
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 207318, 11 pages
doi:10.1155/2012/207318

Research Article
Adaptive Parameters for a Modified Comprehensive
Learning Particle Swarm Optimizer

Yu-Jun Zheng,1 Hai-Feng Ling,2 and Qiu Guan1

1 College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou,
Zhejiang 310023, China

2 Engineering Institute of Engineering Corps, PLA University of Science and Technology, Nanjing,
Jiangsu 210007, China

Correspondence should be addressed to Yu-Jun Zheng, yujun.zheng@computer.org

Received 5 October 2012; Accepted 25 November 2012

Academic Editor: Sheng-yong Chen

Copyright q 2012 Yu-Jun Zheng et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Particle swarm optimization (PSO) is a stochastic optimization method sensitive to parameter
settings. The paper presents a modification on the comprehensive learning particle swarm
optimizer (CLPSO), which is one of the best performing PSO algorithms. The proposed method
introduces a self-adaptive mechanism that dynamically changes the values of key parameters
including inertia weight and acceleration coefficient based on evolutionary information of
individual particles and the swarm during the search. Numerical experiments demonstrate that
our approach with adaptive parameters can provide comparable improvement in performance of
solving global optimization problems.

1. Introduction

The complexity of many real-world problems has made exact solution methods impractical
to solve them within a reasonable amount of time and thus gives rise to various types of
nonexact metaheuristic approaches [1–3]. In particular, swarm intelligence methods, which
simulate a population of simple individuals evolving their solutions by interacting with one
another and with the environment, have shown promising performance on many difficult
problems and have become a very active research area in recent years [4–11]. Among
these methods, particle swarm optimization (PSO), initially proposed by Kennedy and
Eberhart [4], is a population-based global optimization technique that involves algorithmic
mechanisms similar to social behavior of bird flocking. The method enables a number
of individual solutions, called particles, to move through the solution space and towards
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the most promising area for optimal solution(s) by stochastic search. Consider a D-dimen-
sional optimization problem as follows:

min f(x), x = [x1, x2, . . . xD]T

s.t. xiL ≤ xi ≤ xiU, 0 < i ≤ D.
(1.1)

In the D-dimensional search space, each particle i of the swarm is associated with a
position vector xi = (xi1, xi2, . . . , xiD) and a velocity vector vi = (vi1, vi2, . . . , viD), which are
iteratively adjusted by learning from a local best pbesti found by the particle itself and a
current global best gbest found by the whole swarm:

v(t+1)i = v(t)i + c1r1
(
pbest(t)i − x(t)i

)
+ c2r2

(
gbest(t) − x(t)i

)
, (1.2)

x(t+1)i = x(t)i + v(t+1)i , (1.3)

where c1 and c2 are two acceleration constants reflecting the weighting of “cognitive” and
“social” learning, respectively, and r1 and r2 are two distinct random numbers in [0, 1]. It is
recommended that c1 = c2 = 2 since it on average makes the weights for cognitive and social
parts both to be 1.

To achieve a better balance between the exploration (global search) and exploitation
(local search), Shi and Eberhart [12] introduce a parameter named inertia weightw to control
velocity, which is currently the most widely used form of velocity update equation in PSO
algorithms:

v(t+1)i = wv(t)i + c1r1
(
pbest(t)i − x(t)i

)
+ c2r2

(
gbest(t) − x(t)i

)
. (1.4)

Empirical studies have shown that a large inertia weight facilitates exploration and a
small inertia weight one facilitates exploitation and a linear decreasing inertia weight can be
effective in improving the algorithm performance:

w(t) = wmin +
tmax − t

tmax
(wmax −wmin), (1.5)

where t is the current iteration number, tmax is the maximum number of allowable iterations,
andwmax andwmin are the initial value and the final value of inertia weight, respectively. It is
suggested thatwmax can be set to around 1.2 andwmin around 0.9, which can result in a good
algorithm performance and remove the need for velocity limiting.

PSO is conceptually simple and easy to implement, and has been proven to be effective
in a wide range of optimization problems [13–20]. Furthermore, It can be easily parallelized
by concurrently processing multiple particles while sharing the social information [21, 22].
Kwok et al. [23] present an empirical study on the effect of randomness on the control
coefficients of PSO, and the results show that the selective and uniformly distributed random
coefficients perform better on complicate functions.

In recent years, PSO has attracted a high level of interest, and a number of variant PSO
methods (e.g., [24–32]) have been proposed to accelerate convergence speed and avoid local
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optima. In particular, Liang et al. develop a comprehensive learning particle swarm optimizer
(CLPSO) [26], which uses all other particles’ historical best information (instead of pbest and
gbest) to update a particle’s velocity:

v
(t)
i,d = w(t)v

(t)
i,d + cri,d

(
pbest(t)fi(d),d − x

(t)
i,d

)
, (1.6)

where pbestfi(d),d can be the dth dimension of any particle’s pbest (including pbesti itself),
and particle fi(d) is selected based on a learning probability PCi . The authors suggest a
tournament selection procedure that randomly chooses two particles and then select one with
the best fitness as the exemplar to learn from for that dimension. Note that CLPSO has only
one acceleration coefficient c which is normally set to 1.494, and it limits the inertia weight
value in the range of [0.4, 0.9].

According to empirical studies [29, 30, 33], CLPSO has been shown to be one of the
best performing PSO algorithms, especially for complex multimodal function optimization.
In [34] a self-adaptation technique is introduced to adaptively adjust the learning probability,
and the historical information is used in the velocity update equation, which effectively
improve the performance of CLPSO on single modal problems.

Wu et al. [35] adapt the CLPSO algorithm by improving the search behavior to
optimize the continuous externality for antenna design. In [36] Li and Tan present a hybrid
strategy to combine CLPSO with Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which
defines a local diversity index to indicate whether the swarm enters into an optimality
region in a high probability. They apply the method to identify multiple local optima of the
generalization bounds of support vector machine parameters and obtain satisfying results.
However, to the best of our knowledge, modifications of CLPSO based on adaptive inertia
weight and acceleration coefficient have not been reported.

In this paper we propose an improved CLPSO algorithm, named CLPSO-AP, by
introducing a new adaptive parameter strategy. The algorithm evaluates the evolutionary
states of individual particles and the whole swarm, based on which values of inertia
weight and acceleration coefficient are dynamically adjusted to search more effectively.
Numerical experiments on test functions show that our algorithm can significantly improve
the performance of CLPSO.

In the rest of the paper, Section 2 presents our PSO method with adaptive parameters,
Section 3 presents the computational experiments, and Section 4 concludes with discussion.

2. The CLPSO-AP Algorithm

2.1. Adaptive Inertia Weight and Acceleration Coefficient

To provide an adaptive parameter strategy, we first need to determine the situation of each
particle at each iteration. In this paper, two concepts are used for this purpose. The first one
considers whether or not a particle i improves its personal best solution at the tth iteration
(in the paper we assume the problem is to minimize the objective function without loss of
generality):

s
(t)
i =

⎧
⎨
⎩
1 if f

(
pbest(t)i

)
< f
(
pbest(t−1)i

)

0 else.
(2.1)
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And the second considers the particle’s “rate of growth” from the (t − 1)th iteration to
the tth iteration:

γ
(t)
i =

f
(
x(t)i
)
− f
(
x(t−1)i

)
∣∣∣x(t)i − x(t−1)i

∣∣∣
, (2.2)

where |x(t)i − x(t−1)i | denotes the Euclidean distance between x(t)i and x(t−1)i :

∣∣∣x(t)i − x(t−1)i

∣∣∣ =
√√√√ D∑

k=1

(
x
(t)
ik

− x
(t−1)
ik

)2
. (2.3)

Based on (2.1), we can calculate the percentage of particles that successfully improve
their personal better solutions:

ρ(t) =

∑p

i=1 s
(t)
i

p
, (2.4)

where p is the number of particles in the swarm. This measure has been utilized in [33]
and some other evolutionary algorithms such as [37]. Generally, in PSO a high ρ indicates a
high probability that the particles have converged to a nonoptimum point or slowly moving
toward the optimum, while a low ρ indicates that the particles are oscillating around the
optimum without much improvement. Considering role of inertia weight in the convergence
behavior of PSO, in the former case the swarm should have a large inertial weight and in
the latter case the swarm should have a small inertial weight. Here we use the following
nonlinear function to map the values of ρ to w:

w(t) = eρ
(t)−1. (2.5)

It is easy to derive that w ranges from about 0.36 to 1. The nonlinear and non-
monotonous change of inertial weight can improve the adaptivity and diversity of the swarm,
because the search process of PSO is highly complicated on most problems.

Most PSO algorithms use constant acceleration coefficients in (1.4). But it deserves to
note that Ratnaweera et al. [38] introduce a time-varying acceleration coefficient strategy
where the cognitive coefficient is linearly decreased and the social coefficient is linearly
increased. The basic CLPSO also uses a constant acceleration coefficient in (1.6), where c
reflects the weighting of stochastic acceleration term that pulls each particle i towards the
personal best position of particle fi(d) at each dimension d. Considering the measure defined
in (2.2), a large value of γ (t)i indicates that at t time, particle i falls rapidly in the search
space and gets a considerable improvement on the fitness function; thus it is reasonable to
anticipate that the particle may also gain much improvement at least at the next iteration. On
the contrary, a small value of γ (t)i indicates that particle i progresses slowly and thus needs a
large acceleration towards the exemplar.
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From the previous analysis, we suggest that the acceleration coefficient should be an
increasing function of γ (t)i /Γ(t), where Γ(t) is the SRSS of the rates of growth of all the particles
in the swarm:

Γ(t) =

√√√√
p∑
j=1

(
γ
(t)
j

)2
. (2.6)

Based on our empirical tests, we use the following function tomap the values of γi to ci:

c
(t)
i = 1.8

(
1 − γ

(t)
i

Γ(t)

)
. (2.7)

2.2. The Proposed Algorithm

Using the adaptive parameter strategy described in the previous section, the equation for
velocity update for the CLPSO-AP algorithm is

v
(t)
i,d

= w(t)v
(t)
i,d

+ c
(t)
i ri,d

(
pbest(t)

fi(d),d − x
(t)
i,d

)
, (2.8)

where w(t) and c
(t)
i are calculated based on (2.5) and (2.7), respectively.

Now we present the flow of CLPSO-AP algorithm as follows.

(1) Generate a swarm of p particles with random positions and velocities in the range.
Let t = 0 and initialize w(t) = 1 and each c

(t)
i = 1.

(2) Generate a learning probability PCi for each particle based on the following equa-
tion suggested in [10]:

PCi = 0.05 + 0.45
exp
(
10(i − 1)/

(
p − 1

)) − 1
exp(10) − 1

. (2.9)

(3) Evaluate the fitness of each particle and update its pbest and then select a particle
with the best fitness value as gbest.

(4) For each particle i in the swarm do the following.

(4.1) For d = 1 to D do the next.

(4.1.1) Generate a random number rand in the range [0, 1].
(4.1.2) If rand > PCi , let fi(d) = i.
(4.1.3) Else, randomly choose two other distinct particles i1 and i2, and select the

one with better fitness value as fi(d).
(4.1.4) Update the dth dimension of the particle’s velocity according to (2.8).

(4.2) Update the particle’s position according to (1.3).

(4.3) Calculate s(t)i and r
(t)
i for the particle according to (2.1) and (2.2), respectively.
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(5) Calculate w(t) of the swarm based on (2.4) and (2.5).

(6) Calculate Γ(t) based on (2.5), and then calculate c(t)i for each particle i based on (2.7).

(7) Let t = t + 1. If t = tmax or any other termination condition is satisfied, the algorithm
stops and returns gbest.

(8) Go to step 3.

In Step (7), other termination conditions can be that a required function value is
obtained, or all the particles converge to a stable point.

3. Numerical Experiments

In order to evaluate the performance of the proposed algorithm, we choose a set of well-
known test functions as benchmark problems, the definitions of which are listed in the
Appendix section. The search ranges, optimal points and corresponding fitness values, and
required accuracies are shown in Table 1.

We comparatively execute the basic PSO algorithm, CLPSO algorithm, and our
CLPSO-AP algorithm on the test functions with 10 and 30 dimensions, where each
experiment is run for 40 times. The parameter settings for the algorithms are given in Table 2.

We use the mean best fitness value and the success rate (with respect to the required
accuracy shown in Table 1) as two criteria for measuring the performance of the algorithms.
The experimental results (averaged over 40 runs) of which are presented in Tables 3, 4, 5, and
6 respectively.

As we can see from the experimental results, for all 10D and 30D dimensional
problems, CLPSO-AP performs better than CLPSO in terms of both mean best values and
success rates. Among the seven test functions, Ackley function is the only one on which
CLPSO performs no better than the basic PSO However, CLPSO-AP performs better than
basic PSO on both the 10D and 30D Ackley functions, and thus CLPSO-AP also outperforms
basic PSO on all benchmark problems. It also deserves to note the 10D Rosenbrock function,
for which CLPSO and most of the other PSO variants hardly succeed [26, 39, 40] while our
CLPSO-AP algorithm gains a 10% success rate. Except for the 30D Rosenbrock function,
CLPSO-AP successfully obtains the global optimum for all the other functions. In summary,
our algorithm performs very well and overwhelms the other two algorithms on all of the test
problems.

4. Conclusion

CLPSO has been shown to be one of the best performing PSO algorithms. The paper proposes
a new improved CLPSO algorithm, named CLPSO-AP, which uses evolutionary information
of individual particles to dynamically adapt the inertia weight and acceleration coefficient
at each iteration. Experimental results on seven test functions show that our algorithm
can significantly improve the performance of CLPSO. Ongoing work includes applying
our algorithm to intelligent feature selection and lighting control in robotics [41–43] and
extending the adaptive strategy to other PSO variants, including those for fuzzy and/or
multiobjective problems [44, 45].
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Table 1: Detailed information of the test functions used in the paper.

No. Function Search range x∗ f(x∗) Required accuracy
f1 Sphere [−100, 100]D [0, 0, . . . , 0] 0 0.000001
f2 Rosenbrock [−2.048, 2.048]D [1, 1, . . . , 1] 0 0.01
f3 Schwefel [−500, 500]D [420.96, 420.96, . . . , 420.96] 0 0.01
f4 Rastrigin [−5.12, 5.12]D [0, 0, . . . , 0] 0 0.01
f5 Griewank [−600, 600]D [0, 0, . . . , 0] 0 0.000001
f6 Ackley [−32.768, 32.768]D [0, 0, . . . , 0] 0 0.000001
f7 Weierstrass [−0.5, 0.5]D [0, 0, . . . , 0] 0 0.000001

Table 2: Parameter settings of the algorithms.

Algorithm Inertial weight Acceleration coefficient(s) 10D functions 30D functions
p tmax p tmax

PSO [0.4, 1.2] c1 = c2 = 1.49445 10 5000 30 10000
CLPSO [0.4, 0.9] c = 1.49445 10 5000 30 10000
CLPSO-AP N/A N/A 10 5000 30 10000

Table 3: The mean best values obtained by the algorithms for 10D problems.

Function PSO CLPSO CLPSO-AP
Sphere 3.239E − 27 8.138E − 79 5.479E − 96
Rosenbrock 2.172E + 00 2.005E + 00 1.106E + 00
Schwefel 1.048E + 03 0 0
Rastrigin 5.774E − 01 0 0
Griewank 8.132E − 02 1.313E − 02 6.467E − 03
Ackley 5.951E − 15 2.181E − 13 4.707E − 15
Weierstrass 0 0 0

Table 4: The success rates obtained by the algorithms for 10D problems.

Function PSO CLPSO CLPSO-AP
Sphere 100% 100% 100%
Rosenbrock 0 0 10%
Schwefel 5% 100% 100%
Rastrigin 12.5% 100% 100%
Griewank 0 1.75% 75%
Ackley 100% 100% 100%
Weierstrass 100% 100% 100%

Table 5: The mean best values obtained by the algorithms for 30-D problems.

Function PSO CLPSO CLPSO-AP
Sphere 4.900E − 14 1.077E − 57 3.852E − 75
Rosenbrock 5.164E + 01 2.158E + 01 1.954E + 01
Schwefel 1.425E + 02 7.913E + 01 6.883E + 01
Rastrigin 4.726E + 00 4.974E − 02 0
Griewank 2.745E − 02 1.616E − 10 1.167E − 12
Ackley 1.106E − 13 6.594E − 12 3.242E − 14
Weierstrass 1.155E − 14 1.155E − 14 1.155E − 14
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Table 6: The success rates obtained by the algorithms for 30-D problems.

Function PSO CLPSO CLPSO-AP
Sphere 100% 100% 100%
Rosenbrock 0 0 0
Schwefel 0 50% 55%
Rastrigin 0 95% 100%
Griewank 37.5% 100% 100%
Ackley 100% 100% 100%
Weierstrass 100% 100% 100%

Appendix

Definitions of the Test Functions

(1) Sphere function:

f1(x) =
D∑
i=1

x2
i . (A.1)

(2) Rosenbrock’s function:

f2(x) =
D−1∑
i=2

(
100
(
x2
i − xi−1

)2
+ (xi − 1)2

)
. (A.2)

(3) Schwefel’s function:

f3(x) = 418.9829 ×D −
D∑
i=1

xi sin
(
|xi|1/2

)
. (A.3)

(4) Rastrigin’s function:

f4(x) =
D∑
i=1

(
x2
i − 10 cos(2πxi) + 10

)
. (A.4)

(5) Griewank’s function:

f5(x) =
D∑
i=1

x2
i

4000
−

D∏
i=1

cos
(

xi√
i

)
+ 1. (A.5)

(6) Ackley’s function:

f6(x) = −20 exp
⎛
⎝−0.2

√√√√ 1
D

D∑
i=1

x2
i

⎞
⎠ − exp

(
1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e. (A.6)
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(7) Weierstrass function:

f7(x) =
D∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk(xi + 0.5)

)])
−D

kmax∑
k=0

[
ak cos

(
2πbk · 0.5

)]
. (A.7)
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