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The transition matrix, which characterizes a discrete time homogeneous Markov chain, is a
stochastic matrix. A stochastic matrix is a special nonnegative matrix with each row summing up
to 1. In this paper, we focus on the computation of the stationary distribution of a transition matrix
from the viewpoint of the Perron vector of a nonnegative matrix, based on which an algorithm
for the stationary distribution is proposed. The algorithm can also be used to compute the Perron
root and the corresponding Perron vector of any nonnegative irreducible matrix. Furthermore, a
numerical example is given to demonstrate the validity of the algorithm.

1. Introduction and Preliminaries

Throughout this paper, the following notations and definitions are used. A matrixA = (aij) ∈
R

m×n is called nonnegative (positive), if all aij ≥ 0 (aij > 0), denoted by A ≥ 0 (A > 0).
Similarly, a vector x = (x1, . . . , xn)

T is called nonnegative (positive) and denoted by x ≥ 0
(x > 0), if all xi ≥ 0 (xi > 0). Let B = (bij) ∈ R

m×n, we denote A ≥ B (A > B), if A − B ≥ 0 (> 0),
that is, aij ≥ bij (aij > bij) for all i = 1, 2, . . . , m, j = 1, 2, . . . , n.

For a square matrix A ∈ R
n×n with eigenvalues λ1, . . . , λn, ρ(A) = max{|λj |} is

called the spectral radius of A. If A ≥ 0 is irreducible, there exists a unique eigenvector
x = (x1, . . . , xn)

T > 0 such that Ax = ρ(A)x and ‖x‖1 = |x1| + · · · + |xn| = 1. In this case,
we say that ρ(A) is the Perron root of A and x is the Perron vector [1].

We consider a discrete-time Markov chain X = {X(n) : n = 0, 1, . . .} with a finite state
space S = {i1, . . . , in}. Among ergodic processes, homogeneous Markov chains with finite
state space are particularly interesting examples. Such processes satisfy the Markov property,
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which states that their future behavior, conditional to the past and present, depends only on
the present. Precisely, for all t ∈ R+, h > 0, and for all sequences 0 ≤ t1 ≤ · · · ≤ tr = t, i1, . . . , ir ∈
S and ij ∈ S,

P
(
X(t+h) = ij | X(t) = ir , X

(tr−1) = ir−1, . . . , X(t1) = i1
)
= P

(
X(h) = ij | X(0) = ir

)
. (1.1)

The behavior of such a process is characterized by an n × n matrix M called the
transition matrix [2].

Its stationary distribution π , which is also its asymptotic distribution, is a vector
satisfying the following.

πTM = πT ,
n∑
j=1

πj = 1, (1.2)

that is,

πTM = πT , π > 0, πTe = 1, (1.3)

where e is the column vector of all ones.
It has been established that it is possible to represent all possible uses of a software

system as a Markov chain [3–5]. This model is called a Markov chain usage model. In a usage
model, states of use (such as state “Document Loaded” in a model representing use of a
word processing system) are represented by states in the Markov chain. Transitions between
states of use (such as moving from state “Document Loaded” to “No Document Loaded”
when the user closes a document in a word processing system) are represented by state
transitions between the appropriate states in the Markov chain. Transitions between states of
use have associated probabilities which represent the probability of making each transition.
A usage model may be created based on information taken from functional specifications,
usage specifications, and test objectives.

Considering the problem of software reliability, we represent a software system Sf

with n states of use {s1, . . . , sn} by a homogeneous discrete Markov chain {X(n) : n = 0, 1, . . .}
(the corresponding transitionmatrix isM). We denote the initial state probability distribution
π(0) = (π(0)

1 , . . . , π
(0)
n )T , where π

(0)
i = P(X(0) = si). Then (π(k))T = (π(k−1))TM, where π(k)

stands for the state probability distribution at time k. Let μi (i = 1, . . . , n) be the probability
when the software fails at state si. The reliability of Sf at time k can be defined as R(k) =
1 −∑n

i=1 μiπ
(k)
i . After a long time running, the state distribution of system Sf will tend to the

stationary distribution π = (π1, . . . , πn)
T . Then, the terminating reliability R = 1 − ∑n

i=1 μiπi,
with which we can evaluate the quality of a software system. By decreasing the μi of state
si with the largest probability πi in the stationary distribution π , we can also enhance the
reliability of Sf efficiently with limited resources.

A nonnegative matrixA = (aij) ∈ R
n×n is called a row-stochastic matrix (or a stochastic

matrix for short) if
∑n

j=1 aij = 1 for all i = 1, . . . , n, that is, Ae = e.
From the well-known Perron-Frobenius theorem, it can be easily deduced that the

Perron root of a stochastic matrix A equals 1.
Obviously, the transition matrixM of a discrete-time homogeneous Markov chain is a

stochastic matrix. From (1.3), we have MTπ = π . That is to say, the stationary distribution π
is also an eigenvector ofMT associated to 1. SinceMT andM have the same eigenvalues, π is
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the Perron root ofMT , that is, the solution toMTπ = π . As for the computational aspects ofπ ,
many approaches have been presented (e.g., see [6–10]) based on the Gaussian elimination,
direct projection and so on. In this paper, from the viewpoint of the Perron root which has not
been discussed, we propose an algorithm for the stationary distribution π considering that
the computation of π is equivalent to the computation of the Perron vector of M, which not
only can compute the stationary distribution, but also could be used to compute the Perron
root and the corresponding Perron vector of any nonnegative irreducible matrix (noting that
the stationary distribution is the Perron vector of the transition matrix, which is a special
nonnegative matrix).

This paper is organized as follows. In the next section, we propose some lemmas
and preliminary results. In Section 3, we prove the convergent theorem and give some
facts. In Section 4, we propose an algorithm for the stationary distribution together with a
demonstrating numerical example.

2. Some Lemmas

In this section, we present some lemmas which will be used in the proof of the main results.
The following facts can be found in [1, 11, 12].

Definition 2.1 (see [1]). Let A ∈ R
n×n be a nonnegative matrix. If Am > 0 for some integer

m ≥ 1, one says that A is primitive.

It is known that any primitive matrix must be irreducible [12]. We will use the
following important facts which can be found in [1, 12].

Theorem A (see [1]). Let A = An×n ≥ 0, then A is irreducible if and only if (I +A)n−1 > 0, where
I is the unit matrix.

Theorem B (Perron-Frobenius (see [1])). Let A = An×n ≥ 0 be irreducible. Then,

(a) ρ(A) > 0,

(b) ρ(A) is an eigenvalue of A,

(c) There exists a vector x > 0 such that Ax = ρ(A)x,

(d) ρ(A) is a simple eigen value of A.

This theorem guarantees the eigenspace of ρ(A) is one-dimensional. That is, Ay =
ρ(A)y implies y = kx. And there exists an unique positive vector x > 0 whose components
sum to 1 such that Ax = ρ(A)x. This x is called the Perron vector [1].

For the Perron root of nonnegative matrices, many algorithms and bounds estimations
have been proposed (see in [13, 14]). In this paper, we will describe the Perron root by using
the following Collatz-Wielandt functions [11, 12].

Definition 2.2 (see [11]). Let A = (aij)n×n be nonnegative, define

fA(x) = min
(Ax)j
xj

, gA(x) = max
(Ax)j
xj

, (2.1)

for any positive vector x = (x1, . . . , xn)
T > 0.
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fA(x) and gA(x) are both continuous at any x > 0.

Lemma 2.3. Let A = An×n be nonnegative and irreducible. Then, for any x > 0, fA(x) and gA(x)
satisfy the following:

(1) Ax ≥ fA(x)x,Ax ≤ gA(x)x, and fA(x) ≤ ‖A‖1,
(2) fA(tx) = fA(x), gA(tx) = gA(x)(t > 0),

(3) Ax > tx gives fA(x) > t; Ax < tx gives gA(x) < t,

(4) If B ≥ 0 is irreducible andAB = BA, let y = Bx, then fA(y) ≥ fA(x) and gA(y) ≤ gA(x).

Proof. (1)–(3) are clearly true (see [10]). For (4), byAx ≥ fA(x)x, it follows thatAy = B(Ax) ≥
BfA(x)x = fA(x)y. This gives fA(y) ≥ fA(x). Similarly, gA(y) ≤ gA(x).

Lemma 2.4 (see [1]). If B ≥ 0 is primitive (Bm > 0 for some m ≥ 1), then

lim
k→∞

[
ρ(B)−1B

]k
= L > 0, BL = ρ(B)L. (2.2)

3. Main Results

In this section, we will present the main results.

Theorem 3.1. If A = An×n ≥ 0 is irreducible and B = Bn×n ≥ 0 is primitive such that AB = BA. Let
x(0) = (a1, . . . , an)

T > 0. Define for k = 1, 2, . . .,

y(k) = Bx(k−1), x(k) =
y(k)

∥∥y(k)
∥∥
1

. (3.1)

Then,

(a) limk→∞x(k) = x > 0, and Ax = ρ(A)x with ‖x‖1 = 1,

(b) limk→∞fA(x(k)) = limk→∞gA(x(k)) = ρ(A),

(c) fA(x(0)) ≤ fA(x(1)) ≤ · · · ≤ ρ(A) ≤ · · · ≤ gA(x(1)) ≤ gA(x(0)).

Proof. By (3.1), we can write x(k) = Bkx(0)/bk (for some bk > 0). This means for k = 1, 2, . . .

∥∥∥∥∥
Bkx(0)

bk

∥∥∥∥∥
1

=
∥∥∥x(k)

∥∥∥
1
= 1. (3.2)

By Lemma 2.4,

lim
k→∞

[
B

ρ(B)

]k
= L > 0, BL = ρ(B)L. (3.3)
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Equations (3.2) and (3.3) imply that

lim
k→∞

bk

ρ(B)k
=
∥∥∥Lx(0)

∥∥∥
1
, lim

k→∞
x(k) = lim

k→∞
Bkx(0)

bk
=

Lx(0)
∥∥∥Lx(0)

∥∥∥
1

. (3.4)

By putting x = Lx(0)/‖Lx(0)‖1, it is clear that x > 0 (with ‖x‖1 = 1) and

Bx =
BLx(0)
∥∥∥Lx(0)

∥∥∥
1

=
ρ(B)Lx(0)
∥∥∥Lx(0)

∥∥∥
1

= ρ(B)x. (3.5)

Since AB = BA, we get B(Ax) = ρ(B)Ax. The Perron-Frobenius theorem (Theorem B)
guarantees that ρ(B) is a simple eigenvalue of B. So, B(Ax) = ρ(B)Ax gives thatAx = λx (x >
0), which implies that λ = ρ(A) and Ax = ρ(A)x. On the other hand, by Definition 2.2,
Ax = ρ(A)x(x > 0) gives fA(x) = ρ(A) = gA(x). By limk→∞x(k) = x (x > 0), we conclude that

lim
k→∞

fA
(
x(k)

)
= fA(x) = ρ(A), lim

k→∞
gA

(
x(k)

)
= gA(x) = ρ(A). (3.6)

By Lemma 2.3 and (3.1), we have for k = 1, 2, . . .

fA
(
x(k−1)

)
≤ fA

(
x(k)

)
, gA

(
x(k)

)
≤ gA

(
x(k−1)

)
. (3.7)

So, {fA(x(k))} and {gA(x(k))} are both monotonic convergent sequences. This proves (c),
completing the proof.

Remark 3.2. From the proof, we know ABx = ρ(A)ρ(B)x (x > 0), and ρ(AB) = ρ(A)ρ(B).
For an n × n irreducible matrix A ≥ 0, since (bI +A)n−1 > 0 (b > 0), B = (bI +A)m are

primitive for m = 1, 2, . . .. Clearly, BA = AB, we have the following.

Corollary 3.3. If A = An×n ≥ 0 is irreducible and let B = (bI +A)m (for fixedm ≥ 1 and b > 0). Let
x(0) = (a1, . . . , an)

T > 0. For all k = 1, 2, . . ., define

y(k) = Bx(k), x(k) =
y(k)

∥∥y(k)
∥∥
1

. (3.8)

Then,

(a) limk→∞x(k) = x > 0, Ax = ρ(A)x, (‖x‖1 = 1),

(b) limk→∞fA(x(k)) = limk→∞gA(x(k)) = ρ(A),

(c) fA(x(0)) ≤ fA(x(1)) ≤ · · · ≤ ρ(A) ≤ · · · ≤ gA(x(1)) ≤ gA(x(0)).

For a positive matrix A > 0, all the matrices B = Am (m = 1, 2, . . .) are primitive. The
following is obvious.
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Corollary 3.4. If A = An×n > 0 and B = Am (for m ≥ 1). Let x(0) = (a1, . . . , an)
T be a positive

vector. Define

y(k) = Bx(k), x(k) =
y(k)

∥∥y(k)
∥∥
1

∀k = 1, 2, . . . . (3.9)

Then,

(a) limk→∞x(k) = x > 0, Ax = ρ(A)x, (‖x‖1 = 1),

(b) limk→∞fA(x(k)) = limk→∞gA(x(k)) = ρ(A),

(c) fA(x(0)) ≤ fA(x(1)) ≤ · · · ≤ ρ(A) ≤ · · · ≤ gA(x(1)) ≤ gA(x(0)).

By (3.1), let λ(k) = (1/2)(fA(x(k)) + gA(x(k))) for (k = 1, 2, . . .), one has the following.

Corollary 3.5. If gA(x(k)) − fA(x(k)) < ε (ε > 0), then |ρ(A) − λ(k)| < (1/2)ε.

Proof. From Theorem 3.1, it follows that

∣∣∣ρ(A) − λ(k)
∣∣∣ ≤ 1

2

∣∣∣ρ(A) − fA
(
x(k)

)∣∣∣ + 1
2

∣∣∣ρ(A) − gA
(
x(k)

)∣∣∣

=
1
2

(
ρ(A) − fA

(
x(k)

))
+
1
2

(
gA

(
x(k)

)
− ρ(A)

)

=
1
2

(
gA

(
x(k)

)
− fA

(
x(k)

))
<

1
2
ε.

(3.10)

If A ≥ 0 is irreducible, it is obvious that B = bI + A (b > 0) is primitive, and ρ(A) =
ρ(B) − b. So, we have the following.

Corollary 3.6. If A ≥ 0 is irreducible, for any b > 0, let B = bI +A. Using the sequences {fB(x(k))}
and {gB(x(k))}. Then,

lim
k→∞

fB
(
x(k)

)
= lim

k→∞
gB

(
x(k)

)
= ρ(B); lim

k→∞
x(k) = x > 0,

(‖x‖1 = 1); ρ(A) = ρ(B) − b.

(3.11)

4. An Algorithm and a Numerical Example

In this section, we propose a numerical algorithm to compute the stationary distribution of a
discrete time homogeneous finite Markov chain.

Algorithm 4.1 (to compute the stationary distribution π). Step 1. Giving a transitionmatrixM
of a discrete time homogeneous finite Markov chain, a calculation precision ε > 0. Choosing
parameters: a positive real number b > 0 and an integer m. Setting the initial iterative vector
π(0) = (1, 1, . . . , 1)T , B = (bI +MT )m, k = 1.
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Table 1: Iteration results of Example 4.3 by Algorithm 4.1.

k y(k) π(k) fMT (π(k)) gMT (π(k))

1

9.8480005 0.2051667

0.8266823 1.0792825

4.2060003 0.0876250
8.2880001 0.1726667
8.1380005 0.1695417
6.8360000 0.1424167
10.6840000 0.2225833

2

1.7046144 0.2130768

0.9024122 1.0330924

0.6064956 0.0758119
1.4543651 0.1817956
1.4877499 0.1859687
0.8997051 0.1124631
1.8470705 0.2308838

3

1.7026380 0.2128298

0.9654347 1.0107353

0.6010615 0.0751327
1.4877805 0.1859726
1.5420293 0.1927537
0.8042196 0.1005275
1.8622712 0.2327839

4

1.6968167 0.2121021

0.9906667 1.0030047

0.6042080 0.0755260
1.4985833 0.1873229
1.4985833 0.1949336
0.7754812 0.0969351
1.8654419 0.2331802

5

1.6940787 0.2117598

0.9979988 1.0010511

0.6060677 0.0757585
1.5014149 0.1876768
1.5642191 0.1955274
0.7683222 0.0960403
1.8658978 0.2332372

6

1.6931415 0.2116427

0.9997041 1.0003293

0.6067572 0.0758447
1.5020157 0.1877520
1.5653062 0.1956633
0.7668935 0.0958617
1.8658856 0.2332357

7

1.6928755 0.2116094

0.9999617 1.0000869

0.6069643 0.0758705
1.5021036 0.1877629
1.5654967 0.1956871
0.7667158 0.0958395
1.8658446 0.2332305

8

1.6928117 0.2116015

0.9999923 1.0000242

0.6070167 0.0758771
1.5021019 0.1877628
1.5655103 0.1956888
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Table 1: Continued.

k y(k) π(k) fMT (π(k)) gMT (π(k))
0.7667347 0.0958418
1.8658243 0.2332281

9

1.6927999 0.2116000

0.9999974 1.0000122

0.6070276 0.0758785
1.5020945 0.1877618
1.5655029 0.1956879
0.7667580 0.0958448
1.8658174 0.2332272

10

1.6927987 0.2115998

0.9999989 1.0000043

0.6070291 0.0758786
1.5020909 0.1877613
1.5654980 0.1956872
0.7667685 0.0958460
1.8658154 0.2332269

11

1.6927989 0.2115999

0.9999996 1.0000013

0.6070290 0.0758786
1.5020894 0.1877612
1.5654960 0.1956870
0.7667719 0.0958465
1.8658147 0.2332269

12

1.6927993 0.2115999

0.9999998 1.0000004

0.6070290 0.0758786
1.5020891 0.1877611
1.5654955 0.1956869
0.7667729 0.0958466
1.8658148 0.2332268

Step 2. Computing π(k) from π(k−1):

y(k) = Bπ(k−1), π(k) =
y(k)

‖y(k)‖1
(∀k = 1, 2, . . .). (4.1)

Step 3. Compute fMT (π(k)) and gMT (π(k)):

fMT

(
π(k)

)
= min

1≤i≤n

(
MTπ(k))

i

π
(k)
i

, gMT

(
π(k)

)
= max

1≤i≤n

(
MTπ(k))

i

π
(k)
i

. (4.2)

Step 4. If gMT (π(k)) − fMT (π(k)) < ε, go to Step 5. Otherwise setting k := k + 1, go back
to Step 2.

Step 5. Let λ = (1/2)(fMT (π(k))+gMT (π(k))). Then λ is the approximation of the Perron
root ofMT , and the corresponding π(k) is the approximation of the stationary distribution of
M.

Remark 4.2. From Theorem 3.1, the convergence of Algorithm 4.1 is obvious.

We next give a numerical example.
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Example 4.3. For a given finite Markov Chain, with the corresponding transition matrix as the
following:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0 0.3 0.1 0 0.4
0 0.1 0.2 0 0.5 0.2
0.5 0 0 0.1 0 0.4
0 0.3 0.2 0.2 0.1 0.2
0.3 0.1 0 0 0.4 0.2
0.2 0 0.3 0.5 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.3)

finding its approximating stationary distribution with calculation precision ε = 10−6.

By choosing the initial iterative vector x(0) = (1, 1, 1, 1, 1, 1)T , parameters m = 3, b = 1,
that is, B = (I+MT )3, and applying Algorithm 4.1, the approximating Perron root and Perron
vector are obtained after 12 iterations:

π(12) = (0.2115999, 0.0758786, 0.18776110, 0.1956869, 0.0958466, 0.2332268)T ,

λ(12) = 1.0000001.
(4.4)

The iteration results are listed in Table 1.
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