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A direct two-point block one-step method for solving general second-order ordinary differential
equations (ODEs) directly is presented in this paper. The one-step block method will solve the
second-order ODEs without reducing to first-order equations. The direct solutions of the general
second-order ODEs will be calculated at two points simultaneously using variable step size.
The method is formulated using the linear multistep method, but the new method possesses
the desirable feature of the one-step method. The implementation is based on the predictor and
corrector formulas in the PE(CE)m mode. The stability and precision of this method will also
be analyzed and deliberated. Numerical results are given to show the efficiency of the proposed
method and will be compared with the existing method.

1. Introduction

In this paper, we are considering solving directly the general second-order initial value
problems (IVPs) for systems of ODEs in the form

y′′ = f
(
x, y, y′), y(a) = y0, y′(a) = y′

0, x ∈ [a, b]. (1.1)

Equation in (1.1) arises from many physical phenomena in a wide spectrum of applications
especially in the science and engineering areas such as in the electric circuit, damped and
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Figure 1: Block one-step method.

undamped spring mass and some other areas of application. We will also consider solving
general second order as in (1.1) using the direct block one-step method. Block methods for
numerical solutions of ODEs have been proposed by several researchers such as in [1–5].
The common block methods used to solve the problems can be categorized as one-step block
method and multistep block method.

One-step block method such as the implicit Runge-Kutta method is also being referred
to as one previous point to obtain the solution. The multistep block method in the form of
Adams type formula is presented in [5, 6]. In [7], the block backward differentiation formula
(BBDF) for solving stiff ODEs has been introduced and the solutions referred to as more
than one previous point. The works in [6] showed the proposed two-point four-step block
method presented as in a simple form of Adams Moulton method for solving second-order
ODEs directly.

The block method of Runge-Kutta type has been explored in [1], and it is suggested
that a block of new approximation values is used simultaneously for solving first-order ODEs.
The works in [3, 8, 9] have been considered in solving (1.1) using the block one-step method,
while [3] has proposed a two-point implicit block one-step method for solving second-order
ODEs directly and suggested that the method is suitable to be parallel.

In [9], Majid et al. have derived the two-point block method for solving first-order
ODEs by using the closest point in the interval, that is, [xn, xn+1] and [xn+1, xn+2]. The
Gauss Seidel iteration was implemented in the proposed block method. The approach in
this research is to extend the idea in [9] for solving (1.1) directly without reducing system
of first-order ODEs using two-point block one-step method.

2. Formulation of the Method

In order to compute the two approximation values of yn+1 and yn+2 simultaneously, the
interval of [a, b] is divided into a series of blocks with each block containing two points as
shown in Figure 1.

In Figure 1, we observed that kth block contains xn, xn+1 and xn+2, where xn becomes
the starting point and xn+2 is the last point in the kth block with step size h. The
approximations values of yn+1 and yn+2 are computed simultaneously. The evaluation
solution at the last point in kth block will be restored as the initial values for (k + 1)th block.
The same procedure is used to compute the solutions for the next block until the end of the
interval. The evaluation information from the previous step in a block could be used for other
steps of the same block only. During the calculations of iteration, the final values of yn+2 at
the point xn+2 are taken as the initial values for the next iteration.
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We obtained the approximation values of yn+1 and yn+2 at the points xn+1 and xn+2 by
integrating once and twice over (1.1) with respect to x. We begin to evaluate the y′

n+1 and
yn+1 by integrating once and twice (1.1) over the interval [xn, xn+1]:

∫xn+1

xn

y′′(x)dx =
∫xn+1

xn

f
(
x, y, y′)dx,

∫xn+1

xn

∫x

xn

y′′(x)dx dx =
∫xn+1

xn

∫x

xn

f
(
x, y, y′)dx dx.

(2.1)

Let xn+1 = xn + h which gives

y′(xn+1) − y′(xn) =
∫xn+1

xn

f
(
x, y, y′) dx,

y(xn+1) − y(xn) − hy′(xn) =
∫xn+1

xn

(xn+1 − x)f
(
x, y, y′) dx.

(2.2)

Then, f(x, y, y′) in (2.2) will be replaced with Lagrange interpolation polynomial that
involves interpolation points in the block at (xn, fn), (xn+1, fn+1) and (xn+2, fn+2). Taking
x = xn+2 + sh, s = (x − xn+2)/h, and dx = hds and replacing into (2.2). Then, the limit
of integration in (2.2) will be from −2 to −1. The corrector formulae will be obtained using
MATHEMATICA. The formulae of y′

n+1 and yn+1 are obtained as follows:

y′
n+1 = y′

n +
h

12
(
5fn + 8fn+1 − fn+2

)
,

yn+1 = yn + hy′
n +

h2

24
(
7fn + 6fn+1 − fn+2

)
.

(2.3)

To approximate the value of y′
n+2 and yn+2, we take xn+2 = xn + 2h by integrating once and

twice (1.1) over the interval [xn+1, xn+2] and apply the same process. The limit of integration
will be from −1 to 0, and the following corrector formulae will be obtained:

y′
n+2 = y′

n+1 +
h

12
(−fn + 8fn+1 + 5fn+2

)
,

yn+2 = yn+1 + hy′
n+1 +

h2

24
(−fn + 10fn+1 + 3fn+2

)
.

(2.4)
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The formulae (2.3) and (2.4) may be rewritten in the form of matrix difference equation as
follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 −1 1 0

0 0 0 0

0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

yn−1

yn

yn+1

yn+2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= h

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 −1 0

0 1 0 0

0 0 1 −1

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y′
n−1

y′
n

y′
n+1

y′
n+2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
5

12
8

12
−1
12

0
7

24
6

24
−1
24

0
−1
12

8
12

5
12

0
−1
24

10
24

3
24

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

fn−1

fn

fn+1

fn+2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.5)

The order of this developed method is identified by referring to [10–12]. The two-point one-
step block method for ODEs can be written in a matrix difference equation as follows:

αYm = hβY ′
m + h2γFm, (2.6)

where α, β, and γ are the coefficients with the m-vector Ym, Y ′
m, and Fm be defined as

Ym =
[
yn−1, yn, yn+1, yn+2

]T
, Y ′

m =
[
y′
n−1, y

′
n, y

′
n+1, y

′
n+2
]T
, Fm =

[
fn−1, fn, fn+1, fn+2

]T
.

(2.7)

By applying the formulae for the constants Cq, in [10] the formulae is defined as

C0 =
k∑

j=0

αj ,

C1 =
k∑

j=0

(
jαj − βj

)
,

C2 =
k∑

j=0

(
j2

2!
αj − jβj − γj

)

,

...

Cq =
k∑

j=0

(
jq

q!
αj −

jq−1

(
q − 1

)
!
βj −

jq−2

(
q − 2

)
!
γj

)

, where q = 3, 4, 5, . . . .

(2.8)

Therefore, the order and error constant of the two-point one-step block method can be
obtained by using equation in (2.8).
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For q = 0,

C0 =
3∑

j=0

1
0!
j0αj = α0 + α1 + α2 + α3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

−1

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (2.9)

For q = 1,

C1 =
3∑

j=0

1
1!
j1αj −

3∑

j=0

1
0!
j0βj

= 11 · α1 + 21 · α2 + 31 · α3 −
(
β0 + β1 + β2 + β3

)

= 1

⎡

⎢⎢⎢⎢⎢
⎣

0

−1

0

0

⎤

⎥⎥⎥⎥⎥
⎦
+ 2

⎡

⎢⎢⎢⎢⎢
⎣

0

1

0

−1

⎤

⎥⎥⎥⎥⎥
⎦
+ 3

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦
−

⎛

⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

0

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢
⎣

1

1

0

0

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢
⎣

−1

0

1

1

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢
⎣

0

0

−1

0

⎤

⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟
⎠

=

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

0

⎤

⎥⎥⎥⎥⎥
⎦
.

(2.10)

For q = 2,

C2 =
3∑

j=0

1
2!
j2αj −

3∑

j=0

1
1!
j1βj −

3∑

j=0

1
0!
j0γj

=
1
2

(
12 · α1 + 22 · α2 + 32 · α3

)
−
(

11 · β1 + 21 · β2 + 31 · β3

)

− (γ0 + γ1 + γ2 + γ3
)

=
1
2

⎛

⎜⎜⎜⎜⎜
⎝

1

⎡

⎢⎢⎢⎢⎢
⎣

0

−1

0

0

⎤

⎥⎥⎥⎥⎥
⎦
+ 4

⎡

⎢⎢⎢⎢⎢
⎣

0

1

0

−1

⎤

⎥⎥⎥⎥⎥
⎦
+ 9

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟
⎠

−

⎛

⎜⎜⎜⎜⎜
⎝

1

⎡

⎢⎢⎢⎢⎢
⎣

1

1

0

0

⎤

⎥⎥⎥⎥⎥
⎦
+ 2

⎡

⎢⎢⎢⎢⎢
⎣

−1

0

1

1

⎤

⎥⎥⎥⎥⎥
⎦
+ 3

⎡

⎢⎢⎢⎢⎢
⎣

0

0

−1

0

⎤

⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟
⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

0

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

5
12

7
24

−1
12

−1
24

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

8
12

6
24

8
12

10
24

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1
12

−1
24

5
12

3
24

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

0

⎤

⎥⎥⎥⎥⎥
⎦
.

(2.11)
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For q = 3,

C3 =
3∑

j=0

1
3!
j3αj −

3∑

j=0

1
2!
j2βj −

3∑

j=0

1
1!
j1γj =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (2.12)

For q = 4,

C4 =
3∑

j=0

1
4!
j4αj −

3∑

j=0

1
3!
j3βj −

3∑

j=0

1
2!
j2γj =

⎡

⎢
⎢⎢
⎢⎢
⎣

0

0

0

0

⎤

⎥
⎥⎥
⎥⎥
⎦
. (2.13)

For q = 5,

C5 =
3∑

j=0

1
5!
j5αj −

3∑

j=0

1
4!
j4βj −

3∑

j=0

1
3!
j3γj =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
24

1
45

− 1
24

− 7
360

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

/=

⎡

⎢⎢⎢⎢⎢
⎣

0

0

0

0

⎤

⎥⎥⎥⎥⎥
⎦
. (2.14)

The method is order p if C0 = C1 = · · · = Cp+1 = 0 and Cp+2 /= 0 is the error constant. Thus, we
conclude that the method in (2.3) and (2.4) is of the order 3 and the error constant is

Cp+2 = C5 =
[

1
24

,
1

45
,− 1

24
,− 7

360

]T

. (2.15)

3. Implementation of the Method

The initial starting point at each block are obtained by using Euler method as predictor and
the initial h used is as follows:

hinitial =
(

TOL
2

)1/(p+1)

, (3.1)

where TOL is the tolerance and p is the order of the method. Then, the calculations
are corrected using the corrector formulae in (2.3) and (2.4). For the next block, the
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same techniques are repeated to compute the approximation values of yn+1 and yn+2
simultaneously until the end of the interval. We use r function evaluations per step at the
corrector formulae, that is, PE(CE)r , where P, E, and C indicate the predictor, evaluate the
function f , and the corrector, respectively.

Algorithm 3.1. Computing approximating y
′(p)
n+1,0, y

(p)
n+1,0, y

′(p)
n+2,0, and y

(p)
n+2,0 using the predictor

formulas is as follows:

for i = 1 to 2 do

P : y′(p)
n+i,0 = y

′(p)
n+(i−1) + hf

(p)
n+(i−1),

y
(p)
n+i,0 = y

(p)
n+(i−1) + hy

′(p)
n+(i−1) +

h2

2
f
(p)
n+(i−1),

E : f
(
xn+i, y

(p)
n+i,0, y

′(p)
n+i,0

)

(3.2)

end for

Computing approximations y
′(c)
n+1,0, y

(c)
n+1,0, y

′(c)
n+2,0, and y

(c)
n+2,0 using corrector formulas is as

follows:

for r = 0 do

C : y′(c)
n+1,r+1 = y

′(c)
n +

h

12

(
5f (c)

n + 8f (p)
n+1,0 − f

(p)
n+2,0

)
,

y
(c)
n+1,r+1 = y

(c)
n + hy

′(c)
n +

h2

24

(
7f (c)

n + 6f (p)
n+1,0 − f

(p)
n+2,0

)
,

y
′(c)
n+2,r+1 = y

′(c)
n+1,r+1 +

h

12

(
−f (c)

n + 8f (p)
n+1,0 + 5f (p)

n+2,0

)
,

y
(c)
n+2,r+1 = y

(c)
n+1,r+1 + hy

′(c)
n+1,r+1 +

h2

24

(
−f (c)

n + 10f (p)
n+1,0 + 3f (p)

n+2,0

)
,

(3.3)

for i = 1 to 2 do

E : f
(
xn+i, y

(c)
n+i,r+1, y

′(c)
n+i,r+1

)
(3.4)

end for

end for

for r = 1, 2, . . . until convergence do
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C : y′(c)
n+1,r+1 = y

′(c)
n +

h

12

(
5f (c)

n + 8f (c)
n+1,0 − f

(c)
n+2,0

)
,

y
(c)
n+1,r+1 = y

(c)
n + hy

′(c)
n +

h2

24

(
7f (c)

n + 6f (c)
n+1,0 − f

(c)
n+2,0

)
,

y
′(c)
n+2,r+1 = y

′(c)
n+1,r+1 +

h

12

(
−f (c)

n + 8f (c)
n+1,0 + 5f (c)

n+2,0

)
,

y
(c)
n+2,r+1 = y

(c)
n+1,r+1 + hy

′(c)
n+1,r+1 +

h2

24

(
−f (c)

n + 10f (c)
n+1,0 + 3f (c)

n+2,0

)
,

(3.5)

for i = 1 to 2 do

E : f
(
xn+i, y

(c)
n+i,r+1, y

′(c)
n+i,r+1

)
(3.6)

end for

end for

The convergence test:

∣∣∣∣∣

(
yn+2,r+1

)
t −
(
yn+2,r

)
t

A + B
(
yn+2,r+1

)
t

∣∣∣∣∣
< 0.1 × TOL, (3.7)

where r is the number of iterations and (y)t is the tth component of the approximate. A = 1,
B = 0 correspond to the absolute error test. A = 1, B = 1 correspond to the mixed test and
finally A = 0, B = 1 correspond to the relative error test. The mixed error test is used in all
tested problems. If the convergence test is satisfied, then we control the error in the current
block by performing the local truncation error as follows:

LTE =
∣∣∣y(k)

n+2 − y
(k−1)
n+2

∣∣∣, (3.8)

where k is the order of corrector formula. The errors calculated in the code is defined as

(Ei)t =

∣∣∣∣∣

(
yi

)
t −
(
y(xi)

)
t

A + B
(
y(xi)

)
t

∣∣∣∣∣
. (3.9)

For the evaluation of maximum error, it is defined as follow:

MAXE = max
1≤i≤TS

(
max
1≤i≤N

(Ei)t

)
, (3.10)

where N is the number of equation in the system and TS is the number of successful steps.
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In order to make the selection of the next step size, we follow again the techniques
used in [9]. If LTE ≤ TOL, then the next step size remains constant or double, otherwise the
step size will be half. The step size when the integration steps are successful is given by

hnew = C × hold ×
(

TOL
LTE

)1/(k+1)

,

if (hnew ≥ 2 × hold), then hnext = 2 × hold,

else hnext = hold,

(3.11)

where C = 0.5 is a safety factor. The algorithm when the step failure occurs is

hnext =
1
2
× hold. (3.12)

4. Stability of the Method

In this section, we will discuss the stability of the proposed method derived in the previous
section on a linear general second-order problem:

y′′ = f = θy′ + λy. (4.1)

Firstly, the test equation in (4.1) is substituted into the predictor formula (3.2). The
evaluation of fp

n+1,0 and f
p

n+2,0 will be substituted into the right-hand side of (3.3) when r = 0
as shown below:

f
p

n+1,0 = θy
′p
n+1,0 + λy

p

n+1,0,

f
p

n+2,0 = θy
′p
n+2,0 + λy

p

n+2,0,
(4.2)

where y
′p
n+1,0 , yp

n+1,0, y
′p
n+2,0, and y

p

n+2,0 in (4.2) are obtained in (3.2) after substituted the test
equation (4.1). Then, the formulae are written in the matrix form and setting the determinant
of the matrix to zero. Hence, the stability polynomial is obtained:

r = 0:

t2
(

1 +
25hθ

12
+

9h2θ2

4
+

5h3θ3

6
+
h4λ4

3
+
h2λ

8
− h3θλ

2
+
h4θ2λ

12

−h
5θ3λ

12
− 37h4λ2

144
− h5θλ2

9
− h6θ2λ2

9
− h6λ3

36
+
h7θλ3

16
+
h8λ4

36

)
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Figure 2: Stability region for direct block one-step method when r = 0.

+ t3
(

−2 − 13hθ
6

− 7h2θ2

3
− 5h3θ3

6
− h4λ4

3
− 17h2λ

4
− 47h3θλ

12
− 7h4θ2λ

4

−7h5θ3λ

12
− 115h4λ2

72
− 19h5θλ2

18
− 7h6θ2λ2

18
− 7h6λ3

36
− 17h7θλ3

144
− h8λ4

72

)

+ t4
(

1 +
hθ

12
+
h2θ2

12
+
h2λ

8
+
h3θλ

12
+
h4λ2

48

)
= 0.

(4.3)

Figure 2 showed the stability region of the direct block one-step method when r = 0.

In case r = 1, the stability polynomial is obtained as follows:

r = 1:

t2
(

1 + 2hθ +
25h2θ2

12
+

19h3θ3

12
+
h4θ4

3
+

5h5θ5

18
+
h6θ6

9
+

7
48

h3θλ − 13
48

h4θ2λ +
1
4
h5θ3λ

+
17
72

h6θ4λ +
1

18
h7θ5λ +

11h4λ2

288
− 83

144
h5θλ2 +

101
432

h6θ2λ2 +
13
432

h7θ3λ2

− 17
432

h8θ4λ2 − 199h6λ3

1728
− 53

288
h7θλ3 − 7

216
h8θ2λ3 − 5

432
h9θ3λ3

−29h8λ4

324
− 17h9θλ4

1296
+

97h10θ2λ4

5184
− h10λ5

648
+

1
96

h11θλ5 +
h12λ6

648

)

+ t3
(

−2 − 2hθ − 13h2θ2

6
− 5h3θ3

3
− h4θ4

3
− 5h5θ5

18
− h6θ6

9
− 4h2λ − 103

24
h3θλ

− 17h4θ2λ

6
− 11h5θ3λ

12
− 19h6θ4λ

24
− 5h7θ5λ

18
− 203h4λ2

144
− 199

144
h5θλ2
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Figure 3: Stability region for direct block one-step method when r = 1.

− 365h6θ2λ2

432
− 361

432
h7θ3λ2 − 127h8θ4λ2

432
− 133h6λ3

864
− 269h7θλ3

864
− 23h8θ2λ3

54

−73h9θ3λ3

432
− 55h8λ4

1296
− 139h9θλ4

1296
− 289h10θ2λ4

5184
− 7h10λ5

648
− 13h11θλ5

1296
− h12λ6

1296

)

+ t4
(

1 +
h2θ2

12
+
h3θ3

12
+

7
48

h3θλ +
5

48
h4θ2λ +

11h4λ2

288
+

1
24

h5θλ2 +
h6λ3

192

)

= 0.

(4.4)

Figure 3 showed the stability region of the direct block one-step method when r = 1.
The stability region is plotted using MATHEMATICA, and the shaded region inside

the boundary in Figures 2 and 3 demonstrate the stability region for the proposed method.

5. Numerical Results and Discussion

We have tested the performance of the proposed method on four problems. For the first three
problems, a comparison is made between the solutions obtained in [9].

Problem 1. We have

y′′
1 = −y2 + sinπx, y1(0) = 0, y′

1(0) = −1,

y′′
2 = −y1 + 1 − π2sinπx, y2(0) = 1, y′

2(0) = 1 + π, [0, 10].
(5.1)

Solution: y1(x) = 1 − ex, y2(x) = ex + sinπx.
First-order systems:

y′
1 = y3, y′

2 = y4, y′
3 = −y2 + sinπx, y′

4 = −y1 + 1 − π2 sinπx,

y1(0) = 0, y2(0) = 1, y3(0) = −1, y4(0) = 1 + π.
(5.2)

Solution: y1(x) = 1 − ex, y2(x) = ex + sinπx, y3(x) = −ex, y4(x) = ex + π cosπx.
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Problem 2. We have

y′′
1 = −e−xy2, y1(0) = 1, y′

1(0) = 0,

y′′
2 = 2exy′

1, y2(0) = 1, y′
2(0) = 1, [0, π].

(5.3)

Solution: y1(x) = cosx, y2(x) = ex cosx.
First-order systems:

y′
1 = y3, y′

2 = y4, y′
3 = −e−xy2, y′

4 = 2exy3,

y1(0) = 1, y2(0) = 1, y3(0) = 0, y4(0) = 1.
(5.4)

Solution: y1(x) = cosx, y2(x) = ex cosx, y3(x) = − sinx, y4(x) = ex cosx − ex sinx.

Problem 3. We have

y′′
1 = −y′

2, y1(0) = 0, y′
1(0) =

1
1 − e−1

,

y′′
2 = −y′

1, y2(0) = 1, y′
2(0) =

1
1 − e−1

, [0, 10].

(5.5)

Solution: y1(x) = (1 − e−x)/(1 − e−1), y2(x) = (2 − e−1 − e−x)/(1 − e−1).
First-order systems:

y′
1 = y3, y′

2 = y4, y′
3 = −y4, y′

4 = −y3,

y1(0) = 0, y2(0) = 1, y3(0) =
1

1 − e−1
, y4(0) =

1
1 − e−1

.
(5.6)

Solution: y1(x) = (1 − e−x)/(1 − e−1), y2(x) = (2 − e−1 − e−x)/(1 − e−1), y3(x) = (e−x)/(1 − e−1),
y4(x) = e−x/(1 − e−1).

Problem 4 (Van Der Pol oscillator). We have

y′′ − 2ξ
(

1 − y2
)
y′ + y = 0, y(0) = 0, y′(0) = 0.5, [0, 10], (5.7)

where we take ξ = 0.025.

The codes are written in C language and executed on DYNIX/ptx operating system.
The numerical results for Problems 1–3 in Tables 2–4 are solved using the proposed method
and the method in [9]. The results in terms of total steps and execution times for solving
Problems 1–3 are presented in histograms and graph lines in Figures 4, 5 and 6. The solutions
of 2P(B) for solving Problem 4 are plotted in Figure 7 at tolerance 10−8 and compared with
the solutions obtained by the MATLAB built-in solver ode45.

In Figures 4, 5 and 6, it is obvious that method 2P(B) requires less number of total steps
as compared to method 2P(A) when solving the same given problems. It is also observed that
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Table 1: The ratios execution times and steps for solving Problems 1 to 3.

TOL
PROB 1 PROB 2 PROB 3

RSTEP RTIME RSTEP RTIME RSTEP RTIME
10−2 2.53 1.90 2.83 1.55 2.56 1.20
10−4 2.38 2.31 2.88 1.57 2.45 1.32
10−6 2.89 3.05 3.11 2.84 3.19 2.30
10−8 4.74 5.26 4.34 1.49 3.47 3.17

Table 2: Comparison between 2P(A) and 2P(B) methods for solving Problem 1.

TOL Method TS FS MAXE AVERR FCN TIME

10−2 2P(A) 48 2 3.20591e − 004 1.28467e − 004 385 1002
2P(B) 19 0 3.88324e − 003 2.89565e − 003 121 527

10−4 2P(A) 143 2 3.69289e − 006 1.48547e − 006 1145 2423
2P(B) 60 0 3.46171e − 005 2.81402e − 005 367 1047

10−6 2P(A) 546 3 2.91502e − 008 7.74544e − 009 4369 9287
2P(B) 189 0 3.43754e − 007 2.76828e − 007 1133 3045

10−8 2P(A) 2819 3 2.43829e − 011 9.79663e − 012 22553 47821
2P(B) 595 0 3.44148e − 009 2.75811e − 009 3571 9093

the execution times of 2P(B) are faster than 2P(A) at all tested tolerances. This is expected
since 2P(B) has less number of function calls; therefore, it has affected the computation time
of 2P(B).

In Table 1, the RSTEP and RTIME are greater than 1.00 which shows that 2P(B) is more
efficient compared to 2P(A). In fact, in some cases, the ratios are greater than 3.00, which
indicates a clear advantage of method 2P(B) over 2P(A).

In Table 2, it can be observed that the maximum error of 2P(B) is one or two order
larger than 2P(A) but still acceptable as it is within the given tolerance. This is expected since
the code 2P(B) solved the given problem directly without reducing to system of first-order
differential equations. We could observe that the RSTEP for Problem 1 is greater than 2 in
Table 1.

In Tables 3 and 4, it is observed that the maximum error of 2P(B) is two or three
order larger as compared to 2P(A) in solving Problems 2 and 3 but it is still within the given
tolerances. In Figure 7, it is obvious that the 2P(B) solutions agree very well with the solutions
obtained by the MATLAB built-in solver ode45 when solving Problem 4.

6. Conclusion

In this paper, we have constructed the direct two-point block one-step method which is
efficient and suitable for solving general second-order ODEs directly. The block method has
shown acceptable solutions and managed to solve the second-order ODE faster compared to
the existing method.
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Figure 4: Results of total steps and time for Problem 1.
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Figure 5: Results of total steps and time for Problem 2.

Table 3: Comparison between 2P(A) and 2P(B) methods for solving Problem 2.

TOL Method TS FS MAXE AVERR FCN TIME

10−2 2P(A) 17 4 4.64239e − 004 1.01900e − 004 137 408
2P(B) 6 0 1.29794e − 003 2.48275e − 004 47 264

10−4 2P(A) 46 3 5.27751e − 006 9.23287e − 007 369 708
2P(B) 16 1 4.19030e − 005 7.96402e − 006 131 452

10−6 2P(A) 171 2 2.35992e − 008 5.04232e − 009 1369 2694
2P(B) 55 1 4.24624e − 007 6.60118e − 008 429 950

10−8 2P(A) 750 2 4.50146e − 011 7.04651e − 012 1741 3844
2P(B) 173 1 4.31085e − 009 6.26858e − 010 1343 2588
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Figure 6: Results of total steps and time for Problem 3.
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Figure 7: Solution of Problem 4 when TOL = 10−8.

Table 4: Comparison between 2P(A) and 2P(B) methods for solving Problem 3.

TOL Method TS FS MAXE AVERR FCN TIME

10−2 2P(A) 23 7 1.42058e − 004 3.37359e − 005 185 296
2P(B) 9 0 1.47268e − 003 4.24039e − 004 69 247

10−4 2P(A) 54 2 1.41231e − 006 2.21945e − 007 433 597
2P(B) 22 0 2.73310e − 005 9.95954e − 006 177 451

10−6 2P(A) 201 1 6.04402e − 009 9.73203e − 010 1609 2252
2P(B) 63 0 9.51564e − 007 2.58666e − 007 503 980

10−8 2P(A) 666 1 4.12406e − 011 8.11194e − 012 5329 7700
2P(B) 192 0 1.25592e − 008 2.60498e − 009 1537 2426
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Notations

TOL: Tolerance
MTD: Method employed
TS: Total steps taken
FS: Total failure steps
MAXE: Magnitude of the maximum error of the computed solution
AVERR: The average error
FCN: Total function calls
TIME: The execution time taken in microseconds
2P(A): Implementation of the direct block method in [9] by reducing the problem to

system of first-order ODEs
2P(B): Implementation of the direct two-point block one-step method by solving the

problem directly
RSTEP: The ratio steps, TS2P(A)/TS2P(B)

RTIME: The ratio execution times, TIME2P(A)/TIME2P(B)

Acknowledgment

The authors would like to thank the Universiti Putra Malaysia for providing financial support
through Graduate Research Fellowship (GRF) during the study period.

References

[1] J. B. Rosser, “A Runge-Kutta for all seasons,” SIAM Review, vol. 9, pp. 417–452, 1967.
[2] L. F. Shampine and H. A. Watts, “Block implicit one-step methods,” Mathematics of Computation, vol.

23, pp. 731–740, 1969.
[3] P. B. Worland, “Parallel methods for the numerical solution of ordinary differential equations,”

Institute of Electrical and Electronics Engineers, vol. 25, no. 10, pp. 1045–1048, 1976.
[4] S. Mehrkanoon, Z. A. Majid, and M. Suleiman, “A variable step implicit block multistep method for

solving first-order ODEs,” Journal of Computational and Applied Mathematics, vol. 233, no. 9, pp. 2387–
2394, 2010.

[5] Z. A. Majid and M. B. Suleiman, “Implementation of four-point fully implicit block method for
solving ordinary differential equations,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 514–
522, 2007.

[6] Z. A. Majid, N. A. Azmi, and M. Suleiman, “Solving second order ordinary differential equations
using two point four step direct implicit block method,” European Journal of Scientific Research, vol. 31,
no. 1, pp. 29–36, 2009.

[7] Z. B. Ibrahim, M. B. Suleiman, and F. Ismail, “Fully implicit two point block backward difference
formula for solving a first order initial value problems,” Science Putra Research Bulletin, vol. 11, no. 2,
pp. 14–17, 2003.

[8] P. C. Chakravarti and P. B. Worland, “A class of self-starting methods for the numerical solution of
y

′′
= f(x, y),” BIT, vol. 11, pp. 368–383, 1971.

[9] Z. A. Majid, M. B. Suleiman, F. Ismail, and M. Othman, “2-point implicit block one-step method half
Gauss-Seidel for solving first order ordinary differential equations,” Matematika, vol. 19, pp. 91–100,
2003.

[10] S. O. Fatunla, “Block methods for second order ODEs,” International Journal of Computer Mathematics,
vol. 41, pp. 55–63, 1991.

[11] J. D. Lambert, Computational Methods in Ordinary Differential Equations, John Wiley & Sons, New York,
NY, USA, 1973.

[12] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood
Cliffs, NJ, USA, 1971.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


