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The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly
controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is
different from column buckling in that a beam not only displaces laterally but also twists about its
axis during buckling. The coupling between twist and lateral displacementmakes stability analysis
of beams more complex than that of columns. For this reason, most of the analytical studies in the
literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary
conditions and simple loadings. This paper shows that complex beam stability problems, such as
lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be
solved using homotopy perturbation method (HPM).

1. Introduction

A beam is a structural element which spans large distances between supports and which
primarily carries transverse loads with negligible axial loads. If a beam has sufficient lateral
bracing, it can easily be designed by selecting the most economical “compact” cross-section
satisfying the strength and serviceability limit states. However, just like slender columns
which buckle under compressive loads much smaller than their “stable” load carrying
capacities, a “laterally unbraced” slender beam can also buckle under transverse loads. For
this reason, the design of slender beams has to consider stability limit states as well.

Beam buckling, which is also called “lateral torsional buckling,” differs from column
buckling in that a beam not only displaces laterally but also rotates about its axis during
buckling. The coupling between twist and outward lateral displacement makes stability
analysis of beams more complex than that of columns. For this reason, most of the analytical
studies in the literature are concentrated on simple cases: uniform beamswith ideal boundary
conditions and simple loadings. For exact solutions to simple beam buckling problems, one
can refer to one of the well-known structural stability books, such as [1–4].
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However, in an attempt to construct ever-stronger and ever-lighter structures, many
engineers currently design light slendermembers with variable cross-sections. Unfortunately,
design engineers are lack of sufficient guidance on design of nonuniform structural elements
since most of the provisions in design specifications are developed for uniform elements.
Consequently, there is a need for a practical tool to analyze complex beam stability
problems.

In recent years, many analytical approaches such as homotopy perturbation method
(HPM), Adomian decomposition method (ADM), and variational iteration method (VIM),
are proposed for the solution of nonlinear equations, and many researchers have shown that
complex engineering problems, which do not have exact closed-form solutions, can easily
be solved using these techniques. A review of some recently developed nonlinear analytical
techniques is given in [5]. A kind of nonlinear analytical technique which was proposed by
He [6] in 1999, homotopy perturbation method (HPM) has many successful applications to
various kinds of nonlinear problems. For a review of the state-of-the-art of HPM, the work by
He [7] can be referred to. Very recently, HPM is also applied to stability problems of columns.
Coşkun [8] and Coşkun [9] and Atay [10] analyzed the elastic stability of Euler columns
with variable cross-sections under different loading and boundary conditions using HPM
and verified that HPM is a very efficient and powerful technique in buckling analysis of
columns with variable cross-sections.

In this paper, this powerful analytical technique is applied to two fundamental beam
stability problems: lateral torsional buckling of (i) simply supported rectangular beams under
pure bending and (ii) cantilever rectangular beams subjected to a concentrated load at their
free ends. In the analyses, two different types of stiffness variations, linear and exponential
variations, are considered. Exact solutions to these problems, some of which are considerably
complex, are available in literature only for uniform beams and some particular cases of
linearly tapered beams. For this reason, before studying beams with variable cross-sections,
uniform beams with constant cross-sections are analyzed and HPM solutions are compared
with the exact solutions. After verifying the effectiveness of HPM in solving lateral buckling
problems, HPM is applied to more complex beam buckling problems.

2. Lateral Torsional Buckling of Rectangular Beams

2.1. Basic Theory

Consider a narrow rectangular beam subjected to an arbitrary loading in y-z plane causing its
bending about its strong axis (x). Locate x, y, z coordinate system to define the undeformed
configuration of the beam as shown in Figure 1(a). Similarly, locate ξ, η, ζ coordinate system
at the centroid of the cross section at an arbitrary section of the beam along its length to define
the deformed configuration of the beam as shown in Figure 1(b).

The deformation of the beam can be defined by lateral (u) and vertical (v)
displacements of the centroid of the beam and angle of twist (φ) of the cross section
(Figure 1(b)). Assume u and v are positive in the positive directions of x and y, respectively.
Then, obeying the right-hand rule, φ is positive about positive z axis. Hence, while the twist
shown in Figure 1(b) is positive, the displacements are both negative.

For small deformations, the cosines of the angles between axes are as listed in Table 1.
Also, the curvatures in xz and yz planes can be taken as d2u/dz2 and d2v/dz2, respectively.
Since one can realistically take the “warping rigidity” of a narrow rectangular beam as
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Figure 1: Undeformed and deformed shapes of a narrow rectangular beam loaded to bend about its major
axis.

zero, the equilibrium equations for the buckled (deformed) beam can be written [1] as
follows:

EIξ
d2v

dz2
= Mξ, EIη

d2u

dz2
= Mη, GIt

dφ

dz
= Mζ, (2.1)

representing, respectively, the major-axis bending, minor-axis bending, and twisting of the
beam. In (2.1), EIξ and EIη denote, respectively, the strong-axis and weak-axis flexural
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Figure 3: Simply supported rectangular beam under pure bending.

stiffnesses of the beam and GIt denotes the torsional stiffness of the beam. Positive directions
of internal moments are defined in Figure 2.

2.2. Lateral Buckling of Simply Supported Beams under Pure Bending

Consider a simply supported rectangular beam with variable flexural and torsional
stiffnesses EIξ(z), EIη(z), and GIt(z) along its length L (Figure 3). Under pure bending,
the beam is subjected to equal end moments Mo about x-axis. The bending and twisting
moments at any cross section can be found by determining the components of Mo about
ξ, η, ζ axes. Considering the sign convention defined in Figure 2 and using Table 1, these
components can be written as

Mξ = Mo, Mη = φMo, Mζ =
(
−du
dz

)
Mo. (2.2)

Substituting (2.2) into (2.1) yields

[
EIξ(z)

]d2v

dz2
= Mo,

[
EIη(z)

]d2u

dz2
= φMo, [GIt(z)]

dφ

dz
=
(
−du
dz

)
Mo. (2.3)

It is apparent from (2.3) that v is independent from u and φ. Thus, in this problem, it is
sufficient to consider only the coupled equations between u and φ. Differentiating the last
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Table 1: Cosines of angles between axes [1].

x y z

ξ 1 φ −du/dz
η −φ 1 −dv/dz
ζ du/dz dv/dz 1

equation in (2.3) with respect to z and using the resulting equation to eliminate u in the
second equation in (2.3) give the following second-order differential equation for the angle
of twist (φ) of the beam:

d2φ

dz2
+
d[GIt(z)]

dz

1
[GIt(z)]

dφ

dz
+

M2
o

[GIt(z)]
[
EIη(z)

]φ = 0. (2.4)

The boundary conditions for (2.4) can be written from the end conditions of the beams. Since
the ends of the beam are restrained against rotation about z axis, φ = 0 at both z = 0 and
z = L.

2.2.1. Beams with Constant Stiffnesses

If the minor-axis flexural and torsional stiffnesses of the beam are constant, that is, EIη(z) =
EIη and GIt(z) = GIt, then (2.4) reduces to the following simpler equation:

d2φ

dz2
+

M2
o

GItEIη
φ = 0. (2.5)

For easier computations, the nondimensional form of (2.5) can be written as follows:

(
φ
)′′

+ α
(
φ
)
= 0 (2.6)

with

α =
M2

oL
2

GItEIη
, (2.7)

where z = z/L, φ = φ, prime denotes differentiation with respect to z and α is the
“nondimensional critical moment.” The boundary conditions for this buckling problem can
also be written in nondimensional form as

φ(0) = 0 φ(1) = 0. (2.8)

It is to be noted that (2.8) is also applicable to beams with variable stiffnesses.
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2.2.2. Beams with Linearly Varying Stiffnesses

If both the minor axis flexural and torsional stiffnesses of the beam changes in linear form,
that is, if

GIt(z) = GIt
(
1 + b

z

L

)
, EIη(z) = EIη

(
1 + b

z

L

)
, (2.9)

where b is a constant determining the “sharpness” of stiffness changes along the length of the
beam, then the buckling equation (2.4) becomes

d2φ

dz2
+

b

L + bz

dφ

dz
+

M2
o

GItEIη

L2

(1 + bz/L)2
φ = 0, (2.10)

the nondimensional form of which can be written as

(
φ
)′′

+
b

1 + bz

(
φ
)′

+ α
1

(1 + bz)2
(
φ
)
= 0. (2.11)

2.2.3. Beams with Exponentially Varying Stiffnesses

If the beam stiffnesses change in the following exponential form:

GIt(z) = GIte
−a(z/L), EIη(z) = EIηe

−a(z/L). (2.12)

where a is a positive constant, then the nondimensional form of the buckling equation can be
written as

(
φ
)′′ − a

(
φ
)′

+ αe2az
(
φ
)
= 0, (2.13)

2.3. Lateral Buckling of Cantilever Beams with Vertical End Load

Consider a narrow rectangular cantilever beam of length L (Figure 4(a)) with flexural and
torsional stiffnesses EIξ(z), EIη(z), and GIt(z). When subjected to a vertical load P passing
through its centroid at its free end (Figure 4(a)), the beam deforms as shown in Figure 4(b).
u1 is the lateral displacement of the loaded end of the beam. The components of the moments
of the load at an arbitrary section m-n about x, y, z axes are

Mx = −P(L − z), My = 0, Mz = P(−u1 + u). (2.14)

Using the sign convention defined in Figure 2, the bending and twisting moments at this
arbitrary section can be written as

Mξ = −P(L − z), Mη = −φP(L − z), Mζ =
(
du

dz

)
P(L − z) − P(u1 − u). (2.15)
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Figure 4: Lateral buckling of a narrow rectangular cantilever beam carrying concentrated load at its free
end.

Then, the equilibrium equations for the buckled beam become

[
EIξ(z)

]d2v

dz2
= −P(L − z),

[
EIη(z)

]d2u

dz2
= −φP(L − z),

[GIt(z)]
dφ

dz
=
(
du

dz

)
P(L − z) − P(u1 − u).

(2.16)

Similar to the pure bending case, v is independent from u and φ. Differentiating the last
equation in (2.16) with respect to z and using the resulting equation to eliminate u in
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the second equation in (2.16), the following second order differential equation is obtained
for φ:

d2φ

dz2
+
d[GIt(z)]

dz

1
[GIt(z)]

dφ

dz
+

P 2

[GIt(z)]
[
EIη(z)

](L − z)2φ = 0. (2.17)

Since the fixed end of the beam is restrained against rotation and since the twisting moment
at the free end is known to be zero, the boundary conditions for this problem are φ = 0 at z =
0 and dφ/dz = 0 at z = L.

2.3.1. Beams with Constant Stiffnesses

If EIη(z) = EIη and GIt(z) = GIt, then (2.17) takes the following simpler form:

d2φ

dz2
+

P 2

GItEIη
(L − z)2φ = 0. (2.18)

Equation. (2.18) can be rewritten in nondimensional form as

(
φ
)′′

+ β(1 − z)2
(
φ
)
= 0, (2.19)

where the “nondimensional critical load” β is defined as

β =
P 2L4

GItEIη
. (2.20)

The boundary conditions for this buckling problem can be written in nondimensional form
as

φ(0) = 0,
dφ

dz
(1) = 0, (2.21)

which are also applicable to the beams with variable stiffnesses.

2.3.2. Beams with Linearly Varying Stiffnesses

If both stiffnesses of the beam change in linear form, that is, if

GIt(z) = GIt
(
1 − b

z

L

)
, EIη(z) = EIη

(
1 − b

z

L

)
, (2.22)

where b is a positive constant that can take values between zero and one, then (2.17) becomes

d2φ

dz2
− b

L − bz

dφ

dz
+

P 2L2

GItEIη

(1 − z/L)2

(1 − bz/L)2
φ = 0, (2.23)
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which, when written in nondimensional form, takes the following simpler form:

(
φ
)′′ − b

1 − bz

(
φ
)′

+ β
(1 − z)2

(1 − bz)2
(
φ
)
= 0 (2.24)

2.3.3. Beams with Exponentially Varying Stiffnesses

If beam stiffnesses change as in (2.12), the nondimensional form of (2.17) can be written as

(
φ
)′′ − a

(
φ
)′

+ βe2az
(
1 − z2

)(
φ
)
= 0. (2.25)

3. Formulations of the Studied Buckling Problems Using HPM

3.1. Brief Review of HPM

Consider a general nonlinear differential equation,

A(u) − f(r) = 0, r ∈ Ω, (3.1)

with boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (3.2)

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic
function, and Γ is the boundary of the domain Ω [6]. Dividing the operator A into linear (L)
and nonlinear (N) parts, the differential equation can be written as follows:

L(u) +N(u) − f(r) = 0. (3.3)

The basic idea of homotopy perturbation technique (HPM) is to construct a homotopy
v(r, p) = Ω × [0, 1] → R which satisfies

H
(
v, p

)
=
(
1 − p

)
[L(v) − L(u0)] + p

[
L(v) +N(v) − f(r)

]
= 0, (3.4)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation satisfying the
boundary conditions. Equation (3.4) can be rearranged in the following form:

H
(
v, p

)
= L(v) − L(u0) + pL(u0) + p

[
N(v) − f(r)

]
= 0. (3.5)
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From (3.5), it is obvious that

H(v, 0) = L(v) − L(u0) = 0, H(v, 1) = N(v) + L(v) − f(r) = 0. (3.6)

In other words, as p changes from zero to unity, v(r, p) changes from u0 to u(r). Using the
embedding parameter as a small parameter, HPM defines the solution of (3.5) as

v = v0 + pv1 + p2v2 + p3v3 + · · · . (3.7)

Thus, the approximate solution of (3.1) or (3.3) can be obtained from

u = lim
p→ 1

v = v0 + v1 + v2 + v3 + · · · . (3.8)

3.2. HPM Formulations of the Studied Buckling Equations

The nondimensional forms of the buckling equations derived for the studied stability
problems are presented in (2.6), (2.11), (2.13), (2.19), (2.24), and (2.25). One can see that all
of these equations can be written in the following form:

(
φ
)′′

+ λ1
(
φ
)′

+ λ2
(
φ
)
= 0, (3.9)

where λ1 and λ2 are coefficient functions which depend on stiffness variations, end conditions
and loading of the beam. For example, for the buckling problem of a cantilever beam with
linearly varying stiffnesses along its length and carrying concentrated load at its free end,
these functions are

λ1 = − b

1 − bz
, λ2 = β

(1 − z)2

(1 − bz)2
. (3.10)

As it can also be inferred from (3.10) that, for particular values of a or b, λ1 is a function of z
only, while λ2 is function of both z and the nondimensional critical moment α or load β.

The linear and nonlinear parts of (3.9) can be taken as

L
(
φ
)
=
(
φ
)′′
, N

(
φ
)
= λ1(z)

(
φ
)′

+ λ2(z)
(
φ
)
= 0, (3.11)

with

f(r) = 0. (3.12)
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Substituting (3.7) into (3.5), in view of (3.9), (3.11) and (3.12), and equating the terms with
similar powers of the embedding parameter p, the following iteration equations are obtained:

p0 : (v0)′′ =
(
φ0

)′′
,

p1 : (v1)′′ = −
(
φ0

)′′ − λ1(v0)′ − λ2(v0),

p2 : (v2)′′ = −λ1(v1)′ − λ2(v1),

p3 : (v3)′′ = −λ1(v2)′ − λ2(v2),

...

pn : (vn)′′ = −λ1(vn−1)′ − λ2(vn−1).

(3.13)

For all cases considered in the study, the solution of the linear part of (3.9), that is, L(φ) =
(φ)

′′
= 0, can be taken as an initial guess φ0. Thus,

φ0(z) = Az + B, (3.14)

where A and B are unknown coefficients to be determined from the boundary conditions of
the problems. Substituting (3.14), into the equations given in (3.13), vi (i: 0–n) can be obtained
with n successive iterations. Finally, the approximate solution can be obtained from

φ = lim
p→ 1

v ∼=
n∑
i=0

vi. (3.15)

For each particular case of the studied problems, substituting the approximate solution to
the related boundary conditions, two homogeneous equations are obtained in terms of the
unknown coefficients A and B. These equations can be put into the following matrix form:

[
M

(
α or β

)]{A
B

}
=
{
0
0

}
. (3.16)

Thus, each problem reduces to an eigenvalue problem. For a nontrivial solution, the
determinant of the coefficient matrix has to be zero, that is, |M(α or β)| = 0. The smallest
possible real root of the characteristic equation gives the nondimensional buckling moment
or load (α or β) in the first buckling mode.
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4. HPM Solutions to the Studied Stability Problems

4.1. Critical Moments for Pure Bending Cases

Exact solution to (2.5) is given in [1] as

Mcr = π

√
GItEIη

L
, (4.1)

whereMcr is the critical moment of the beam in the first buckling mode. In view of (2.7), this
result corresponds to a nondimensional critical moment of

α = π2 ∼= 9.8696. (4.2)

In order to show how HPM is applied to the studied buckling problem and how the
approximate solutions converge to the exact solution as the number of iterations increases,
(2.6) is solved using different number of iterations defined in (3.13) with the initial guess
given in (3.14). As an example, the terms obtained for the first five iterations are given below:

v0 = Az + B,

v1 = −1
6
A(z)3α − 1

6
B(z)2α,

v2 =
1
120

A(z)5α2 +
1
24

B(z)4α2,

v3 = − 1
5040

A(z)7α3 − 1
720

B(z)6α3,

v4 =
1

362880
A(z)9α4 +

1
40320

B(z)8α4,

v5 = − 1
39916800

A(z)11α5 − 1
3628800

B(z)10α5.

(4.3)

In fact, even five iterations are sufficient to obtain almost exact result when beam stiffnesses
are constant along beam length as shown in Figure 5, where the convergence of HPM
solutions to the exact one with increasing number of iterations is shown. Error is only 0.03%
when n = 5.

Exact solution to (2.10) is also available in the literature ([3]):

Mcr =
πb

ln(1 + b)

√
GItEIη

L
, (4.4)

which in view of (2.7) equals

α = π2 b2

[ln(1 + b)]2
(4.5)
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Figure 5: Pure bending case: Beams with constant stiffnesses: convergence of HPM solution to the exact
solution as the number of iterations increase.
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Figure 6: Pure bending case: beams with linearly varying stiffnesses: convergence of HPM solutions to the
exact solutions as the number of iterations increases.

The normalized buckling moments for two particular values of b, 0.3 and 0.7, are computed
using HPM for different numbers of iterations, and the convergences of the approximate
results to the exact ones are shown in Figure 6. To simplify the integration processes, variable
coefficients in the iteration integrals, that is, λ1 and λ2, are expanded in series using nine
terms. As it is seen from Figure 6(a), for b = 0.3, HPM solutions converge to the exact result
as the number of iterations increases, and to obtain the exact result, it is sufficient to perform
only eight iterations. On the other hand, when b = 0.7, there remains some small error, not
more than 1%, even when nine iterations are performed. This is due to the fact that as b
increases, that is, as the nonlinearity in λ1 and λ2 increases, it becomes necessary to expand
these coefficients in series using more terms in iteration integrals. As given in Table 2, as the
number of terms in series is increased, HPM results converge to the exact result (α = 17.1757).

To investigate the effects of exponential stiffness variations on buckling moment of
a simply supported rectangular beam under pure bending, (2.13) is solved using HPM for
various values of a and the smallest α values in the first buckling modes are obtained. For
all values of a, the variable coefficient in the iteration integrals is expanded in series using
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Figure 7: Pure bending case: beams with exponentially varying stiffnesses: variation of nondimensional
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Table 2: Pure bending base: Beams with linearly varying stiffnesses (b = 0.7). HPM solutions for
nondimensional buckling moment (α) for different numbers of expansion of variable coefficients in the
iteration integrals in series.

n 9 terms 11 terms 15 terms 17 terms 21 terms 25 terms 29 terms
1 7.55873 7.50322 7.47003 7.46569 7.46292 7.46236 7.46225
2 12.8432 12.6880 12.5907 12.5773 12.5685 12.5666 12.5663
3 14.6633 14.5719 14.5178 14.5108 14.5064 14.5055 14.5053
4 18.2977 18.2898 18.2968 18.2991 18.3012 18.3017 18.3019
5 17.1510 17.0913 17.0601 17.0566 17.0546 17.0543 17.0542
6 17.2775 17.2227 17.1952 17.1923 17.1906 17.1904 17.1903
7 17.2629 17.2074 17.1793 17.1763 17.1747 17.1744 17.1743
8 17.2642 17.2088 17.1808 17.1779 17.1762 17.1759 17.1759
9 17.2641 17.2087 17.1807 17.1777 17.1761 17.1758 17.1757

seventeen terms and nine iterations are conducted. To the best knowledge of the author,
there is no exact solution in the literature for this case of the problem. Critical moments of
nonuniform beams normalized to that of the uniform beam (a = 0) are plotted in Figure 7,
which shows severe decrease in buckling moment as a increases.

4.2. Critical Loads for Cantilever Cases

Exact solution to (2.18) is given in Timoshenko and Gere [1] as

J−1/4
(
PL2/2

√
GItEIη

)
= 0, (4.6)
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Figure 8: Cantilever case: beams with constant stiffnesses: convergences of HPM solutions to the exact
solutions as the number of iterations increases for nondimensional buckling loads in the first three buckling
modes.

where J−1/4 represent the Bessel function of the first kind of order −1/4. The smallest root of
this equation yields the first mode critical load Pcr

Pcr = 4.0126

√
GItEIη

L2
. (4.7)

In view of (2.20), this result corresponds to a nondimensional critical load of

β = (4.0126)2 = 16.1010. (4.8)

Even though it may be rather difficult to obtain the roots of a Bessel function, one can solve
(4.6) to obtain the critical loads in higher modes. The results extremely depend on the initial
guess and while deciding which root corresponds to which mode, one should be very careful.
After some trial and errors, the larger two roots of (4.6) are obtained, which correspond
to nondimensional buckling loads of 104.9830 and 272.775 in the second and third modes,
respectively.

Equation (2.19) is solved using HPM to evaluate the effectiveness of HPM in
determining buckling loads in higher modes. Seventeen iterations are performed to get the
higher mode values. Unlike the exact solutions, the roots of HPM results are much easier to
determine since the characteristic equation obtained using HPM is a polynomial. This is one
of the advantages of using HPM in this problem, even in the case of constant stiffnesses.
Figure 8 shows how HPM solutions converge to the exact solutions as the numbers of
iterations increases. While it is sufficient to execute six iterations to achieve the exact result for
the first mode, iteration numbers have to be increased for higher mode values; ten iterations
for the second mode and fifteen iterations for the third mode.
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Figure 10: Cantilever case: beams with exponentially varying stiffnesses: variation of nondimensional
critical moment ratio (β/βa=0) with “a” values.

To the best knowledge of author, there are no exact solutions in literature for lateral
buckling of nonuniform cantilever beams supporting a concentrated load at its free end
when the beam stiffnesses vary along its length linearly or exponentially due to the complex
buckling equations ((2.24) and (2.25)) to be solved.

Approximate solutions to (2.24) and (2.25) are obtained using HPM with nine
iterations and presented in Figures 9 and 10. Variable coefficients in the iteration integrals
are expanded in series using seventeen terms. Since the buckling load values of nonuniform
beams plotted in Figures 9 and 10 are normalizedwith respect to that of uniform beams (a = 0
or b = 0), one can easily see how the buckling capacities of nonuniform beams decrease as
the beam stiffnesses decrease. When b = 1, the capacity drops 35% of its uniform capacity,
whereas when a = 2, the capacity drop is almost quarter.
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5. Conclusions

The design of slender beams with large laterally unsupported lengths is usually governed
by their lateral torsional buckling capacities. In this limit state, structural deformation of the
beam suddenly changes from in-plane deformation (strong-axis bending) to a combination
of out-of plane deformation (weak-axis bending) and twisting. If the slenderness of the beam
is considerably large, the lateral buckling capacity of the beam can be much smaller than its
strong-axis bending capacity.

In an attempt to construct ever-stronger and ever-lighter structures, many engineers
currently design light slender members with variable cross-sections, which are especially
prone to this type of buckling. Unfortunately, design engineers are lack of sufficient guidance
on design of such nonuniform structural elements since most of the provisions in design
specifications are developed for uniform elements. For nonuniform members, buckling
equations usually become so complex that it becomes impractical and sometimes even
impossible to obtain exact closed-form solutions to these equations. However, approximate
solutions can easily be obtained to these complex problems using recently developed
nonlinear analytical techniques, such as homotopy perturbation method (HPM).

In this paper, two fundamental beam buckling problems, lateral torsional buckling
of (i) simply supported rectangular beams subjected to pure bending and (ii) rectangular
cantilever beams carrying concentrated load at their free ends, is studied using HPM. Exact
solutions to these problems are available in literature only for uniform beams and some
particular cases of linearly tapered beams. In order to verify the effectiveness of HPM on
solving beam stability problems and to show the application of the method, first the lateral
buckling of uniform beams are studied. The excellent match of the HPM results with the
exact results verifies the efficiency of the technique in the analysis of lateral torsional buckling
problems. Then, beams with variable minor-axis flexural and torsional stiffnesses along their
lengths are studied. Both linear and exponential variations are considered in nonuniform
beams. The stability analyses of nonuniform beams lead to differential equations with
variable coefficients, for which it can be rather difficult to derive exact solutions. However, as
shown in the paper, it is relatively easy to write HPM algorithms to these complex differential
equations, which give buckling moment/load of the beam after a few iterations.
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