε(x, y, z) and sε(x, y, z) defined
on Ω by setting

R(x1, x2, x3) = rε
(

x, y, z
)

; S(x1, x2, x3) = sε
(

x, y, z
)

. (4.1)

Let (mε,wε) be the fields associated with (M,W). The scaled equations satisfied by
(mε) are the following:

γ−1∂tmε −mε ×
(

a

(

̂Δmε +
1
ε2
∂zzmε

)

− ∂tmε − λ ˜Vε

)

= 0. (4.2)

The vector ˜Vε is defined by

˜Vε =
(

mε
3∂xw

ε +
1
ε
mε

1∂zw
ε,mε

3∂yw
ε +

1
ε
mε

2∂zw
ε,mε

1∂xw
ε +mε

2∂yw
ε +

3
ε
mε

3∂zw
ε

)

. (4.3)

For the scaled displacement uε = (0, 0, wε) we have

ρ∂ttw
ε − τ

(

̂Δwε +
2
ε2
∂zzw

ε

)

− λ
(

∂x
(

mε
1m

ε
3

)

+ ∂y
(

mε
2m

ε
3

)

− λ

ε
∂z
(

mε
3

)2
)

= 0,

2
τ

ε
∂xzw

ε − λ∂x
(

mε
1

)2 − λ∂y
(

mε
1m

ε
2

)

− τ

ε
∂zxw

ε − λ

ε
∂z
(

mε
1m

ε
3

)

= 0,

−λ∂x
(

mε
1m

ε
2

)

+ 2
τ

ε
∂yzw

ε − λ∂y
(

(

mε
2

)2
)

− τ

ε
∂zxw

ε − λ

ε
∂z
(

mε
2m

ε
3

)

= 0.

(4.4)
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The associated energy Eε(t), defined in (2.7), becomes

Eε(t) = a

2

∫

Ω

∣

∣

∣ĝradmε
∣

∣

∣

2
dΩ +

a

2ε2

∫

Ω
|∂zmε|2dΩ

+
β

4

∫

Ω

∣

∣

∣ĝradwε
∣

∣

∣

2
dΩ +

β

4ε2

∫

Ω
|∂zwε|2dΩ +

ρ

2

∫

Ω
|∂twε|2dΩ.

(4.5)

The energy equation remains unchanged as well as the saturation constraint on magnetiza-
tion (see (2.5))which is written as

|mε(t, X)|2 =
∣

∣mε
0(X)

∣

∣

2 = 1 (4.6)

for almost every (t, X). The following estimates hold true for all t ≥ 0

Eε(t) +
∫ t

0

∫

Ω
|∂tmε|2dΩdt ≤ c1Eε0 + c2, (4.7)

where Eε0 is given by

Eε0 =
a

2

∫

Ω

∣

∣

∣ĝradmε
0

∣

∣

∣

2
dΩ +

a

2ε2

∫

Ω

∣

∣∂zm
ε
0

∣

∣

2dΩ

+
τ

4

∫

Ω

∣

∣

∣ĝradwε
0

∣

∣

∣

2
dΩ +

τ

4ε2

∫

Ω

∣

∣∂zw
ε
0

∣

∣

2dΩ +
ρ

2

∫

Ω

∣

∣wε
1

∣

∣

2dΩ.

(4.8)

To get uniform bounds for the solutions we discuss the admissibility criterion for the initial
data. An initial datum (mε

0, w
ε
0) is said to be admissible if we have

Eε0 < +∞. (4.9)

The admissibility criterion means

a

2

∫

Ω

∣

∣

∣ĝradmε
0

∣

∣

∣

2
dΩ +

a

2ε2

∫

Ω

∣

∣∂zm
ε
0

∣

∣

2dΩ

+
τ

4

∫

Ω

∣

∣

∣ĝradwε
0

∣

∣

∣

2
dΩ +

τ

4ε2

∫

Ω

∣

∣∂zw
ε
0

∣

∣

2dΩ +
ρ

2

∫

Ω

∣

∣wε
1

∣

∣

2dΩ < +∞.

(4.10)

Thus, since |mε
0|2 = 1 a.e., to satisfy the criterion, we assume that there exists C > 0

independent of ε such that

∣

∣

∣ĝradmε
0

∣

∣

∣

L2(Ω)
≤ C,

∣

∣∂zmε
0

∣

∣

L2(Ω) ≤ Cε,
∣

∣mε
0

(

x, y
)∣

∣

2 = 1 a.e.,

∣

∣

∣ĝradwε
0

∣

∣

∣

L2(Ω)
≤ C,

∣

∣∂zw
ε
0

∣

∣

L2(Ω) ≤ Cε,
∣

∣wε
1

∣

∣

L2(Ω) ≤ C.
(4.11)



Mathematical Problems in Engineering 7

Condition (4.11) means that the couple (mε
0, w

ε
0) is essentially independent of the variable z

and its strong limit (m0, w0) is independent of z.

Remark 4.1. If the initial data are not admissible, then we expect an initial layer to occur when
ε tends to zero.

4.1.2. Passing to the Limit

Let (mε,wε) be a solution of the problem associated to an admissible initial datum (mε
0, w

ε
0).

We have

mε
0 ⇀ m0 weakly- � inL∞(Ω) andweakly inH1(Ω),

wε
0 ⇀ w0 weakly inH1(Ω).

(4.12)

Moreover m0(x̂, z) = m0(x̂) is independent of z. For subsequences, the solutions verify the
convergences

mε ⇀ m weakly- � in L∞(R+ ×Ω) ∩ L∞
(

R
+,H1(Ω)

)

,

wε ⇀ w weakly in L2
(

0, T,H1
0(Ω)

)

,

(4.13)

∂zmε −→ 0 strongly in L∞
(

R
+, L2(Ω)

)

,

∂zw
ε −→ 0 strongly in L∞

(

R
+, L2(Ω)

)

,

∂tmε ⇀ ∂tm weakly in L2
(

R
+, L2(Ω)

)

,

∂tw
ε ⇀ ∂tw weakly in L2

(

0, T ;L2(Ω)
)

.

(4.14)

Hence, the couple (m, w) is independent of the variable z. By Aubin’s compactness results,
we have

(mε,wε) −→ (m, w) strongly in L2
loc

(

R
+, L2(Ω)

)

. (4.15)

Moreover from the Sobolev embedding theorem W1,2(Q) → Lq(Q) (2 ≤ q ≤ 6), the further
compactness result follows

mε
im

ε
j −→ mimj strongly in L2(Q), i, j = 1, 2, 3. (4.16)

Recall that Q = (0, T) ×Ωwith Ω = ω × (0, 1).
In order to pass to the limit we look at the variational formulation of the scaled

problem (4.2)–(4.4) by using an oscillating test functions. Let ψε(t, x̂, z) and gε(t, x̂, z) be
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a regular test functions depending on ε. Multiplying (4.2) by ψε, each Equation (4.4) by gε

and integrating by parts, we get the weak formulations

γ−1
∫

Q

∂tmε · ψε dΩdt +
∫

Q

mε × ∂tmε · ψε dΩdt

= −λ
∫

Q

mε × ˜Vε · ψε dΩdt − a
∫

Q

mε × ĝradmε · ĝradψε dΩdt

− a
ε2

∫

Q

mε × ∂zmε · ∂zψε dΩdt,

(4.17)

−ρ
∫

Q

∂tw
ε∂tg

ε dΩdt + τ
∫

Q

ĝradwεĝrad gε dΩdt +
2τ
ε2

∫

Q

∂zw
ε∂zg

ε dΩdt

+λ
∫

Q

mε
1m

ε
3∂xg

ε dΩdt + λ
∫

Q

mε
2m

ε
3∂yg

ε dΩdt +
λ

ε

∫

Q

(

mε
3

)2
∂zg

ε dΩdt = 0,

−2τ
ε

∫

Q

∂zw
ε∂xg

ε dΩdt + λ
∫

Q

(

mε
1

)2
∂xg

ε dΩdt + λ
∫

Q

mε
1m

ε
2∂yg

ε dΩdt

+
τ

ε

∫

Q

∂xw
ε∂zg

ε dΩdt +
λ

ε

∫

Q

mε
1m

ε
2∂zg

ε dΩdt = 0,

λ

∫

Q

mε
1m

ε
2∂xg

ε dΩdt − 2τ
ε

∫

Q

∂zw
ε∂yg

ε dΩdt + λ
∫

Q

(

mε
2

)2
∂yg

ε dΩdt

+
τ

ε

∫

Q

∂xw
ε∂zg

εdΩdt +
λ

ε

∫

Q

mε
2m

ε
3∂zg

εdΩdt = 0.

(4.18)

To pass to the limit in these equations we need the following convergence result.

Lemma 4.2. Defining Θε := (1/ε)∂zwε, then

Θε ⇀ Θ = − λ

2τ
(m3)2 +K weakly- � in L∞

(

R
+, L2(Ω)

)

, (4.19)

where K is a function of the variable x̂.

Proof. We multiply the first equation of (4.18) by ε and choose gε = g ∈ D(Q) independent of
ε. We get

ε

(

−ρ
∫

Q

∂tw
ε∂tg dΩdt + τ

∫

Q

ĝradwεĝrad g dΩdt + λ
∫

Q

mε
1m

ε
3∂xg dΩdt

+λ
∫

Q

mε
2m

ε
3∂yg dΩdt

)

+
2τ
ε

∫

Q

∂zw
ε∂zg dΩdt + λ

∫

Q

(

mε
3

)2
∂zg dΩdt = 0.

(4.20)
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Hence, passing to the limit, by using convergences (4.14), (4.15), and (4.16), we deduce that
the weak-� limit Θ of the sequence Θε satisfies ∂z(2τΘ + λm2

3) = 0 which allows to get (4.19).

Remark 4.3. In the sequel and without loss of generality we will assume that K ≡ 0.

Nowwe are able to pass to the limit. We setQT = R
+×ω. We choose in the above weak

formulations test functions of the form

ψε(t, x̂, z) = ψ0(t, x̂) + εψ(t, x̂, εz),

gε(t, x̂, z) = g(t, x̂) + εg0(t, x̂)h(εz).
(4.21)

We pass to the limit in each term of (4.17) by using the convergence results (4.14), (4.15),
(4.16) and the following facts, ∂zψε = ε2(∂zψ)(εz) and ∂x̂ψε = ∂x̂ψ0 + ε∂x̂ψ(εz). Hence we first
get

∫

Q

∂tmε · ψε dΩdt −→
∫

QT

∂tm · ψ0 dx̂dt,

∫

Q

mε × ∂tmε · ψε dΩdt −→
∫

QT

m × ∂tm · ψ0 dx̂dt.

(4.22)

Next, we have

∫

Q

mε × ĝradmε · ĝradψε dΩdt −→
∫

QT

m × ĝradm · ĝradψ0 dx̂dt. (4.23)

We also get

1
ε2

∫

Q

amε × ∂zmε · ∂zψε dΩdt −→ 0. (4.24)

Recall that

˜Vε =
(

mε
3∂xw

ε +
1
ε
mε

1∂zw
ε, mε

3∂yw
ε +

1
ε
mε

2∂zw
ε, mε

1∂xw
ε +mε

2∂yw
ε +

3
ε
mε

3∂zw
ε

)

. (4.25)

To pass to the limit in the term with ˜Vε we make use of the convergence of Lemma 4.2.
Similarly we pass to the limit in the weak formulation (4.18). The convergences (4.14)

and (4.15) allow to get

∫

Q

∂tw
ε∂tg

ε dΩdt −→
∫

QT

∂tw∂tg dx̂dt,

∫

Q

ĝradwεĝrad gε dΩdt −→
∫

QT

ĝradw ĝrad g dx̂dt.

(4.26)
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Next, we have

∫

Q

mε
1m

ε
3∂xg

ε dΩdt −→
∫

QT

m1m3∂xg dx̂dt,

∫

Q

mε
2m

ε
3∂yg

ε dΩdt −→
∫

QT

m2m3∂yg dx̂dt.

(4.27)

We also get

1
ε2

∫

Q

∂zw
ε∂zg

ε dΩdt −→ 0,

1
ε

∫

Q

(

mε
3

)2
∂zg

ε dΩdt −→ 0.

(4.28)

It remains to identify the limit of the two last equations of (4.18). Let us pass to the limit in
the second equation of (4.18). We make use of the Lemma 4.2 to get

1
ε

∫

Q

∂zw
ε∂xg

ε dΩdt −→ −
∫

QT

λ

2τ
(m3)2∂xg dx̂dt. (4.29)

Similarly, by the same arguments above, we also get the limit both for the other terms and for
the last equation of (4.18).

We proved the result.

Theorem 4.4. Let (mε,wε) be a solution of the problem associated with the admissible initial datum
(mε

0, w
ε
0). Then, one has (m

ε,wε) → (m, w) strongly in L2
loc(R

+, L2(Ω)), mε ⇀ m weakly-� in
L∞(R+,H1(Ω)) and wε ⇀ w weakly in L2(R+,H1

0(Ω)). The couple (m, w) is independent of the
variable z and satisfies in R

+ ×ω, |m(t, x̂)|2 = 1 and the following two-dimensional coupled system

γ−1∂tm −m ×
(

a ̂Δm − ∂tm − λ ˜V
)

= 0,

ρ∂ttw − τ ̂Δw − λ∂x(m1m3) − λ∂y(m2m3) = 0,

∂x
(

m2
1 +m

2
3

)

+ ∂y(m1m2) = 0,

∂y
(

m2
2 +m

2
3

)

+ ∂x(m1m2) = 0,

(4.30)

where

˜V =
(

m3∂xw − λ

2τ
m1m

2
3, m3∂yw − λ

2τ
m2m

2
3, m1∂xw +m2∂yw − 3λ

2τ
m3

3

)

. (4.31)
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The associated initial and boundary conditions are given by

w(0, x̂) = w0, ∂tw(0, x̂) = w1, m(0, x̂) = m0, |m0| = 1 in ω

w = 0, ∂νm = 0 on ∂ω,
(4.32)

where w1 is the weak limit of wε
1 in L

2(Ω).

Remark 4.5. Note that if the function K introduced in Lemma 4.2 is such that K/≡ 0, then the
vector ˜V in (4.30) becomes

˜V =
(

m3∂xw −
(

λ

2τ
m2

3 +K
)

m1, m3∂yw −
(

λ

2τ
m2

3 +K
)

m2, m1∂xw

+m2∂yw − 3
(

λ

2τ
m2

3 +K
)

m3

)

.

(4.33)

4.2. Slender Domains

Note that we can proceed as above to get result for the 3D-1D dimensional reduction. In fact,
we have the following theorem which we state without proof.

Theorem 4.6. Let (mε,wε) be a solution of the problem associated with the admissible initial datum
(mε

0, w
ε
0). Then, one has (m

ε,wε) → (m, w) strongly in L2
loc(R

+, L2(Ω)), mε ⇀ m weakly-� in
L∞(R+,H1(Ω)) and wε ⇀ w weakly in L2(R+,H1

0(Ω)). The couple (m, w) is independent of the
variable x̂ and satisfies inR

+×(0, 1), |m(t, z)|2 = 1 and the following one-dimensional coupled system

γ−1∂tm −m ×
(

a∂zzm − ∂tm − λ ˜V
)

= 0,

ρ∂ttw − 2τ∂zzw − λ∂z
(

m2
3

)

= 0,
(4.34)

where

˜V =
(

−λ
τ
m1m

2
3 +m1∂zw, −

λ

τ
m2m

2
3 −m2∂zw, −

λ

τ
m1m

2
3 −

λ

τ
m2m

2
3 + 3m3∂zw

)

. (4.35)

The associated initial and boundary conditions are given by

w(0, z) = w0, ∂tw(0, z) = w1, m(0, z) = m0, |m0| = 1 in (0, 1)

w
(

t, j
)

= 0, ∂zm
(

t, j
)

= 0 for j = 0, 1,
(4.36)

where w1 is the weak limit of wε
1 in L

2(Ω).
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5. Concluding Remarks

We remark that the 1D model obtained in Theorem 4.6 slightly differs from the one derived
in [25]. This is simply due to the original 2D model considered in [18] which is obtained by
making some approximations on the total energy. The limiting behaviours obtained in this
work concern magnetoelastic interactions system when we neglect in-plane components of
displacement. The present paper is our first attempt at scrutinizing the reduced theories from
the complete model. The analysis with arbitrary displacement seems to be more difficult and
needsmuchmore investigations. In fact, it would be interesting to consider the general model
which consists of the three-dimensional case with total energy (see [18])

E(t) = 1
2

∫

Ω
a|∇M|2 + τ1|∇U|2 + τ2(divU)2

+ λ1δklij∇iUjMkMl + λ2|M|2 divU + 2λ3(∇Ui ·M)Mi,

(5.1)

where δijkl = 1 if i = j = k = l and δijkl = 0 otherwise. The parameters τ1, τ2, λ1, λ2, and λ3 are
positive constants.

Another direction for future research concerns magnetic domain walls (DWs) which
are boundaries in magnetic materials that divide regions with distinct magnetization
directions. The manipulation and control of DWs in ferromagnetic nanowires (essentially one
dimensional models) has recently become a subject of intense experimental and theoretical
research, see, for example, Carbou and Labbé [26]. The rapidly growing interest in the physics
of the DW motion can be mainly explained by a promising possibility of using DWs as the
basis for next-generationmemory and logic devices. However, in order to realize such devices
in practice it is essential to be able to position individual DWs precisely along magnetic
nanowires. It would be interesting to address within the context of the present paper the
stability of the propagation of such processing DWswith respect to perturbations of the initial
magnetization profile, some anisotropy properties of the nanowire, and applied magnetic
field.

Finally, a valuable direction for future research is the effect of very small domain
irregularities on the limiting problems. More precisely, the roughness may be defined by
means of a periodical function hε with period, for example, of order ε2 (ε > 0). So that the
three-dimensional domain may be represented byΩε = {(x, z) ∈ R

2 ×R;x ∈ ω, 0 < z < hε(x)}
where ω is a domain of R

2. Various limit models may be obtained depending on the ratio
between the size of rugosities and the mean height of the domain.
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