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The frequentist gene expression index (FGX) was recently developed to measure expression on
Affymetrix oligonucleotide DNA arrays. In this study, we extend FGX to cover nonnormal log
expressions, specifically long-tailed symmetric densities and call our new index as robust gene
expression index (RGX). In estimation, we implement the modified maximum likelihood method
to unravel the elusive solutions of likelihood equations and utilize the Fisher information matrix
for covariance terms. From the analysis via the bench-mark datasets and simulated data, it is
shown that RGX has promising results and mostly outperforms FGX in terms of relative efficiency
of the estimated signals, in particular, when the data are nonnormal.

1. Introduction

Microarray technology enables the measurement of RNA (transcripted DNA) expression
levels. For this purpose, it uses different kinds of optical techniques, which quantify the
colour intensities on the array. These intensities can be used to capture the functional
homogenous subgroups of genes via various clustering algorithms [1, 2] and to model
the uncertainty in the associated gene networks with the help of different optimization
techniques [3, 4]. But because of the distinct experimental conditions, those measured
intensities include different sources of errors, some of which are random and some of which
are systematic. The former errors do not change the overall mean accuracy of the results and
cannot be removed from the measurements. On the contrary, the latter causes a systematic
bias if included [5]. Fortunately, they can be eliminated through methods of normalization.
The Affymetrix GeneChip is the most common oligonucleotide array, where each array is
composed of small strings of DNA, each 25 base pairs long that bind to complementary
transcripts, thereby measuring transcription from DNA to RNA for each gene. Each gene on
the array is represented by 11 to 20 probe pairs. Each pair consists of a perfect match (PM) and
a mismatch (MM) probe. The PM is designed to measure the amount of gene transcription
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plus some additional nonspecific binding. The MM probe, which only differs from its PM
probes by the 13th base pair, is designed to measure the amount of nuisance or background
signal. But it has been recognized [6, 7] that the MM values are heavily correlated with the
PM values, suggesting that they also contain a fraction of the original true gene expression
signal. In order to describe the true gene expression level by modelling the probe effect in
each array, and calculating the intensities in terms of PM and MM, statistics are needed.
This common statistics is called the gene expression index. There are a number of methods,
also called models, to summarize the multiple probe pair information into a single gene
expression value, that is, a gene index. MAS 5.0 [8, 9] is one of the most common methods
which assume true signals in the PM probes corrupted in an additive way by background
signals which are merely measured in the MM values. If the intensities are negatives, that
is, MM > PM, the methods suggests a background substraction from the PM values. RMA
(robust microarray analysis) [10] is the first method which uses no substraction from PM
values when MM > PM, whereas it considers that PM is the only source of true signals and
the MM values as a measure of background signal is dubious, thereby should be ignored.
GC-RMA (robust microarray analysis based on GC content) [10] is the first method which
takes into account the existence of true signal in MM intensities. In this method, PM’s are
found by the summation of optical noise, nonspecific hybridization, and the true signal.
But MM’s are also accepted to have a fraction of the true signal under the assumption
of log-normal distribution for both MM’s and PM’s. Later BGX (Bayesian gene expression
index) [6] and multi-mgMOS (multiple array mgMOS) [7] models use the same idea for
estimation. BGX describes PM andMM via truncated normal density on the logarithmic scale
by guaranteeing the nonnegativity of true signals and nonspecific hybridization, whereas
multi-mgMOS considers gamma distributed intensities on the original scale. Hereby, the
main difference between BGX and multi-mgMOS is their way of inference for the model
parameters in the sense that BGX implements a fully Bayesian approach for the estimation,
thereby faces with the challenge of computational demand, and multi-mgMOS performs
the maximum a posterior probability (MAP) which enables us to use less computational
cost with respect to the BGX calculation. In the FGX model, by using the same idea for the
description of intensities, it is assumed that the log-expressed intensities are normal as

log PMij ∼ N
(
Si + μH, σ2

)
, log MMij ∼ N

(
pSi + μH, σ2

)
, (1.1)

where Si represents the true expression value for the ith gene, p stands for the fraction of the
specific hybridization to the MM probe, and μH is the mean of the nonspecific hybridization,
which shows different sources of nuisance intensities. i and j display the gene indicator
(i = 1, . . . , n) and the probe indicator (j = 1, . . . , m), respectively. Finally, σ2 denotes the
model variances of normally distributed PM andMM intensities [11]. When observing probe
summaries as their means, rather than their individual probe values, we could adjust (1.1) by
replacing σ2 by σ2/m, whereby m is the number of probes in the probe set. In this study, we
extend this model by relaxing the normality assumption. We allow the logarithms of PM and
MM to have long-tailed symmetric (LTS) densities, thereby covering distributions ranging
from normal to cauchy. In inference of the model parameters, we implement the modified
maximum likelihood estimators (MMLE) [12] due to the fact that the likelihood equations
under LTS density do not have explicit solutions. We evaluate the performance of our model
in benchmark spike-in and simulated datasets. From the analysis we conclude that the RGX
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model is promising in terms of accuracy and can be a helpful tool for the biomolecular
engineering’s application in computational biology and bioinformatics.

2. Robust Gene Expression Index

In order to estimate the gene expression level of a transcript from perfect PM (perfect
matches) and MM (mismatches) values, typically, it is suggested that the intensities are
distributed via gamma [7, 13] on the original scale or normal [4, 6, 8] on the logarithmic scale.
On the other side, the models suggested by [8, 10] do not use any distributional assumption
for modeling the intensities. On the contrary, they implement robust estimators or some
optimization techniques to find the true gene expressions. However, from the study of [6]
whose inference is computed by the MCMC (Markov chain Monte Carlo) algorithm, it is
suggested that the true distribution of the intensities can be originated from the truncated
normal, and in comparison to MAS 5.0 (Microarray Suite Software), MBEI (model-based
gene expression index) [14], and RMA (robust microarray analysis), the point estimates of
the posterior distributions of gene expression indices via BGX (Bayesian gene expression
index) perform better, in particular, to detect the differences at low levels. Moreover, both
BGX and RMA give biggest differences when the genes are ranked according to the degree
of differential expression for every possible pairwise comparison of genes. This finding
is interesting in the sense that the models which do not depend on the strict normality
assumption outperform in comparison with other indices. In this study, to decide on the
distribution of intensities on the logarithmic scale (log2), we consider to draw the quantile-
quantile (Q-Q) plot of the data and compare it with the normal density line. From the results,
it is seen that PM and MM of Affymetrix probes deviate from the straight line mostly at the
tails, which is the property of LTS (long-tailed symmetric) distribution. Hereby, we model
the intensities as shown in (2.1) and call it the robust gene expression index (RGX), as we
consider both normal and its plausible alternatives in inference of the true signals. In this way,
we get resistent estimates for departures from normality. In (2.1), similar to (1.1), Si and μH

describe the true signal for the ith gene and nonspecific hybridization, respectively. Moreover,
p indicates the fraction of the true signal in MM probes, and σ2 denotes the variances of both
PM’s and MM’s:

log PMij ∼ LTS
(
Si + μH, σ2

)
, log MMij ∼ LTS

(
pSi + μH, σ2

)
. (2.1)

2.1. Estimation via MMLE Method

In order to infer the model parameters, we summarize the probe values by taking their means
like FGX (frequentist gene expression index) seeing that the typical analysis of the Affymetrix
data is conducted on a probe set, rather than an individual probe level. Then, we define
the likelihood function L below conditional on perfect matches PM = (PM1, . . . ,PMn) and
mismatches MM = (MM1, . . . ,MMn) for each array, where PMi :=

∑m
j=1 PMij/m, MMi :=∑m

j=1 MMij/m, and i = 1, . . . , n. In (2.2), we assume that the expression of every gene in
an oligonucleotide is independent on each other similar to BGX (Bayesian gene expression
index), mgMOS (modified gamma model for oligonucleotide signal), and multi-mgMOS
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(multiple array mgMOS) models. But unlike these indices, our index computes single array,
rather than multiple arrays simultaneously, at a time,

L
(
S, μH, p, σ|PM,MM

) ∝
(√

m

σ

)n n∏
i=1

(
1 +

z2PMi

k

)−v

×
(√

m

σ

)n n∏
i=1

(
1 +

z2MMi

k

)−v

,

(2.2)

in which v shows the shape parameter (v ≥ 2) assuring the existence of μ and k = 2v − 3.
S = (S1, . . . , Sn) is the n-dimensional vector of the true signals. zPMi

= (PMi−Si−μH)/(σ/
√
m)

and zMMi = (MMi − pSi − μH)/(σ/
√
m) represent the standardized values of PM and MM

intensities for i = 1, . . . , n, respectively. In inference of the unknown parameters μH , p, Si

(i = 1, . . . , n), and σ, we derive the following partial loglikelihoods:

∂ lnL
∂μH

=
2v

√
m

σk

n∑
i=1

[
g(zPMi) + g(zMMi)

]
,

∂ lnL
∂p

=
2v

√
m

σk

n∑
i=1

Si

[
g(zMMi)

]
,

(2.3)

where g(zPMi) = zPMi/{1 + (1/k)z2PMi
} and g(zMMi) = zMMi/{1 + (1/k)z2MMi

}. When we
equate these expressions to zero in order to find the maximum likelihood estimates of
the model parameters, it is seen that the loglikelihood derivations do not have explicit
solutions and the iterative methods are needed for approximately solving the equations.
In this study, we overcome the underlying challenge by the MML (modified maximum
likelihood)method which is asymptotically equivalent to the maximum likelihood estimates
[15, 16]. Moreover, for small sample size, this method produces estimates as efficient as the
maximum likelihood results. In the MML technique, briefly, we use the ordered variate of
residuals ePM(i) = PM[i] − S[i] − μH and eMM(i) = MM[i] − pS[i] − μH by replacing zPMi by
zPM[i] = (PM[i] − S[i] − μH)/(σ/

√
m) and zMMi

by zMM[i] = (MM[i] − pS[i] − μH)/(σ/
√
m),

respectively. In these expressions (PM[i],MM[i], S[i]) are the concomitant observations of the
corresponding ith ordered (in increasing magnitude) e(i)’s. The method takes the linear
approximation of the g(zPMi

) and g(zMMi
) functions by the first-order Taylor expansion

around the ith population quantile t(i) of the Student’s t-distribution with (2v − 1) degrees
of freedom. Hereby, the nonlinear functions are approximated by

g
(
zPM[i]

) � αi + βizPM[i] , g
(
zMM[i]

) � αi + βizMM[i] , (2.4)

where

αi =
2t3(i)/k(

1 + t2(i)/k
)2 , βi =

1 − t2(i)/k(
1 + t2(i)/k

)2 , (2.5)

∑n
i=1 αi = 0 because of symmetry. Accordingly, the closed form of μH is found as μ̂H =

(
∑n

i=1 βiMM[i] − p̂
∑n

i=1 βiPM[i])/((1 − p̂)
∑n

i=1 βi). On the other side in the estimation of σ, the
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mean probes, that is, PMi andMMi, are not sufficient statistics. We regain the lost information
in inference of σ, by recomputing its MML derivation via the complete loglikelihood. Then,
we express the partial derivative of σ in terms of ordered variates j via zPMi[j] = (PMi[j] − Si −
μH)/σ and zMMi[j] = (MMi[j] − pSi −μH)/σ. In the end, we get σ̂ = (B +

√
B2 + 4nmC)/(2nm),

where C = (v/k){∑n
i=1
∑m

j=1 βj(PMi[j] − Ŝi − μ̂H)2 +
∑n

i=1
∑m

j=1 βj(MMi[j] − p̂Ŝi − μ̂H)2} and
B = (v/k)

∑n
i=1
∑m

j=1 αj(PMi[j] −MMi[j]).
Finally, for the inference of Si, we solve the partial derivative of loglikelihood with

respect to Si by taking the sufficient statistics of σ. So, the estimate of Si is described as

Ŝi =
σ̂
(
1 + p̂

)
αi +

(
PM[i] + p̂MM[i]

)
βi − μ̂H

(
1 + p̂

)
βi(

1 + p̂2
)
βi

. (2.6)

To infer p̂, we follow a two-stage procedure. In the first stage, we give initial values
for μ̂H , σ̂, Ŝi, p̂ which are selected as their estimates under normality and find the candidate
values of α’s, β’s, and true concomitants used in the MML estimation. Then, we compute the
MML estimates of μ̂H , σ̂, and Ŝi, by taking previous estimates of α’s, β’s, and concomitants
as the initial values for the next iteration of the first stage. This procedure is repeated until
both concomitants and MML estimates are stabilized. From the findings, we observe that,
in general, three iterations are enough to get stable results. In the second stage, final MML
estimates of μH , σ, and Si from the first step are used in ∂ lnL/∂p. On the other hand, the
true p is the one which maximizes this expression within 0 ≤ p ≤ 1 with a step size 0.001,
thereby p̂ that gives the closest value to zero in ∂ lnL/∂p is taken as the MML estimate of p.

2.2. Observed Fisher Information Matrix

The MML (modified maximum likelihood) estimators are asymptotically equivalent to the
ML (maximum likelihood) estimators [12, 16], resulting in the maintenance of the minimum
variance bound and unbiasness properties. Due to its full efficiency, the covariances and
variances of the estimators can be found via the inverse of the Fisher information matrix
I, I−1. Whereas since we have a finite number of samples, we implement the observed I

I = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2l

∂μ2
H

∂2l

∂μH∂p

∂2l

∂μH∂S1

∂2l

∂μH∂S2
. . .

∂2l

∂μH∂Sn

∂2l

∂p∂μH

∂2l

∂p2
∂2l

∂p∂S1

∂2l

∂p∂S2
. . .

∂2l

∂p∂Sn
...

...
...

...
...

...

∂2l

∂Sn∂μH

∂2l

∂Sn∂p
0 0 . . .

∂2l

∂S2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+2)×(n+2)

. (2.7)

In (2.8), the variance of μ̂H is given as an example. In this expression, C0 shows
a common constant term in all variances and covariances. T0 = (MMi − p̂Ŝi − μ̂H)/(kσ̂),
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T1 = (MMi − p̂Ŝi − μ̂H)
2
/(kσ̂2), and T2 = (PMi − Ŝi − μ̂H)

2
(kσ̂2), where PM and MM denote

the perfect matches and mismatches probes, respectively, as previously used

V
(
μ̂H

)
=

1
C0

⎡
⎢⎣ 2v
kσ̂2

n∑
i=1

Ŝ2
i

1 − T1

(1 + T1)2

−
n∑
i=1

−(2v/kσ̂)(T0/(1 + T1)) +
(
2vp̂/kσ̂2)Ŝi

(
(1 − T1)/(1 + T1)2

)

(2v/kσ̂2)
(
(1 − T2)/(1 + T2)2

)
+
(
2vp̂2/kσ̂2

)(
(1 − T1)/(1 + T1)2

)

⎤
⎥⎦.

(2.8)

2.3. Data Description in the Application

In the assessment of the MML (modified maximum likellihood) estimators, we use three
datasets. The first two data are chosen by the other methods for the comparison, and the third
data are generated by simulation and are used for the comparison between FGX (frequentist
gene expression index) and RGX (robust gene expression index). In the first analysis, we
implement a bench-mark Affymetrix spike-in data which have 59 arrays with 10864 probe
sets. The data are available from http://affycomp.biostat.jhsph.edu/. For the evaluation, we
use the common 16 spike-in probesets (numbered as 3777, 684, 1597, 38734, 39058, 36311,
36889, 1024, 36202, 36085, 40322, 407, 1091, 1708, 33818, and 546) whose concentration levels
are publicly available. These spike-in genes are measured under 14 concentration levels listed
as 0.0, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, and 1024.0 pM (picoMolar).
Every gene is described by 16 probes in each array. In the second analysis, we use a GeneLogic
spike-in dataset which has 14 arrays (arrays 92453, 92454, 92456, 92458, 92460, 92462, 92464,
92466, and 92491–92496 with 9 suffix hgu95a11) with 11 GeneLogic spike-in probes sets (viz.
BioB-5, BioB-M, BioB-3, BioC-5, BioC-5, BioC-3, BioDn-3, DapX-5, DapX-M, DapX-3, CreX-5,
and CreX-3 with affix AFFX-) whose concentration levels are publicly available and used for
the evaluation of other methods [17]. In this dataset, except CreX-3 probe set, every spike-
in gene is hybridized at 0.0, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0, 12.5, 25.0, 50.0, 75.0, 100.0, and
150.0 pM and is composed of 20 probes. In the assessment, similar to other findings from
different indices [6], the array 92466 and the spike-in gene DapX-M are excluded. Finally,
in the third analysis, we use a simulated dataset which is a location mixture of two normal
distributions with 0.5N(Si + μH, σ2) + 0.5N(Si + μH + δσ, σ2) structure for perfect matches
PM and mismatchedMM values. Here, δ stands for the constant affecting the location. In this
set, we take 10 genes where each gene has 20 probes and Si is accepted as S1 = 2, 3, . . . , 13
for i = 1, 2, . . . , 10, respectively, assuming that every gene gives intensities under a specific
concentration. Then, we set other unknown parameters to μH = 1, σ2 = 1, p = 0.7, and δ = 10
considering that the second part of the mixture causes extreme observations with probability
0.5.

2.4. Assessment Criteria in Application

In order to evaluate our results by using the first Affymetrix dataset, we compare RGX (robust
gene expression index) estimates with MAS 5.0 (Microarray Suite Software), MBEI (model-
based gene expression index) or dChip, RMA (robust microarray analysis), GC-RMA (robust
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mocroarray analysis on GC content), mgMOS (modified gamma model for oligonucleotide
signal) [7], and multi-mgMOS (multiple array mgMOS) [7] results. For the comparisons of
the first dataset via all these well-known methods, we use the following criteria which are
presented in the table http://affycomp.biostat.jhsph.edu/AFFY2/TABLES/0.html and in the
study of [18]: (i) signal detect that is found by regressing the gene expressions of all arrays
on their corresponding nominal log concentrations, (ii) signal detect slope which is the slope
term computed from this regression, (iii) R2 that is found by taking the average of derived
from each array separately, and (iv) low slope that is the slope term obtained as described
above but for the genes under low concentrations (0.25 ≤ x ≤ 16.0 pM). For the assessment,
furthermore, we use three plots. In the first plot, we draw the average intensities of 14
Affymetrix spike-in probesets versus nominal log concentrations. This figure (Figure 1(a))
corresponds to the regression line which gives the signal detect R2 in item. In the second
plot, we draw the observed fold change across nominal fold change, where the genes are
exposed in the same number of concentrations after the cancelation of zero concentrations
on the original scale (Figures 1(b) and 1(c)). This type of the plot is used to get a prior
information to find the most interesting genes which give the highest fold changes [18].
Finally, in the third plot, we compare the sensitivity of all methods by the average receiving
operating characteristic (ROC) curve. For the analysis, we take the absolute difference of the
same gene intensities in the two different arrays i and j. These differences are computed
for all possible pairs (i < j) and ordered in increasing magnitude. Then, the number of
true positives along every possible value of false positive from 0 to 100 is calculated. This
process is implemented for each pair of arrays, and the average of true positives across every
false positive value is plotted. In the analysis of the second dataset, we initially compare
the computational time of BGX and multi-mgMOS with the results of FGX (frequentist gene
expression index) and RGX (robust gene expression index). Then, to assess the relation
between signals and concentrations, we draw the plot of the average estimated signals per
concentration and compute the associated slope term andR2. This comparison is based on the
results of BGX (Bayesian gene expression index) presented in [6] and FGX given in [11]. To
evaluate the performance of every gene with their variances, we plot the graph indicating the
estimated intensities within a 95% confidence interval. Finally, in order to compare merely
RGX and FGX when the data become far from normality or have outliers, we evaluate the
simulated dataset. For the assessment, we repeat the simulation 10,000Monte Carlo times and
calculate the mean and standard deviation of the estimated model parameters. The results
are compared with the associated true values in terms of accuracy, efficiency, and relative
efficiency (RE). In the calculation of RE, we use RE = 100 (Variance of RGX/Variance of
FGX).

3. Results

In RGX (robust gene expression index), since p and σ are the common parameters for the
data, they might be affected by which probesets are included in inference. In our evaluation,
we compute these common terms by using the selected spike-in genes in each dataset. We
obtain the true v from the likelihood function of the long-tailed symmetric density. In order
to find the best choice for v in which v = ∞ refers to the normal density, we calculate the
loglikelihood, lnL, score for every value of v from 2 to 52 with a step size 0.5 by setting
the model parameters in lnL to their FGX (frequentist gene expression index) estimates.
Accordingly, the true v can be the value which maximizes (1/n) lnL seeing that the highest
likelihood information can be gathered under the most plausible v̂. From this searching
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Figure 1: (a) Average estimated intensities of Affymetrix genes (except 3818 and 546). (b) Observed fold
changes versus fold changes and fitted simple linear regression models for genes 684 and 1597. (c) Genes
38734, 39058, 36311, 36889, 1024, 36202, 36085, 40322, and 1708 in 59 Affymetrix arrays. (d) Average ROC
curve. (e) GeneLogic data for RGX average estimated signals per nominal concentration. (f) Weighted
average intensities of genes. (g) 95% confidence intervals.

process for both Affymetrix and GeneLogic datasets, we see that v = 52 is the optimal
preference for the true v for all arrays. From the assessment of the first data, we observe that
only FGX and RGX measure the zero signal among MAS 5.0 (Microarray Suite Software),
RMA (robust microarray analysis), MBEI (model-based gene expression index), GC-RMA
(robust microarray analysis based on GC content), mgMOS (modified gamma model for
oligonucleotide signal), and multi-mgMOS (multiple array mgMOS) methods when the
concentrations are negligibly small. Because the structure of both models enables us to
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Table 1: Selected criteria with perfection values in Section 2.4 for Affymetrix data.

Method Signal detect R2 Signal detect slope R2 Low slope
MAS 5.0 0.86 0.71 0.89 0.72
RMA 0.80 0.63 0.99 0.29
MBEI (dChip) 0.85 0.53 0.99 0.25
GC-RMA 0.84 0.97 0.99 0.73
mgMOS 0.82 0.76 0.96 0.77
multi-mgMOS 0.80 1.03 0.96 1.21
FGX 0.94 0.43 0.90 0.26
RGX 0.96 0.44 0.92 0.27

compute the average value of μH under every concentration. Apart from the intercept term,
we find a high similarity between all models [6]. With respect to the plot in Figures 1(b) and
1(c), we observe a straight line indicating a fitted simple linear regression line according to the
given changes. From the selected criteria for the Affymetrix data, our results together with
its strong alternatives are presented in Table 1, where the signal detect R2 of RGX is better
than all other alternatives. Furthermore, its average R2 has comparable value and improves
the results of FGX. If the estimates under low, medium, and high intensities are checked
separately, it is seen that R2 of each group is high in the sense that R2 of medium (0.98)
and high (1) intensities indicate almost perfect correlation and R2 of low (0.88) intensities is
relatively small.

Also, from the slope terms, we find that the relation between signals and concen-
trations is not linear on both original and nominal log scale. Finally, from the plots of the
average ROC (receiving operating characteristic) curve (Figure 1(d)), the sensitivity of RGX
is as good as FGX and RMA models. On the other hand, in the analysis of the GeneLogic
data, we evaluate the computational time, and we find that both FGX (1 sec in R) and RGX
(6 sec in R) are much faster than BGX (Bayesian gene expression index) (70min in C++)
and multi-msMOS (3min in R). Then, we assess the plot of the average estimated signals per
concentration. The resulting plot (Figure 1(e)) hasR2 = 0.94with the slope term 0.62 implying
a nonlinear relationship between signals and concentration, similar to the analysis via the
Affymetrix spike-in data. In terms of the slope, RGX is slightly better than BGX (around 0.50)
and FGX (around 0.60) [10]. Whereas apart from the estimation under low concentrations,
we observe that the signals display a linear relation across concentrations. Finally, to evaluate
the estimated intensities within a 95% confidence interval, we present Figure 1(f). In the
computation of the variance, we give a weight in each gene in the sense that every estimated
signal is weighted by the precision of all other signals at the same concentration. The analysis
shows that although the estimates under low concentrations are affected by noise, resulting
in larger confidence intervals, the estimates from the medium concentrations are precise
and the ones from high concentrations are relatively better than the estimates under low
concentrations. But we observe that both FGX and RGX indices have close performance [11].
Similar to the Affymetrix analysis, we anticipate this result. Because in both datasets, we see
that the intensities indicate high v values, meaning that they are close to the normal density.
Whereas in order to compare the performance of RGX and FGX when the data become far
from normality, we use the simulated dataset whose model parameters are evaluated based
on the mean, standard deviation, and relative efficiency from 10,000 Monte Carlo runs. In
Table 2, we display that RGX and FGX have very close accuracies whereas RGX outperforms
FGX in terms of efficiency when the number of extreme observation increases. The gain in
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Table 2: Mean, standard deviation (Std. dev.), and relative efficiency (RE) of RGX and FGX estimates.

RGX FGX
Parameter True value Mean Std. dev. Mean Std. dev. RE
p 0.7 0.735 0.042 0.735 0.042 100.000
μH 1 4.940 1.308 4.941 1.307 100.153
σ 1 4.972 0.073 3.847 484 2.275
S1 2 3.124 1.529 3.146 1.551 97.183
S2 3 4.116 1.574 4.133 1.597 97.140
S3 4 5.080 1.637 5.090 1.663 96.898
S4 5 6.085 1.648 6.092 1.670 97.383
S5 6 7.060 1.687 7.061 1.709 97.442
S6 7 8.054 1.765 8.050 1.788 97.444
S7 8 9.045 1.780 9.036 1.802 97.573
S8 9 10.029 1.819 10.015 1.840 97.730
S9 10 11.025 1.847 11.007 1.866 97.974
S10 11 12.000 1.881 11.977 1.899 98.113

efficiency can be better observed when we deal with large number of genes with extreme
intensities which lead to the disturbance of normality assumption of signals.

On the other side, in order to evaluate the performance of both RGX and FGX in a real
dataset, we use a one-channel microarray data of a boron toxicity analysis [19], where two
different conditions for boron toxicity of barley leaves are compared with a control group.
In this analysis, the results are compared with the RMA estimates in terms of the detection
of significant genes, fold change at least two, and ROC curve under small and large number
of genes. The findings indicate that both FGX and RGX outperform RMA in terms of the
control of significant genes and ROC analysis, but they are not more efficient than RMA
in the detection of at least 2 fold-changed genes which is one of the strong side of RMA
index [20]. Because, in particular, RGX is mostly concentrated on the tails of the density,
whereas RMA detects the fold changes around the center of the density under a deterministic
approach. Accordingly, when the fold-change is observed under low ratio as found in the
boron toxicity analysis, RMA can detect the associated genes better than RGX. Moreover,
from the comparative analysis of PAMSAM (partitioning around medoids by using average
silhouette width) clustering [21] of fold-changed genes, we observe that the estimates of
both FGX and RGX are similar to the RMA’s outputs and can produce biologically validated
findings [22].

4. Conclusion and Discussion

We have developed an extension of the FGX (frequentist gene expression index) method
under the long-tailed symmetric distribution on the logarithmic scale. In inference, we have
implemented the modified maximum likelihood method which enables us to solve the
intractable likelihood equations and derive the covariances and variances of all estimates.
From the analysis of bench-mark data it is seen that the novel estimators are better in the
signal detect R2 and the average R2, give comparable slopes under different regressions of
intensities versus concentration, and still gain from the computational cost while maintaining
high sensitivity. Moreover, from the analysis of the simulated data, it is observed that
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the strongness of RGX (robust gene expression index) over FGX is clearly seen when the
intensities are far from the normality or extreme observations. Therefore, we think that RGX
can successively deal with such a high dimensional decision-making problem in inference of
the signals, and it enables us to effectively implement the microarray analyses in biochemical
studies. The improvement in the estimated signals via RGX can also help us to better reveal
the uncertainty in the data by different classification [1] and data mining techniques [3] that
we may need during different stages of the biomolecular analyses.

On the other hand, we can improve the performance of RGX in different ways in
the sense that the model can be extended by defining signal values with both gene and
probe specific, rather than only gene specific values. Additionally, although we assume a
constant variance for all probes and genes which seem plausible for Affymetrix spike-in
data, it can be constructed under the assumption of gene specific variances [22]. Finally, it
is known that the difference between perfect matches PM and mismatches MM values is
originated from the base change in the 13th entry of the base sequence. This difference can be
also inherently dependent on the annealing temperature between these two sorts of probes
and actual annealing temperature of the experiment. Hereby, if this temperature is not equal
for all probes on the array, the probe pair can be affected by this difference. This challenge
has been discussed in the study of [23], saying that the base pair used on the 13th letter
significantly affects the intensities of oligonucleotide. In the study of [24], it is also found that
the intensity of PM increases significantly when the PM middle base is a C (Cytosine) or a
T (Thymine), whereas the intensity of MM raises considerably when the MM middle base is
G (Guanine) or A (Adenine). Considering this distinction coming from the sequence of the
base, the PDNN (positional-dependent nearest neighbor) model [25] decomposes the signal
in several components according to the formation of RNA-DNA duplexes with many genes.
So, similar to that model, we can assign a different weight factor at each base (nucleotide)
position on a probe so that different parts of the probe may contribute differently to the
stability of the binding.
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