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We consider the stability and stabilization of impulsive stochastic delay differential equations
(ISDDEs). Using the Lyapunov-Razumikhin method, we obtain the sufficient conditions to
guarantee the pth moment exponential stability of ISDDEs. Then the almost sure exponential
stability is considered and the sufficient conditions of the almost sure exponential stability are
obtained. Moreover, the stabilization problem of ISDDEs is studied and the criterion on impulsive
stabilization of ISDDEs is established. At last, examples are presented to illustrate the correctness
of our results.

1. Introduction

In recent years, the systems with stochastic or impulsive effects were studied by many
authors due to their importance in many branches of science and industry, see [1–10] and
references therein. In practice, a given system may be with stochastic, delay and impulsive
effects simultaneously, so it is necessary to investigate the properties of impulsive stochastic
delay differential equations.

There are a lot of papers discussing ISDDEs, for example, see [11–17] and the
references therein. In [11, 13], the authors studied the stability of a class of impulsive delay
differential equations where the impulsive effects are nonlinear. In [12], the stability of a
nonlinear ISDDE was studied and the equivalent relation between the stability of the nonlin-
ear stochastic differential delay system under impulsive control and that of a corresponding
nonlinear stochastic differential delay system without impulses was established. In [14], the
authors studied the stability of nonlinear impulsive stochastic differential equations in terms
of two measures and the concept of perturbing Lyapunov functions is introduced to discuss
stability properties. In [15], the pth exponential stability and almost sure exponential stability
were studied by the Lyapunov-Krasovskii functional method. In [16], the authors considered



2 Mathematical Problems in Engineering

the pth moment exponential stability by using an inequality and the propertied of M-cone. In
[17], the authors studied the mean square exponential stability of ISDDEs by the formula for
the variation of parameters and Cauchy matrix.

From the existing lectures, we can see the stability of ISDDEs is a main research direc-
tion. For ISDDEs, there are at least two questions on stability that need be answered, one
is that if the stochastic delay differential equation (SDDE) without impulse is stable, what
kinds of the impulses can the system tolerate so that it remains stable? The other is if a
SDDE without impulse is unstable, what kind of impulsive effects should we take to make
the ISDDEs be stable? The first one we call the question of stability, the second one we call
the question of stabilization.

As we all know, the Lyapunov-Razumikhin method is a powerful tool to investigate
the stability; however, to our best knowledge, there is few work on ISDDEs by using Lya-
punov-Razumikhin method.

In this paper, we use the Lyapunov-Razumikhin method to answer the questions of
stability and stabilization of ISDDEs, give the sufficient conditions ensuring the pth moment
exponential stability of ISDDEs, and present the criteria of almost sure exponential stability
of ISDDEs. The Lyapunov-Razumikhin method does not require that the formal derivative of
the Lyapunov function falls into a restriction in all time; it just need to satisfy the restriction
under some situation; therefore, our results relax the restrictions in some existing lectures. At
last, examples are given to illustrate the efficiency of our results.

2. Preliminaries

Let (Ω,F, P) be a complete probability space with a natural filtration {Ft}t�0 satisfying the
usual conditions (i.e., it is right continuous and F0 contains all P -null sets). R

n denotes the
n-dimensional Euclidean space with the Euclidean norm | · |. Let PC([−τ, 0],Rn) to denote
the set of piecewise right continuous functions ψ : [−τ, 0] → R

n with the sup-norm ‖ψ‖ =
sup−τ�θ�0|ψ(θ)|. Take PCb

F0
([−τ, 0],Rn) to denote the family of all bounded F0-measurable

PC([−τ, 0],Rn)-valued random variables ψ satisfying ‖ψ‖ = sup−τ�θ�0E|ψ(θ)| < ∞, and
PC

p

Ft
([−τ, 0],Rn) denote the family of all Ft-measurable PC([−τ, 0],Rn)-valued random

variables ψ satisfying
∫0
−τ E|ψ(θ)|pdθ < ∞, where E denotes the expectation with respect to

the given probability measure P .
In this paper, we consider the following impulsive stochastic delay differential system:

dx(t) = f(x(t), x(t − τ), t)dt + g(x(t), x(t − τ), t)dB(t), t /= tk,

x(tk) = Hk

(
x
(
t−k
))
,

(2.1)

where x(t−k) = limh→ 0+x(tk − h), Hk(x(t−k)) = (H1k(x(t−k)), . . . ,Hnk(x(t−k)))
T represents the

impulsive perturbation of x at time tk and satisfies |Hk(x(t−k))| � Γ|x(t−
k
)|,Γ � 0, k = 1, 2, . . ..

The impulsive moments tk satisfy 0 = t0 < t1 < · · · < tk < · · · and limk→∞tk = ∞. The
functions f : R

n × R
n × R+ → R

n and g : R
n × R

n × R+ → R
n×m are continuous functions;

B(t) = (B1(t), B2(t), . . . , Bm(t))
T is an m-dimensional standard Brownian motion defined on

(Ω,F, P).
The following initial value is imposed on system (2.1)

x(s) = ξ(s), s ∈ [−τ, 0], (2.2)

where ξ(t) ∈ PCb
F0
([−τ, 0],Rn).
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As a standing hypothesis, we suppose that system (2.1) has a unique solution x(t, ξ) for
any given initial value ξ(t) ∈ PCb

F0
([−τ, 0],Rn), and there exists an M(p) for any p > 0 such

that E|x(t, ξ)|p < M(p). Suppose x(t, ξ) is left continuous and right limitable. Moreover, we
assume that f(0, 0, t) ≡ 0, g(0, 0, t) ≡ 0 and Hk(0) = 0 for any positive integer k, then system
(2.1) admits a trivial solution.

Let v0 denote the set of nonnegative functions V (x, t) on R
n × ([−τ, 0] ∪R+), which are

twice continuously differential in x and once in t on R
n × [tk, tk+1).

If V (x, t) ∈ v0, define an operator LV : R
n ×R

n × [tk, tk+1) → R associated with system
(2.1) as follows:

LV
(
x, y, t

)
= Vt(x, t) + Vx(x, t)f

(
x, y, t

)
+
1
2
trace

[
gT
(
x, y, t

)
Vxx(x, t)g

(
x, y, t

)]
, (2.3)

where

Vt(x, t) =
∂V (x, t)

∂t
, Vx(x, t) =

(
∂V (x, t)
∂x1

, . . . ,
∂V (x, t)
∂xn

)
, Vxx =

(
∂2V (x, t)
∂xixj

)

n×n
.

(2.4)

Definition 2.1 (see [15, 16]). The trivial solution of system (2.1) is said to be pth moment
exponentially stable (p > 0) if there exist positive constants μ andM such that for any initial
value ξ(t) ∈ PCb

F0
([−τ, 0],Rn),

E|x(t, ξ)|p � ME‖ξ‖pe−μt, t � 0. (2.5)

Definition 2.2 (see [15]). The trivial solution of system (2.1) is said to be almost surely
exponentially stable if there exists a positive constant γ such that for any initial value
ξ(t) ∈ PCb

F0
([−τ, 0],Rn) and t � 0,

lim sup
t→∞

1
t
ln|x(t, ξ)| � −γ a.s. (2.6)

If the trivial solution of system (2.1) is pth moment exponentially stable or almost
surely exponentially stable, we also say the system (2.1) is pth moment exponentially stable
or almost surely exponentially stable.

3. Stability and Stabilization of ISDDEs

In this section, we establish the criteria of pth moment exponential stability for system (2.1)
by using the Lyapunov-Razumikhin technique, and the almost sure exponential stability is
also considered. Moreover, the stabilization theorem is presented for system (2.1). The results
show that impulses may change the stability of a given system. Some techniques used in the
proof are motivated by the paper [5].
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Theorem 3.1. Assume that there exist a function V (x, t) ∈ v0 and positive constants p, c1, c2, λ, μ, γ ,
q > 1, dk � 0, and k is any positive integer, such that the following conditions hold:

(1) c1|x|p � V (x, t) � c2|x|p for any x ∈ R
n and t ∈ [−τ, 0] ∪ R+;

(2) LV (ϕ(t), ϕ(t − τ), t) � −λV (ϕ(t), t) for all t /= tk in R+ whenever V (ϕ(t + s), t + s) �
qV (ϕ(t), t) for any s ∈ [−τ, 0], q � eλτ ;

(3) V (Hk(x(t−k)), tk) � (1 + dk)V (x(t−k), t
−
k);

(4) μ � tk − tk−1, dk � Γ, and ln(1 + Γ)/μ < λ.

Then, for any ξ(t) ∈ PCb
F0
([−τ, 0];Rn) and t � 0, the solution x(t, ξ) of system (2.1) satisfies

E|x(t, ξ)|p � c2
c1

E‖ξ‖pe−γt, (3.1)

where γ = min{λ − ln(1 + Γ)/μ, ln q/τ}, that is, system (2.1) is pth moment exponentially stable.

Proof. For a given ξ, let x(t) = x(t, ξ) and write V (x(t), t) = V (t) for the simplicity.
We claim

EV (t) � c2
n−1∏

i=0

(1 + di)E‖ξ‖pe−λt, (3.2)

for any t ∈ [tn−1, tn), where d0 = 0.
Let

Q(t) =

⎧
⎪⎨

⎪⎩

EV (t) − c2
(

n−1∏

i=0

(1 + di)

)

E‖ξ‖pe−λt, t ∈ [tn−1, tn),

EV (t) − c2E‖ξ‖pe−λt, t ∈ [−τ, 0].
(3.3)

It is easy to check Q(t) is continuous and differentiable in [tn−1, tn), and

Q′(t) = ELV (t) + λc2

(
n−1∏

i=0

(1 + di)

)

E‖ξ‖pe−λt, (3.4)

for t ∈ [tn−1, tn).
To verify (3.2), we just need to show that Q(t) � 0 for all t � 0.
We first show that Q(t) � 0 for t ∈ (0, t1).
For t ∈ [−τ, 0], we have e−λt � 1; using condition 1, we can get Q(t) � 0. Let α be an

arbitrary positive constant; we claim

Q(t) � α, (3.5)

for t ∈ (0, t1).
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If (3.5) is not true, then there must exist a t ∈ (0, t1), such that Q(t) > α, which implies
that there exists a t∗ ∈ (0, t) such that Q(t∗) = α and Q(t) � α for t ∈ [−τ, t∗] being the
continuity of Q(t) in [−τ, t∗]. Noting

EV (t∗) = Q(t∗) + c2E‖ξ‖pe−λt∗ = α + c2E‖ξ‖pe−λt∗ , (3.6)

using the fact q � eλτ , Q(t∗ + s) = EV (t∗ + s) − c2E‖ξ‖pe−λ(t∗+s), Q(t∗ + s) � α for s ∈ [−τ, 0],
we have, for any s ∈ [−τ, 0],

EV (t∗ + s) = Q(t∗ + s) + c2E‖ξ‖pe−λ(t∗+s)

� α + c2E‖ξ‖pe−λ(t∗−τ)

�
(
α + c2E‖ξ‖pe−λt∗

)
eλτ

= EV (t∗)eλτ � qEV (t∗).

(3.7)

By virtue of condition 2, we can obtain ELV (t∗) � −λEV (t∗); then

Q′(t∗) = ELV (t∗) + λc2E‖ξ‖pe−λt∗

� −λ
(
EV (t∗) − c2E‖ξ‖pe−λt∗

)

= −λQ(t∗) = −λα < 0,

(3.8)

which contradicts the definition of t∗. So we get Q(t) � α for all t ∈ [0, t1). Let α → 0+; we
obtain Q(t) � 0 for t ∈ [0, t1).

Now, assume Q(t) � 0 for t ∈ [0, tm). In view of condition 3, we have

Q(tm) = EV (tm) + c2

(
m∏

i=0

(1 + di)

)

E‖ξ‖pe−λtm

� (1 + dm)

(

EV
(
t−m
)
+ c2

(
m−1∏

i=0

(1 + di)

)

E‖ξ‖pe−λtm
)

= (1 + dm)Q
(
t−m
)

� 0.

(3.9)

Next, we will show, for arbitrary α > 0,

Q(t) � α for t ∈ [tm, tm+1). (3.10)

For the sake of contradiction, suppose (3.10) is not true. Define

t̃ = inf{t ∈ [tm, tm+1) | Q(t) > α}. (3.11)

From (3.9), we have t̃ /= tm. The continuity of Q(t) in [tm, tm+1) yields Q(t̃) = α and Q(t) � α
for t ∈ [tm, t̃].
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Since EV (t̃) = Q(t̃) + c2
∏m

i=0(1 + di)E‖ξ‖pe−λt̃, then, for s ∈ [−τ, 0],

EV
(
t̃ + s

)
= Q
(
t̃ + s

)
+ c2

(
m∏

i=0
(1 + di)

)

E‖ξ‖pe−λ(t̃+s)

� α + c2

(
m∏

i=0

(1 + di)

)

E‖ξ‖pe−λ(t̃−τ)

�
[

α + c2

(
m∏

i=0
(1 + di)

)

E‖ξ‖pe−λt̃
]

eλτ

= EV
(
t̃
)
eλτ � qEV

(
t̃
)
.

(3.12)

In view of condition 2, we obtain ELV (t̃) � −λEV (t̃), then

Q′
(
t̃
)
= ELV

(
t̃
)
+ λc2

(
m∏

i=0

(1 + di)

)

E‖ξ‖pe−λt̃

� −λ
[

EV
(
t̃
)
− c2
(

m∏

i=0
(1 + di)

)

E‖ξ‖pe−λt̃
]

= −λQ
(
t̃
)
= −λα < 0,

(3.13)

which contradicts the definition of t̃. Therefore, Q(t) � α for all t ∈ [tm, tm+1). Let α → 0+; we
have Q(t) � 0 for t ∈ [tm, tm+1). Thus, by induction, we obtain Q(t) � 0 holds for t � 0; hence

EV (t) � c2

(
n−1∏

i=0

(1 + di)

)

E‖ξ‖pe−λt for t ∈ [tn−1, tn). (3.14)

Then by condition 1, we have

E|x|p � c2
c1

(
n−1∏

i=0

(1 + di)

)

E‖ξ‖pe−λt

� c2
c1

E‖ξ‖p exp{n ln(1 + Γ) − λt}

� c2
c1

E‖ξ‖p exp
{
ln(1 + Γ)

μ
t − λt

}

� c2
c1

E‖ξ‖pe−γt.

(3.15)

This completes the proof.

The following theorem states the almost sure exponential stability of system (2.1). In
the proof, the classical method used in [4] is borrowed and this method was also adopted in
paper [15].
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Theorem 3.2. Suppose all of the conditions of Theorem 3.1 are satisfied and in addition p � 2. If there
exist positive constants T and K such that 0 < tk − tk−1 � T and for all t � 0

E
∣
∣f
(
φ(t), φ(t − τ), t)∣∣p + E

(
trace

[
gT
(
φ(t), φ(t − τ), t)g(φ(t), φ(t − τ), t)

])p/2

� K sup
−τ�θ�0

E
∣
∣φ(t + θ)

∣
∣p,

(3.16)

then for all ξ ∈ PCb
F0
([−τ, 0];Rn),

lim sup
t→∞

1
t
ln|x(t, ξ)| � −γ

p
a.s. (3.17)

Proof. From system (2.1), we can get, for t ∈ (tn−1, tn),

E

(

sup
tn−1<t<tn

|x(t)|p
)

� 3p−1
(

E|x(tn−1)|p + E

[∫ tn

tn−1

∣∣f(x(s), x(s − τ), s)∣∣ds
]p

+E

[

sup
tn−1<t<tn

∣∣∣∣∣

∫ t

tn−1
g(x(s), x(s − τ), s)dB(s)

∣∣∣∣∣

p])

.

(3.18)

Using Hölder’s inequality, condition (3.16), and Theorem 3.1, we derive that

E

[∫ tn

tn−1

∣∣f(x(s), x(s − τ), s)∣∣ds
]p

� (tn − tn−1)p−1
∫ tn

tn−1
E
∣∣f(x(s), x(s − τ), s)∣∣pds

� Tp−1K
∫ tn

tn−1
sup

−τ�θ�0
E|x(t + θ)|pds

� Tp−1K
∫ tn

tn−1

(
c2
c1

)
E‖ξ‖pe−γsds

� c2
c1
TpKE‖ξ‖pe−γtn−1

� c2
c1
TpeTKE‖ξ‖pe−γtn .

(3.19)

In virtue of Burkholder-Davis-Gundy inequality, we have

E

[

sup
tn−1<t<tn

∫ t

tn−1

∣∣g(x(s), x(s − τ), s)dB(s)∣∣p
]

� CpE

(∫ tn

tn−1
trace

[
gTg
]
ds

)p/2

, (3.20)

where Cp is a positive constant dependent on p only. One can then show in the same way as
in (3.19) that

E

[

sup
tn−1<t<tn

∫ t

tn−1

∣∣g(x(s), x(s − τ), s)dB(s)∣∣p
]

� c2
c1
CpT

p/2eTKE‖ξ‖pe−γtn . (3.21)
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Substituting (3.15), (3.19), and (3.21) into (3.18) yields

E

(

sup
tn−1<t<tn

|x(t)|p
)

� K1e
−γtn , (3.22)

where

K1 =
3p−1c2
c1

E‖ξ‖p
[
1 +KeT

(
Tp + CpT

p/2
)]
. (3.23)

When t = tn−1, keeping |Hn−1(x(t−n−1))| � Γ|x(t−n−1)| and (3.15) in mind, we can get

E|x(tn−1)| = E
∣
∣Hn−1

(
x
(
t−n−1
))∣∣ � ΓE

∣
∣x
(
t−n−1
)∣∣ � c2

c1
ΓeTE‖ξ‖pe−γtn . (3.24)

Taking K2 = max{K1, c2/c1ΓeT+t0E‖ξ‖p}, we have

E

(

sup
tn−1�t<tn

|x(t)|p
)

� K2e
−γtn . (3.25)

We now show that (3.25) implies the required (3.17).
Let ε be an arbitrary constant satisfying 0 < ε < γ . By virtue of (3.25) and Markovian

inequality, we have

P

(

ω : sup
tn−1�t<tn

|x(t)|p > e−(γ−ε)tn
)

� e(γ−ε)tnE

(

sup
tn−1�t<tn

|x(t)|p
)

� K2e
−εtn � K2e

t0e−nμε.

(3.26)

In view of Borel-Cantelli lemma, we can obtain that for almost all ω ∈ Ω,

sup
tn−1�t<tn

|x(t)|p � e−(γ−ε)tn (3.27)

holds for all but finitely many n. Hence there exists an N(ω), for all ω ∈ Ω but a P -null set,
such that (3.27) holds when n > N(ω). Then we have, for almost all ω ∈ Ω, if tn−1 � t < tn,
n > N(ω),

|x(t)|p � e−(γ−ε)tn � e−(γ−ε)t, (3.28)

that is,

1
t
ln|x(t)| � −γ − ε

p
(3.29)

and (3.17) follows by letting ε → 0.
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In the following, we give two corollaries.

Corollary 3.3. Assume there exist positive constants λ, α, μ, p, c1, c2 and a function V (x, t) ∈ ν0
such that

(1) c1|x|p � V (x, t) � c2|x|p for all (x, t) ∈ R
n × [−τ,∞);

(2) Vt(x, t) + Vx(x, t)f(x, x(t − τ), t) + (1/2)trace[gT (x, x(t − τ), t)Vxx(x(t), t)g(x, x(t −
τ), t)] � −λV (x, t) + αV (x(t − τ), t − τ) for all t ∈ (tk−1, tk), where λ > eλτα;

(3) V (Hk(x(t−k)), tk) � (1 + dk)V (x(t−
k
), t−

k
);

(4) μ � tk − tk−1, dk � Γ, and ln(1 + Γ)/μ < λ − eλτα.
Then, the trivial solution of system (2.1) is pth moment exponentially stable.

Furthermore, if there exists a positive constant T such that tk − tk−1 � T and the following
inequality holds for any x, y ∈ R

n:

∣∣f
(
x, y, t

)∣∣ ∨ ∣∣g(x, y, t)∣∣ � K
(|x| + ∣∣y∣∣), (3.30)

then the trivial solution of system (2.1) is almost surely exponentially stable.

Proof. Take q = eλτ . Obviously, we just need to verify the condition 2 of Theorem 3.1.

LV (x(t), x(t − τ), t) = Vt(x(t), t) + Vx(x(t), t)f(x(t), x(t − τ), t)

+
1
2
trace

(
gT (x(t), x(t − τ), t)Vxx(x(t), t)g(x(t), x(t − τ), t)

)

� −λV (x(t), t) + αV (x(t − τ), t − τ).
(3.31)

If t � 0 and t ∈ (tk, tk+1), s ∈ [−τ, 0], the following inequality holds

V (x(t + s), t + s) � qV (x(t), t), (3.32)

then

LV (x(t), x(t − τ), t) � −λV (x(t), t) + αqV (x(t), t)

= −(λ − αq)V (x(t), t) = −
(
λ − αeλτ

)
V (x(t), t).

(3.33)

Condition 2 of Theorem 3.1 is verified, then the pth moment exponential stability for the
trivial solution of system (2.1) is obtained. The almost sure exponential stability is followed
directly by virtue of Theorem 3.2.

The 2th moment exponential stability; is also called mean square exponential stability,
the following corollary presents the criteria of mean square exponential stability of system
(2.1).

Corollary 3.4. For system (2.1), assume there exist positive constants a, b, c, d, μ, βk such that

(1) xTf(x, y, t) � −a|x|2 + b|y|2, and |g(x, y, t)|2 � c|x|2 + d|y|2, 2a − c > 0 and 2a − c −
e(2a−c)τ(2b + d) > 0;
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(2) |Hk(x)| � βk|x|;
(3) μ � tk+1 − tk, β2k � Γ + 1, ln(Γ + 2)/μ < 2a − c − e(2a−c)τ(2b + d).

Then the trivial solution of system (2.1) is mean square exponentially stable.

Proof. Let V (x, t) = |x|2; then

LV (x(t), x(t − τ), t) = 2xTf(x(t), x(t − τ), t) + ∣∣g(x(t), x(t − τ), t)∣∣2

� −2a|x|2 + 2b|x(t − τ)|2 + c|x|2 + d|x(t − τ)|2

= (−2a + c)|x|2 + (2b + d)|x(t − τ)|2.
(3.34)

The conditions of Corollary 3.3 are easily to be verified, and the required result can be
obtained.

Now we are on the position to state the stabilization theorem.

Theorem 3.5. Assume there exist a function V (x, t) ∈ v0 and positive constants p, c1, c2, c, λ, α
such that

(1) c1|x|p � V (x, t) � c2|x|p, for any x ∈ R
n and t ∈ R+;

(2) LV (x(t), x(t − τ), t) � cV (x(t), t), for all t ∈ [tk, tk+1), whenever qV (x(t), t) � V (t +
s, x(t + s)), for s ∈ [−τ, 0], where q � max{e2λα, ecα};

(3) V (Hk(x(t−k)), tk) � dkV (t−
k
, x(t−

k
)), where dk > 0;

(4) τ � tk+1 − tk � α and lndk + λα < −λ(tk+1 − tk).
Then the trivial solution of system (2.1) is pth moment exponentially stable.

Remark 3.6. From condition 2, we can see that the formal derivative of V (x, t) can be positive
since c is a positive constant; this means that the original system without impulses may be
unstable. Therefore, this theorem is called the stabilization theorem.

Proof. Let x(t) = x(t, ξ) be a solution of (2.1)with x(t) = ξ(t), t ∈ [−τ, 0] and write V (x(t), t) =
V (t) for simplicity. ChooseM � 1 such that

c2E‖ξ‖p < ME‖ξ‖pe−λt1e−αc < ME‖ξ‖pe−λt1 � qc2E‖ξ‖p. (3.35)

We will show, for any positive integer k,

EV (t) � ME‖ξ‖pe−λtk , t ∈ [tk−1, tk). (3.36)

We first show that

EV (t) � ME‖ξ‖pe−λt1 , t ∈ [0, t1). (3.37)

From condition 1 and (3.35), we have, for t ∈ [−τ, 0],

EV (t) � c2E|x(t)|p � c2E‖ξ‖p < ME‖ξ‖pe−λt1e−αc. (3.38)
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If (3.37) is not true, then there must be a t ∈ (0, t1) such that

EV
(
t
)
> ME‖ξ‖pe−λt1 > ME‖ξ‖pe−λt1e−αc > c2E‖ξ‖p � EV (s), (3.39)

where s ∈ [−τ, 0].
Then there exists a t∗ ∈ (0, t) such that

EV (t∗) =ME‖ξ‖pe−λt1 , EV (t) � ME‖ξ‖pe−λt1 , t ∈ [−τ, t∗], (3.40)

and there is a t∗∗ ∈ [0, t∗) such that

EV (t∗∗) = c2E‖ξ‖p, EV (t) � c2E‖ξ‖P , t∗∗ � t � t∗. (3.41)

Then we have, for any t ∈ [t∗∗, t∗],

EV (t + s) � ME‖ξ‖pe−λt1 � qc2E‖ξ‖P � qEV (t), s ∈ [−τ, 0]. (3.42)

From condition 2, we have

ELV (t) � cEV (t) (3.43)

for t ∈ [t∗∗, t∗]. Since t∗ − t∗∗ < α, we get

EV (t∗)e−αc − EV (t∗∗) � EV (t∗)e−c(t
∗−t∗∗) − EV (t∗∗)

=
∫ t∗

t∗∗
e−c(s−t

∗∗)(−cEV (s) + ELV (s))ds � 0,
(3.44)

that is,

EV (t∗)e−αc � EV (t∗∗), (3.45)

then

ME‖ξ‖pe−λt1e−αc � c2E‖ξ‖P , (3.46)

which is in conflict with (3.35). We obtain that (3.37) holds, that is, (3.36) holds when k = 1.
Now we assume that (3.36) holds when k = 1, 2, 3, . . . , m, m is a positive integer and

m � 1, then

EV (t) � ME‖ξ‖pe−λtk , t ∈ [tk−1, tk), (3.47)
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especially,

EV
(
t−m
)

� ME‖ξ‖pe−λtm . (3.48)

From conditions 3, 4 and (3.48), we have

EV (tm) � dmEV
(
t−m
)

< e−λα−λ(tm+1−tm)ME‖ξ‖pe−λtm
= e−λαME‖ξ‖pe−λtm+1

< ME‖ξ‖pe−λtm+1 .

(3.49)

Now we will show that (3.36) holds when k = m + 1, that is,

EV (t) � ME‖ξ‖pe−λtm+1 , t ∈ [tm, tm+1). (3.50)

If (3.50) is not true, we define

t = inf
{
t ∈ [tm, tm+1) | EV (t) > ME‖ξ‖pe−λtm+1

}
. (3.51)

From (3.49), we know t /= tm; by the continuity of EV (t) in [tm, tm+1), we get

EV
(
t
)
=ME‖ξ‖pe−λtm+1 ,

EV (t) � ME‖ξ‖pe−λtm+1 , t ∈
[
tm, t
]
.

(3.52)

From (3.49), we have

EV (tm) < e−λαME‖ξ‖pe−λtm+1 < EV
(
t
)
; (3.53)

there must be a t∗ ∈ (tm, t) such that

EV (t∗) = e−λαME‖ξ‖pe−λtm+1 ,

EV (t∗) � EV (t) � EV
(
t
)
, t ∈

[
t∗, t
]
.

(3.54)

Since τ � tk+1 − tk � α, and s ∈ [−τ, 0], when t ∈ [t∗, t], we get t+ s ∈ [tm+1, t]. From (3.48) and
(3.53), when t ∈ [t∗, t], s ∈ [−τ, 0], we have

EV (t + s) � ME‖ξ‖pe−λtm
=ME‖ξ‖pe−λtm+1eλ(tm+1−tm)

� ME‖ξ‖pe−λtm+1eλα

= e2λαEV (t∗) � qEV (t).

(3.55)
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From condition 2, we get

ELV (t) � cEV (t). (3.56)

But

EV
(
t
)
e−αc − EV (t∗) � EV

(
t
)
e−(t−t

∗)c − EV (t∗)

=
∫ t

t∗
e−c(s−t

∗)(−cEV (s) − ELV (s))ds < 0,
(3.57)

we get

EV
(
t
)

� EV (t∗)eαc =ME‖ξ‖pe−λtm+1e−λαeαc

=ME‖ξ‖pe−λtm+1e−(λ−c)α

< ME‖ξ‖pe−λtm+1 = EV
(
t
)
.

(3.58)

Then (3.36) holds when k = m + 1. By induction, we have that (3.36) holds, and

EV (t) � ME‖ξ‖pe−λt, t ∈ [tk−1, tk). (3.59)

From condition 1, we have

E|x(t)|p � M∗
E‖ξ‖pe−λt, t ∈ [tk, tk+1), k ∈ N, (3.60)

whereM∗ � max{1, (M/c1)
1/p}. This completes the proof.

4. Applications and Examples

In this section, we consider a nonlinear impulsive stochastic delay differential system. We
present the stability criterion and stabilization criterion for this system, then we illustrate the
correctness of our results using the numerical experiments.

The following nonlinear impulsive stochastic delay differential system is considered:

dx(t) =
(
ax(t) + bx(t − τ) exp

[
−x2(t − τ)

])
dt + cx(t − τ)dW(t), t /= tk,

x(tk) = βkx
(
t−k
)
.

(4.1)

By virtue of Corollary 3.4, we can get the following corollary directly.

Corollary 4.1. Assume there exist positive constants μ and T such that the impulsive moments tk
satisfy μ � tk − tk−1 � T , and the following inequalities hold:

2a + |b| + e(−2a−|b|)τ
(
2b + c2

)
< 0,

β2k < Γ + 1,
ln(Γ + 2)

μ
< −2a − |b| − e(−2a−|b|)τ

(
2b + c2

)
,

(4.2)



14 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
X

2

−1
t

Figure 1: Mean square exponential stability of system (4.1).
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Figure 2: Nonstability of system (4.1)without impulse.

then the trivial solution of system (4.1) is mean square exponentially stable and almost surely expo-
nentially stable.

Using Theorem 3.5 and taking V (x, t) = |x|2, we can easily get the following stabilization
corollary for system (4.1).

Corollary 4.2. Assume there exist constants α, λ > 0 satisfing

(1) there exists a constant q > 0 such that q > max{e2λα, eγα}, where γ = 2a + |b| + |b|q + c2q;
(2) τ � tk+1 − tk � α and ln βk + λα/2 < −(λ/2)(tk+1 − tk).

Then the trivial solution of system (4.1) is pth moment exponentially stable.

Now let us illustrate the correctness of Corollaries 4.1 and 4.2.



Mathematical Problems in Engineering 15

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

t

E
X

2
(t
)

Figure 3: Mean square exponential stability of system (4.1).

Let a = −1, b = −1, c = 1, τ = 1, and βk = 2. Take x(s) = s + 1 when s ∈ [−1, 0] and
tk+1−tk = 2. Let μ = 1 and Γ = 7; it is easy to verify the conditions of Corollary 4.1 are satisfied.
Then the trivial solution of system (4.1) is mean square exponentially stable. Themean square
exponential stability is showed in Figure 1. This illustrates the correctness of Corollary 4.1.

Nowwe consider the stabilization of system (4.1). Take a = 0.1, b = 1, c = 0.1, and τ =
0.1. Let x(s) = s + 1 when s ∈ [−0.1, 0]. It is easy to see that the trivial solution of system (4.1)
without impulsive effects is not mean square stable, see Figure 2. Then we take tk+1 − tk =
0.2, βk = 0.8 and α = 0.2, λ = 1, q = 2; it can be verified that the conditions of Corollary 4.2
are satisfied; the the trivial solution of system (4.1) is mean square exponentially stable, see
Figure 3.
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