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This paper presents hybrid differential evolution (DE) and sequential quadratic programming
(SQP) for solving the dynamic economic dispatch (DED) problem for generating units with valve-
point effects. DE is used as a global optimizer and SQP is used as a fine tuning to determine the
optimal solution at the final. The feasibility of the proposed method is validated with five- and
ten-unit test systems. Results obtained by DE-SQP method are compared with other techniques in
the literature.

1. Introduction

The primary objective of the static economic dispatch (SED) problem of electric power
generation is to determine the optimal schedule of online generating units’ outputs so as
to meet the load demand at a certain time at the minimum operating cost under various
system and generator operational constraints. Plant operators, to avoid life-shortening of the
turbines and boilers, try to keep thermal stress on the equipments within the safe limits.
This mechanical constraint is usually transformed into a limit on the rate of change of the
electrical output of generators. Such ramp rate constraints link the generator operation in
two consecutive time intervals. Optimal dynamic dispatch problem is an extension of SED
problem which is used to determine the generation schedule of the committed units so as
to meet the predicted load demand over a time horizon at minimum operating cost under
ramp rate constraints and other constraints (see [1-31]). Since the ramp rate constraints
couple the time intervals, the optimal dynamic dispatch problem is a difficult optimization
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problem. If the ramp rate constraints are not included in the optimization problem, the
optimal dynamic dispatch problem is reduced to a set of uncoupled SED problems that can be
easily solved.

Optimal dynamic dispatch problem was first formulated by Bechert and Kwatny [1]
in 1972 and was followed by [2-5]. In these papers, the problem was formulated as an
optimal control problem. The optimal control dynamic dispatch formulation models the
power system generation by means of state equations where the state variables are the
electrical power outputs of the generators and the control inputs are the ramp rates of the
generators. In this approach, the optimization is done with respect to the ramp rates and the
solution produces an optimal output generator trajectory for a given initial generation. Since
the 1980s, the optimal dynamic dispatch problem has been formulated as a minimization
problem of the total cost over the dispatch period under some constraints and has been
known as the dynamic economic dispatch (DED) problem (see [6-31]). Since the DED
problem was introduced, several optimization techniques and procedures have been used
for solving the DED problem with complex objective functions or constraints (see the review
paper [6]). There were a number of classical methods that have been applied to solve this
problem such as the lambda iterative method [16], gradient projection method [25], Lagrange
relaxation [26], linear programming [24], and interior point method [11, 13]. Most of these
methods are not applicable for nonsmooth or nonconvex cost functions. To overcome this
problem, many stochastic optimization methods have been employed to solve the DED
problem, such as simulated annealing (SA) [27], genetic algorithms (GA) [28], differential
evolution (DE) [18, 19], particle swarm optimization (PSO) [10, 31], and artificial immune
system (AIS) [15]. Many of these techniques have proven their effectiveness in solving the
DED problem without any or fewer restrictions on the shape of the cost function curves.
Hybrid methods which combine two or more optimization methods have been successfully
applied to DED problems with valve-point effects such as EP-SQP [9] and PSO-SQP
[29, 30].

DE which was proposed by Storn and Price [32] is a population-based stochastic
parallel search technique. DE uses a rather greedy and less stochastic approach to problem
solving compared to other evolutionary algorithms. DE has the ability to handle optimization
problems with nonsmooth/nonconvex objective functions [32]. Moreover, it has a simple
structure and a good convergence property, and it requires a few robust control parameters
[32]. DE has been successfully applied to the DED problem with nonsmooth and nonconvex
cost functions (see [18-21]).

DE is one of the good methods which have been used for solving the DED problem
with nonsmooth and nonconvex cost functions; however, the obtained solutions are just near
global optimum with long computation time. Therefore, hybrid methods such as DE-SQP
can be effective in solving the DED problem with valve-point effects. The aim of this paper
is to propose hybrid DE-SQP method to solve the DED problem with valve-point effects.
DE is used as a base level search for global exploration and SQP is used as a local search
to fine-tune the solution obtained from DE. In the DE-SQP techniques, DE will thoroughly
search the solution space and stops when the specified maximum iteration count is reached.
Thereafter, the SQP technique will be used to fine-tune the final solution obtained by the DE
method.

The remainder of this paper is organized as follows: in Section 2, we introduce the DED
problem formulation. An overview of the differential evolution and sequential quadratic
programming algorithms is presented in Sections 3 and 4. In Section 5, numerical examples
and simulation results are presented. Finally, conclusions are drawn in Section 6.
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2. Formulation of the DED Problem

The objective of the DED problem is to determine the generation levels for the committed
units which minimize the total fuel cost over the dispatch period [0,T],

T N
min Cr = > > Ci(P) (2.1)
t=1 i=1
subject to the following constraints:
(i) power balance constraint:
N
> P =D'+Loss’, t=1,...,T, (2.2)
i=1
(ii) generation limits:
prn<pt<p™™, i=1,..., N, t=1,...T, (2.3)

(iii) generating unit ramp rate limits:

-DR; <P -P"'<UR;, i=1,...,N, t=2,...,T, (2.4)

where N is the number of committed units; T is the number of intervals in the time horizon;
P! is the generation of unit i during the tth time interval [t - 1,t); D' is the demand at time ¢
(i.e., the t-th time interval); UR; and DR; are the maximum ramp up/down rates for unit i;
P™n and P™ are the minimum and maximum capacity of unit i, respectively. The fuel cost
of unit i considering valve-point effects can be expressed as

Ci(P!) = a;+biP! +ci(P) + |disin(e;(P™™ - 1)) |, (2.5)

where a;, b;, and ¢; are positive constants, and d; and e; are the coefficients of unit i reflecting
valve-point effects.

The B-coefficient method is one of the most commonly used by power utility industry
to calculate the network losses. In this method, the network losses are expressed as a
quadratic function of the unit’s power outputs that can be approximated by

N N
Loss' = > > P/B;P, t=1,..T, (2.6)
i=1 j=1

where B; is the ijth element of the loss coefficient square matrix of size N.
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3. Overview of Differential Evolution Algorithm

DE is a simple yet powerful heuristic method for solving nonlinear, nondifferentiable, and
nonsmooth optimization problems. DE algorithm is a population-based-algorithm using
three operators mutation, crossover, and selection to evolve from randomly generated initial
population to final individual solution. The key idea behind DE is that it starts with an initial
population of feasible target vectors (parents) and new solutions (offsprings) are generated
(by mutation, crossover, and selection operations) until the optimal solution is reached. In
the mutation operation, three different vectors are selected randomly from the population
and a mutant vector is created by perturbing one vector with the difference of the two other
vectors. In the crossover operation, a new trial vector (offspring) is created by replacing
certain parameters of the target vector by the corresponding parameters of the mutant vector
on the bases of a probability distribution. In DE, the competition between the parents and
offspring is one to one. The individual with best fitness will remain till the next generation.
The iterative process continues until a user-specific stopping criterion is met. DE algorithm
has three control parameters, which are differentiation (or mutation) factor F, crossover
constant CR, and size of population Np. According to Storn and Price [32], the basic strategy
of DE for m-dimensional optimization problem can be described as follows.

(1) Initialization: generate a population of Np initial feasible target vectors (parents)
Xl' = {xli,xzi,. ..,xmi}, i= 1,2,. . .,Np randomly as

xji = X0 4 s - <x;nax _x;nin), j=12,...,m, i=1,2,...,Np, (3.1)

where s; is uniform random number in [0, 1]; x;“m and x;“ax
of the jth component of the target vector.

(2) Mutation: let Xl.G = {xﬁ., x2Gi, .. .,xffu.} be the individual i at the current generation

are the lower and upper bounds

G. A mutant vector Vo = (08, 05, L 08 is generated according to the following:

r3

Ve = XG4 F. (Xg —XG), n#rn#ri i=12,...,Np (3.2)

with randomly chosen integer indexes 11,72, 73 € {1,2,..., Np}.
(3) Crossover: according to the target vector X{ and the mutant vector V5*!, a new

trial vector (offspring) LII.G+1 = {ulci”, uzci”, ., uﬁ}'l} is created with

v].Gi” if (rand(j) < CR) or j = rnb(i),
uG*l = (3.3)

1 .
/ x](.f. otherwise,

where j =1,2,...,m,i=1,2,...,Np and rand(j) is the jth evaluation of a uniform random
number generator between [0,1]. CR is the crossover constant between [0, 1] which has to
be determined by the user. rnb(i) is a randomly chosen index from 1,2, ...,m which ensures
that US*! gets at least one parameter from V! [32].
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(4) Selection: This process determines which of the vectors will be chosen for the next
generation by implementing one-to-one competition between the new generated trial vectors
and their corresponding parents. The selection operation can be expressed as follows:

XG+ = uiG+1 if f(uic+l) < f(XzG)’ (3.4)
i Xl.G otherwise,

where i = 1,2,...,Np and f is the objective function to be minimized. The value of f of
each trial vector U*! is compared with that of its parent target vector X?. If the value of f,
of the target vector Xl.G, is lower than that of the trial vector, the target vector is allowed to
advance to the next generation. Otherwise, the target vector is replaced by a trial vector in the
next generation. Thus, all the individuals of the next generation are as good as or better than
their counterparts in the current generation. The above steps of reproduction and selection
are repeated generation after generation until some stopping criteria are satisfied.

In this paper, we define the evaluation function for evaluating the fitness of each
individual in the population in DE algorithm as follows:

T /N 2
f=Cr+ )LZ< P! - (D' + Lossf)> , (3.5)
1

t=1 \i=

where 1 is a penalty value. Then the objective is to find fmin, the minimum evaluation value
of all the individuals in all iterations. The penalty term reflects the violation of the equality
constraint. Once the minimum of f is reached, the equality constraint is satisfied. Also, the
generation power output of each unit at time ¢ should be adjusted to satisfy the following
constraints which combine constraints (2.3) and (2.4) as

t,mi . t,mi
Pl‘ min if Pit < PI mm,

Pt _ Pit if Pit,min < Pit < Pit,max, (36)

1

t, . t,
phmax e Pit > Pl max’

1

where

phmin _ pmin | ift=1,

! max(P™", P! - DR;)  others,
3.7)

Do _ [P ifr=1,

L min(P™>, P/~! + UR;) others.

4. Sequential Quadratic Programming

SQP method can be considered as one of the best nonlinear programming methods for
constrained optimization problems. It outperforms every other nonlinear programming
method in terms of efficiency, accuracy, and percentage of successful solutions over a
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Table 1: Hourly generation (MW) schedule of 5-unit system with losses (MW) using DE-SQP.

Hour P1 p2 P3 P4 P5 Loss

1 21.6845 99.3693 113.2191 40.0047 139.3571 3.6348

2 10.0001 98.4091 112.8296 78.0092 139.7746 4.0225

3 10.0000 93.0102 112.6376 124.5983 139.5085 4.7547
4 10.0208 98.9394 112.7739 174.5821 139.6980 6.0141

5 10.0000 94.6503 111.1824 209.3376 139.5944 6.7647
6 39.9323 98.7250 112.7829 210.1512 154.2991 7.8906

7 10.0000 98.0631 112.7434 209.7011 203.9654 8.4729

8 12.5522 98.9663 112.9829 209.5933 229.1619 9.2567
9 42.5522 101.9286 114.7389 210.6817 230.2829 10.1843
10 64.8347 98.4322 112.3767 209.6753 229.2401 10.5591
11 75.0000 100.3215 114.8471 211.1004 229.7591 11.0283
12 75.0000 98.9111 112.9582 234.6857 230.1685 11.7235
13 64.2203 97.9704 112.5101 210.1351 229.7242 10.5602
14 50.0381 98.4511 112.5499 209.7742 229.3542 10.1675
15 35.4162 98.8278 112.6282 186.4410 229.8143 9.1277

16 10.0000 98.4782 112.6986 136.4410 229.6153 7.2332

17 10.0000 88.2951 112.6200 124.6074 229.1609 6.6833

18 35.3553 98.7119 112.7691 139.3772 229.6497 7.8633

19 33.6668 98.5493 111.9794 189.3772 229.5668 9.1396

20 63.6668 98.5990 112.5890 210.0303 229.6762 10.5612
21 39.2846 98.5966 112.7120 209.8748 229.4336 9.9017

22 10.0437 98.6538 112.9970 161.5680 229.6066 7.8692

23 10.0000 98.8754 112.6148 124.7293 186.6872 5.9067

24 10.0000 81.0109 112.1181 124.8490 139.5118 4.4899

large number of test problems. The method closely resembles Newton’s method for
constrained optimization, just as is done for unconstrained optimization. At each iteration,
an approximation of the Hessian of the Lagrangian function is made using Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton updating method. The result of the approximation
is then used to generate a quadratic programming (QP) subproblem whose solution is used
to form a search direction for a line search procedure. Since the objective function to be
minimized is nonconvex, SQP ensures a local minimum for an initial solution. SQP has been
combined with stochastic optimization techniques to constitute hybrid methods for solving
the DED problem with nonsmooth cost functions (see [9, 22]). In this paper, DE is used as a
global search and finally the best solutions obtained from DE is given as initial condition for
SQP method as a local search to fine-tune the solution. SQP simulations are computed by the
fmincon code of the MATLAB Optimization Toolbox.

5. Simulation Results

In this paper, to assess the efficiency of the proposed DE-SQP method, two case studies (5
units with losses and 10 units without losses, resp.) of DED problems have been considered
in which the objective functions are nonsmooth. In each case study, the simulation parameters
chosen are population size Np = 60, maximum iteration Gmax = 20000, mutation factor
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Table 2: Hourly generation (MW) schedule of 10-unit system without losses using DE-SQP.

Py P Py Py D5 Ps P Py Py Py
226.2680 135.0000 73.3721 64.0280 123.9052 123.9200 129.7852 84.7215 20.0000 55
223.7127 137.2833 75.0068 114.0280 173.5295 126.5124 129.8165 55.0235 20.0871 55
301.2838 217.1962 148.4157 64.4870 123.8118 120.6932 129.5217 77.5907 20.0000 55
302.6657 225.8898 197.9257 114.4870 122.4412 160.0000 130.0000 47.5907 50.0000 55
302.9885 305.7038 217.5037 119.5778 122.8379 159.9003 129.4879 47.0000 20.0000 55
379.2909 308.5845 297.3863 125.2933 172.8379 122.3651 99.4879 47.7542 20.0000 55
376.1425 313.2181 299.8249 175.2933 124.3167 160.0000 100.2252 77.7542 20.2252 55
4559173 3929929 246.5742 130.5711 170.4569 119.9589 130.0000 54.5287 20.0000 55
456.3707 401.4499 326.5742 180.5711 173.0766 124.5330 101.8959 84.5287 20.0000 55

an
9
<
g

O© ® N U W N -

10 383.4956 400.8323 328.1355 230.5711 221.4583 160.0000 127.9784 114.5287 50.0000 55
11 455.4912 460.0000 302.9254 245.0551 173.4924 160.0000 128.7601 85.2758 80.0000 55
12 457.9600 460.0000 339.5183 237.7736 223.4387 160.0000 129.3094 77.0000 80.0000 55
13 454.8727 460.0000 300.1122 187.7918 229.2453 160.0000 127.9416 47.0182 50.0182 55
14 378.7648 389.8503 298.0170 226.9459 218.6326 160.0000 129.6473 47.0711 20.0711 55
15 380.4469 309.8503 284.0959 176.9459 221.4171 122.4799 128.8134 76.9505 20.0000 55
16 300.6291 309.9676 204.7668 187.0835 173.1144 126.1948 130.0000 47.1326 20.1112 55
17 305.6309 309.8471 185.3632 186.0791 123.1144 118.3037 129.2531 47.4085 20.0000 55
18 305.1398 311.8823 216.0384 236.0227 124.3315 1223716 1299350 77.3435 49.9350 55
19 383.3568 313.4480 293.2465 233.9297 173.3850 121.5403 128.3334 53.7371 20.0233 55
20 385.2071 393.3921 339.9674 281.5235 223.3292 159.9674 129.9320 83.6812 20.0000 55
21 383.3007 395.5746 289.7491 231.5539 222.3756 119.5615 129.8692 76.9978 20.0176 55
22 303.9705 385.3051 209.7887 181.5935 172.4152 1229631 99.9088 47.0374 50.0176 55
23 224.3924 305.3051 175.5064 131.5960 122.4177 124.8285 95.9138 77.0000 20.0399 55
24 150.0000 225.3051 186.0551 180.6403 73.3908 121.6506 124.9581 47.0000 20.0000 55

F =0.423, and crossover factor CR = 0.885 and the results represent the average of 30 runs of
the proposed method. All computations are carried out by MATLAB program.

5.1. Five-Unit System

This example presents an application of the DE-SQP method to the DED problem consisting
of five units with valve point effects and transmission line losses. The technical data of the
units are taken from [17]. The optimal solution of the DED problem among 30 runs is over,
for example, 24 h (T = 24), and is given in Table 1.

5.2. Ten-Unit System

This example presents an application of the DE-SQP method to the DED problem consisting
of ten units without losses. The data of the ten-unit system are taken from [9]. The optimal
solution of the DED problem is over, for example, 24h (T = 24), and is given in Table 2.
Comparisons between our proposed method (DE-SQP) and other methods for both
examples (five units with losses and ten units without losses) are given in Table 3. It is
observed that the proposed method reduces the total generation cost better than the other
methods reported in the literature. These methods can be classified into (1) heuristic methods
such as pattern search [23], particle swarm optimization [17], differential evolution [18],
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Table 3: Comparison of the results with other methods.

Optimization technique 5-unit system with losses ~ 10-unit system without losses

Cost ($) Total losses (MW) Cost ($)
Pattern search [23] 46530 192.21 —
Particle swarm optimization [17] 47852 — —
Differential evolution [18] 45800 194.35 —
Sequential quadratic programming [9] — — 1051163
Evolutionary programming [9] — — 1048638
Hybrid evolutionary programming and
Sequential quadratic programming [9] — — 1031746
Modified differential evolution [20] — — 1031612
Hybrid particle swarm optimization and
Sequential quadratic programming [30] — — 1030773
Proposed hybrid differential evolution and
Sequential quadratic programming 43231 193.81 1030500

evolutionary programming [9], and modified differential evolution [20], (2) mathematical
programming-based methods such as sequential quadratic programming [9], and (3) hybrid
methods such as hybrid evolutionary programming and sequential quadratic programming
[9], and hybrid particle swarm optimization and sequential quadratic programming [30].
Moreover, it is observed that the transmission line losses calculated by our method are smaller
than those of other methods. For more details about these methods and their way of working
we refer the reader to the review paper [6].

6. Conclusion

This paper presents hybrid method, combining differential evolution (DE), and sequential
quadratic programming (SQP) for solving the DED problem with valve-point effects. At first
we, applied DE to find the best solution, then this best solution is given to SQP as an initial
condition to fine-tune the optimal solution at the final. The feasibility and efficiency of the
DE-SQP method are illustrated by conducting two examples consisting of five and ten units
with valve-point effects, respectively. Our results are compared with other methods. It has
been shown that our proposed methods give less cost than other methods reported in the
literature.
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