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The problem of optimal control with state and control variables is studied. The variables are: a
scalar vector x and the control u(t); these variables are bonded, that is, the right-hand side of
the ordinary differential equation contains both state and control variables in a mixed form. For
solution of this problem, we used adaptive method and technology of linear programming.

1. Introduction

Problems of optimal control have been intensively investigated in the world literature for
over forty years. During this period, a series of fundamental results have been obtained,
among which should be noted the maximum principle [1] and dynamic programming [2, 3].
Results of the theory were taken up in various fields of science, engineering, and economics.

The optimal control problem with mixed variables and free terminal time is
considered. This problem is among the most difficult problems in the mathematical theory
of control processes [4–7]. An algorithm based on the concept of simplex method [4, 5, 8, 9]
so called support control is proposed to solve this problem.

The aim of the paper is to realize the adaptive method of linear programming [8]. In
our opinion the numerical solution is impossible without using the computers of discrete
controls defined on the quantized axes as accessible controls. This made, it possible to
eliminate some analytical problems and reduce the optimal control problem to a linear
programming problem. The obtained results show that the adequate consideration of the
dynamic structure of the problem in question makes it possible to construct very fast
algorithms of their solution.
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The work has the following structure. In Section 2, The terminal optimal control
problem with mixed variables is formulated. In Section 3, we give some definitions needed
in this paper. In Section 4, the definition of support is introduced. Primal and dual ways of
its dynamical identification are given. In Section 5, we calculate a value of suboptimality. In
Section 6, optimality and ε-optimality criteria are defined. In Section 7, there is a numerical
algorithm for solving the problem; the iteration consists in two procedures: change of control
and change of a support to find a solution of discrete problem; at the end, we used a final
procedure to find a solution in the class of piecewise continuous functions. In Section 8, the
results are illustrated with a numerical example.

2. Problem Statement

We consider linear optimal control problem with control and state constraints:

J(x, u) = g
(
x
(
tf
))

+
∫ tf

0
(Cx(t) +Du(t))dt −→ max

x,u
, (2.1)

subject to

ẋ = f(x(t), u(t)) = Ax(t) + Bu(t), 0 ≤ t ≤ tf ,
x(0) = x0, x

(
tf
)
= xf ,

xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax, t ∈ T =
[
0, tf

]
,

(2.2)

where A,B,C, and D are constant or time-dependent matrices of appropriate dimensions,
x ∈ Rn is a state of control system (2.1)–(2.2), and u(·) = (u(t), t ∈ T), T = [0, tf], is a piecewise
continuous function. Among these problems in which state and control are variables, we
consider the following problem:

J(x, u) = c′x +
∫ tf

0
c(t)u(t)dt −→ max

x,u
, (2.3)

subject to

Ax +
∫ t∗

0
h(t)u(t)dt, 0 ≤ t ≤ tf , (2.4)

x(0) = x0, (2.5)

xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax, t ∈ T =
[
0, tf

]
, (2.6)

where x ∈ Rn is a state of control system (2.3)–(2.6); u(·) = (u(t), t ∈ T), T = [0, tf], is a
piecewise continuous function, A ∈ Rm×n; c = c(J) = (cj , j ∈ J); g = g(I) = (gi, i ∈ I) is
an m-vector; c(t), t ∈ T , is a continuous scalar function; h(t), t ∈ T , is an m-vector function;
umin, umax are scalars; xmin = xmin(J) = (xminj , j ∈ J), xmax = xmax(J) = (xmaxj , j ∈ J) are
n-vectors; I = {1, . . . , m}, J = {1, . . . , n} are sets of indices.
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3. Essentials Definitions

Definition 3.1. A pair v = (x, u(·)) formed of an n-vector x and a piecewise continuous
function u(·) is called a generalized control.

Definition 3.2. The constraint (2.4) is assumed to be controllable, that is for any m-vector g,
there exists a pair v, for which the equality (2.4) is fulfilled.

A generalized control v = (x, u(·)) is said to be an admissible control if it satisfies
constraints (2.4)–(2.6).

Definition 3.3. An admissible control v0 = (x0, u0(·)) is said to be an optimal open-loop control
if a control criterion reaches its maximal value

J
(
v0
)
= max

v
J(v). (3.1)

Definition 3.4. For a given ε ≥ 0, an ε-optimal control vε = (xε, uε(·)) is defined by the
inequality

J
(
v0
)
− J(vε) ≤ ε. (3.2)

4. Support and the Accompanying Elements

Let us introduce a discretized time set Th = {0, h, . . . , tf − h} where h = tf/N, and N is an
integer. A function u(t), t ∈ T , is called a discrete control if

u(t) = u(τ), t ∈ [τ, τ + h), τ ∈ Th. (4.1)

First, we describe a method of computing the solution of problem (2.3)–(2.6) in the class of
discrete control, and then we present the final procedure which uses this solution as an initial
approximation for solving problem (2.3)–(2.6) in the class of piecewise continuous functions.

Definitions of admissible, optimal, ε-optimal controls for discrete functions are given
in a standard form.

Choose an arbitrary subset TB ⊂ Th of l ≤ m elements and an arbitrary subset JB ⊂ J of
m-l elements.

Form the matrix,

PB =
(
aj = A

(
I, j

)
, j ∈ JB; d(t), t ∈ TB

)
, (4.2)

where d(t) =
∫ t+h
t h(s)ds, t ∈ Th.

A set SB = {TB, JB} is said to be a support of problem (2.3)–(2.6) if detPB /= 0.
A pair {v, SB} of an admissible control v(t) = (x, u(t), t ∈ T) and a support SB is said

to be a support control.
A support control {v, SB} is said to be primally nonsingular if d∗j < xj < d∗

j , j ∈ JB; f∗ <
u(t) < f∗, t ∈ TB.
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Let us consider another admissible control v = (x, u(·)) = v + Δv, where x = x +
Δx, u(t) = u(t) + Δu(t), t ∈ T , and let us calculate the increment of the cost functional

ΔJ(v) = J(v) − J(v) = c′Δx +
∫ tf

0
c(t)Δu(t)dt. (4.3)

Since

AΔx +
∫z

0
h(t)Δu(t)dt = 0, (4.4)

then the increment of the functional equals

ΔJ(v) =
(
c′ − ν′A)

Δx +
∫ tf

0

(
c(t) − ν′h(t))Δu(t)dt, (4.5)

where ν ∈ Rm is called potentials: ν′ = q′BQ, qB = (crj, j ∈ JB; q(t), t ∈ TB), Q = P−1
B , q(t) =

∫ t+h
t c(s)ds, t ∈ Th.

Introduce an n-vector of estimates Δ′ = ν′A − c′ and a function of cocontrol Δ(·) =
(Δ(t) = ν′d(t) − q(t), t ∈ Th). With the use of these notions, the value of the cost functional
increment takes the form

ΔJ(v) = Δ′Δx −
∑

t∈Th
Δ(t)Δu(t). (4.6)

A support control {v, SB} is dually nonsingular ifΔ(t)/= 0, t ∈ TH,Δj /= 0, j ∈ JH , where
TH = Th/TB, JH = J/JB.

5. Calculation of the Value of Suboptimality

The new control v(t) is admissible, if it satisfies the constraints:

xmin − x ≤ Δx ≤ xmax − x, umin − u(t) ≤ Δu(t) ≤ umax − u(t), t ∈ T. (5.1)

The maximum of functional (4.6) under constraints (5.1) is reached for:

Δxj = xminj − xj if Δj > 0,
Δxj = xmaxj − xj if Δj < 0,

xminj − xj ≤ Δxj ≤ xmaxj − xj if Δj = 0, j ∈ J,

Δu(t) = umin − u(t) if Δ(t) > 0
Δu(t) = umax − u(t) if Δ(t) < 0

umin ≤ Δu(t) ≤ umax if Δ(t) = 0, t ∈ Th,

(5.2)
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and is equal to

β = β(v, SB)

=
∑

j∈J+H
Δj

(
xj − xminj

)
+
∑

j∈J−H
Δj

(
xj − xmaxj

)
+
∑

t∈T+

Δ(t)(u(t) − umin) +
∑

t∈T−
Δ(t)(u(t) − umax),

(5.3)

where

T+ = {t ∈ TH,Δ(t) > 0}, T− = {t ∈ TH,Δ(t) < 0},
J+H =

{
j ∈ JH,Δj > 0

}
, J−H =

{
j ∈ JH,Δj < 0

}
.

(5.4)

The number β(v, SB) is called a value of suboptimality of the support control {v, SB}.
From there, J(v) − J(v) ≤ β(v, SB). Of this last inequality, the following result is deduced.

6. Optimality and ε-Optimality Criterion

Theorem 6.1 (see [8]). The following relations:

u(t) = umin if Δ(t) > 0,

u(t) = umax if Δ(t) < 0,

umin ≤ u(t) ≤ umax if Δ(t) = 0, t ∈ Th,
xj = xminj if Δj > 0,

xj = xmaxj if Δj < 0,

xminj ≤ xj ≤ xmaxj if Δj = 0, j ∈ J,

(6.1)

are sufficient, and in the case of non degeneracy, they are necessary for the optimality of control v.

Theorem 6.2. For any ε ≥ 0, the admissible control v is ε-optimal if and only if there exists a support
SB such that β(v, SB) ≤ ε.

7. Primal Method for Constructing the Optimal Controls

A support is used not only to identify the optimal and ε-optimal controls, but also it is the
main tool of the method. The method suggested is iterative, and its aim is to construct an
ε-solution of problem (2.3)–(2.6) for a given ε ≥ 0. As a support will be changing during the
iterations together with an admissible control, it is natural to consider them as a pair.

Below to simplify the calculations, we assume that on the iterations, only primally and
dually nonsingular support controls are used.
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The iteration of the method is a change of an “old” control {v, SB} for the “new” one
{v, SB} so that β{v, SB} ≤ β{v, SB}. The iteration consists of two procedures:

(1) change of an admissible control v → v,

(2) change of support SB → SB.

Construction of the initial support control concerns with the first phase of the method and
can be performed with the use of the algorithm described below.

At the beginning of each iteration the following information is stored:

(1) an admissible control v,

(2) a support SB = {TB, JB},
(3) a value of suboptimality β = β(v, SB).

Before the beginning of the iteration, we make sure that a support control {v, SB} does not
satisfy the criterion of ε-optimality.

7.1. Change of an Admissible Control

The new admissible control is constructed according to the formulas:

xj = xj + θ0lj , j ∈ J,

u(t) = u(t) + θ0l(t), t ∈ Th,
(7.1)

where l = (lj , j ∈ J, l(t), t ∈ Th) is an admissible direction of changing a control v; θ0 is the
maximum step along this direction.

7.1.1. Construct of the Admissible Direction

Let us introduce a pseudocontrol ṽ = (x̃, ũ(t), t ∈ T).
First, we compute the nonsupport values of a pseudocontrol

x̃j =

{
xminj if Δj ≥ 0,
xmaxj if Δj ≤ 0, j ∈ JH,

ũ(t) =

{
umax if Δ(t) ≤ 0,
umin if Δ(t) ≥ 0, t ∈ TH.

(7.2)

Support values of a pseudocontrol {x̃j , j ∈ JB; ũ(t), t ∈ TB} are computed from the equation

∑

j∈JB
A
(
I, j

)
x̃j +

∑

t∈TB
d(t)ũ(t) = g −

∑

j∈JH
A
(
I, j

)
x̃j +

∑

t∈TH
d(t)ũ(t). (7.3)

With the use of a pseudocontrol, we compute the admissible direction l: lj = x̃j − xj ,
j ∈ J ; l(t) = ũ(t) − u(t), t ∈ Th.
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7.1.2. Construct of Maximal Step

Since v is to be admissible, the following inequalities are to be satisfied:

xmin ≤ x ≤ xmax; umin ≤ u(t) ≤ umax, t ∈ Th, (7.4)

that is,

xmin ≤ xj + θ0lj ≤ xmax, j ∈ J,

umin ≤ u(t) + θ0l(t) ≤ umax, t ∈ Th.
(7.5)

Thus, the maximal step θ0 is chosen as θ0 = min{1; θ(t0); θj0}.
Here, θj0 = min θj :

θj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xmaxj − xj
lj

if lj > 0,

xminj − xj
lj

if lj < 0,

+∞ if lj = 0, j ∈ JB,

(7.6)

and θ(t0) = mint∈TBθ(t):

θ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

umax − u(t)
l(t)

if l(t) > 0,

umin − u(t)
l(t)

if l(t) < 0,

+∞ if l(t) = 0, t ∈ TB.

(7.7)

Let us calculate the value of suboptimality of the support control {v, SB} with v computed
according to (7.1): β(v, SB) = (1 − θ0)β(v, SB). Consequently,

(1) if θ0 = 1, then v is an optimal control,

(2) if β(v, SB) ≤ ε, then v is an ε-optimal control,

(3) if β(v, SB) > ε, then we perform a change of support.

7.2. Change of Support

For ε > 0 given, we assume that β(v, SB) > ε and θ0 = min(θ(t0), t0 ∈ TB; θj0 , j0 ∈ JB). We will
distinguish between two cases which can occur after the first procedure:

(a) θ0 = θj0 , j0 ∈ JB,
(b) θ0 = θ(t0), t0 ∈ TB.

Each case is investigated separately.
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We perform change of support SB → SB that leads to decreasing the value of
suboptimality β(v, SB). The change of support is based on variation of potentials, estimates,
and cocontrol:

ν′ = ν + Δν; Δj = Δj + σ0δj , j ∈ J, Δ(t) = Δ(t) + σ0δ(t), t ∈ Th, (7.8)

where (δj , j ∈ J, δ(t), t ∈ Th) is an admissible direction of change (Δ,Δ(·)) and σ0 is a maximal
step along this direction.

7.2.1. Construct of an Admissible Direction (δj, j ∈ J, δ(t), t ∈ Th)
First, construct the support values δB = (δj , j ∈ JB, δ(t), t ∈ TB) of admissible direction

(a) θ0 = θj0. Let us put

δ(t) = 0 if t ∈ TB,
δj = 0 if j /= j0, j ∈ JB,
δj0 = 1 if xj0 = xminj0 ,

δj0 = −1 if xj0 = xmaxj0 ,

(7.9)

(b) θ0 = θ(t0). Let us put

δj = 0 if j ∈ JB,

δ(t) = 0 if t ∈ TB
t0
,

δ(t0) = 1 if u(t0) = umin,

δ(t0) = −1 if u(t0) = umax.

(7.10)

Using the values δB = (δj , j ∈ JB, δ(t), t ∈ TB), we compute the variation Δν of potentials as
Δν′ = δ′BQ. Finally, we get the variation of nonsupport components of the estimates and the
cocontrol:

δj = Δν′A
(
I, j

)
, j ∈ JH,

δ(t) = Δν′d(t), t ∈ TH.
(7.11)
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7.2.2. Construct of a Maximal Step σ0

A maximal step equals σ0 = min(σ0
j , σ

0
t ) with σ0

j = σj1 = minσj , j ∈ JH ; σ0
t = σ(t1) =

minσ(t), t ∈ TH , where

σj =

⎧
⎪⎨

⎪⎩

−Δj

δj
if Δjδj < 0,

+∞ if Δjδj ≥ 0, j ∈ JH,

σ(t) =

⎧
⎨

⎩
−Δ(t)
δ(t)

if Δ(t)δ(t) < 0,

+∞ if Δ(t)δ(t) ≥ 0, t ∈ TH.

(7.12)

7.2.3. Construct of a New Support

For constructing a new support, we consider the four following cases:

(1) θ0 = θ(t0), σ0 = σ(t1): a new support SB = {TB, JB} has two following components:

TB =
TB
{t0} ∪ {t1}, JB = JB, (7.13)

(2) θ0 = θ(t0), σ0 = σj1 : a new support SB = {TB, JB} has the two following
components:

TB =
TB
{t0} , JB = JB ∪ {

j1
}
, (7.14)

(3) θ0 = θj0 , σ
0 = σj1 : a new support SB = {TB, JB} has two following components:

TB = TB, JB =
JB{
j0
} ∪ {

j1
}
, (7.15)

(4) θ0 = θj0 , σ
0 = σ(t1): a new support SB = {TB, JB} has two following components:

TB = TB ∪ {t1}, JB =
JB{
j0
} , (7.16)

A value of suboptimality for support control β(v, SB) takes the form

β
(
v, SB

)
=
(
1 − θ0

)
β(v, SB) − ασ0, (7.17)
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where

α =

{
|ũ(t0) − u(t0)| if θ0 = θ(t0),∣
∣x̃j0 − xj0

∣
∣ if θ0 = θj0 .

(7.18)

(1) If β(v, SB) > ε, then we perform the next iteration starting from the support control
{v, SB}.

(2) If β(v, SB) = 0, then the control v is optimal for problem (2.3)–(2.6) in the class of
discrete controls.

(3) If β(v, SB) < ε, then the control v is ε-optimal for problem (2.3)–(2.6) in the class of
discrete controls.

If we would like to get the solution of problem (2.3)–(2.6) in the class of piecewise continuous
control, we pass to the final procedure when case 2 or 3 takes place.

7.3. Final Procedure

Let us assume that for the new control v, we have β(v, SB) > ε. With the use of the support
SB we construct a quasicontrol v̂ = (x̂, û(t), t ∈ T),

x̂j =

⎧
⎪⎪⎨

⎪⎪⎩

xminj if Δj > 0,
xmaxj if Δj < 0,

∈
[
xminj , xmaxj

]
if Δj = 0, j ∈ J.

û(t) =

⎧
⎪⎪⎨

⎪⎪⎩

umin, if Δ(t) < 0
umax, if Δ(t) > 0,
∈ [umin, umax], if Δ(t) = 0, t ∈ Th.

(7.19)

If

A(I, J)x̂ +
∫ tf

0
h(t)û(t)dt = g, (7.20)

then v̂ is optimal, and if

A(I, J)x̂ +
∫ tf

0
h(t)û(t)dt /= g, (7.21)

then denote T0 = {ti ∈ T,Δ(ti) = 0}, where ti are zeros of the optimal cocontrol, that is,
Δ(ti) = 0, i = 1, s, with s ≤ m. Suppose that

Δ̇(ti)/= 0, i = 1, s. (7.22)
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Let us construct the following function:

f(Θ) = A(I, JB)x(JB)

+A(I, JH)x(JH) +
s∑

i=0

(
umax + umin

2
− umax − umin

2
sign Δ̇(ti)

)∫ ti+1

ti

h(t)dt − g,

(7.23)

where

xj =
xminj + xmaxj

2
−
xmaxj − xminj

2
signΔj , j ∈ JH, t0 = 0, ts+1 = tf ,

Θ =
(
ti, i = 1, s; xj , j ∈ JB

)
.

(7.24)

The final procedure consists in finding the solution

Θ0 =
(
t0i , i = 1, s;x0

j , j ∈ JB
)

(7.25)

of the system ofm nonlinear equations

f(Θ) = 0. (7.26)

We solve this system by the Newton method using as an initial approximation of the vector

Θ(0) =
(
ti, i = 1, s;xj , j ∈ JB

)
. (7.27)

The (k + 1)th approximation Θ(k+1), at a step k + 1 ≥ 1, is computed as

Θ(k+1) = Θ(k) + ΔΘ(k), ΔΘ(k) = −∂f
−1(Θ(k))

∂Θ(k)
· f

(
Θ(k)

)
. (7.28)

Let us compute the Jacobi matrix for (7.26)

∂f
(
Θ(k))

∂Θ(k)
=
(
A(I, JB); (umin − umax) sign Δ̇

(
t
(k)
i

)
h
(
t
(k)
i

)
, i = 1, s

)
(7.29)

As detPB /= 0, we can easily show that

det
∂f

(
Θ(0))

∂Θ(0) /= 0. (7.30)
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For instants t ∈ TB, there exists a small μ > 0 that for any t̃i ∈ [ti − μ, ti + μ], i = 1, s,
the matrix (h(t̃i), i = 1, s) is nonsingular and the matrix ∂f(Θ(k))/∂Θ(k) is also nonsingular if
elements t(k)i , i = 1, s, k = 1, 2, . . . do not leave the μ-vicinity of ti, i = 1, s.

Vector Θ(k∗) is taken as a solution of (4.6) if

∥
∥
∥f

(
Θ(k∗)

)∥∥
∥ ≤ η, (7.31)

for a given η > 0. So we put θ0 = θ(k
∗).

The suboptimal control for problem (2.3)–(2.6) is computed as

x0
j =

{
x0
j , j ∈ JB,
x̂j , j ∈ JH

u0(t) =
umax + umin

2
− umax − umin

2
sign Δ̇

(
t0i

)
, t ∈

[
t0i , t

0
i+1

[
, i = 1, s.

(7.32)

If the Newton method does not converge, we decrease the parameter h > 0 and perform the
iterative process again.

8. Example

We illustrate the results obtained in this paper using the following example:

∫25

0
u(t)dt −→ min,

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = −x1 + x2 + u,
ẋ4 = 0.1x1 − 1.01x2,

x1(0) = 0.1, x2(0) = 0.25, x3(0) = 2, x4(0) = 1,

x1(25) = x2(25) = x3(25) = x4(25) = 0,

xmin ≤ x ≤ xmax, 0 ≤ u(t) ≤ 1, t ∈ [0, 25].

(8.1)
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Figure 1: Optimal control u(t) and switching function.

Let the matrix be

A =

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 1
−1 1 0 0
0.1 −1.01 0 0

⎞

⎟⎟
⎠, h(t) =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠, g =

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠,

xmin =

⎛

⎜⎜
⎝

−4
−4
−4
−4

⎞

⎟⎟
⎠, xmax =

⎛

⎜⎜
⎝

4
4
4
4

⎞

⎟⎟
⎠.

(8.2)

We introduce the adjoint system which is defined as

ψ1 = −ψ3 + 0.1ψ4,
ψ2 = ψ3 − 1.01ψ4,

ψ3 = ψ1,
ψ4 = ψ2,

ψ1
(
tf
)
= 0, ψ2

(
tf
)
= 0, ψ3

(
tf
)
= 0, ψ4

(
tf
)
= 0.

(8.3)

Problem (8.1) is reduced to canonical form (2.3)–(2.6) by introducing the new variable
ẋ5 = u, x5(0) = 0. Then, the control criterion takes the form −x5(tf) →max. In the class of
discrete controls with quantization period h = 25/1000 = 0.0025, problem (8.1) is equivalent
to LP problem of dimension 4 × 1000.

To construct the optimal open-loop control of problem (8.1), as an initial support, a set
TB = {5, 10, 15, 20} was selected. This support corresponds to the set of nonsupport zeroes of
the cocontrol Tn0 = {2.956, 5.4863, 9.55148, 12.205, 17.6190, 19.0372}. The problem was solved
in 26 iterations, that is, to construct the optimal open-loop control, a support 4× 4 matrix was
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Figure 2: Phaseportrait x1(t), x3(t).
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Figure 3: Optimal state variables x1(t), x2(t).

Table 1

h Number of iterations Value of the control criterion Time

0.25 11 6.624333 2.72
0.025 18 6.602499 2.85
0.001 32 6.602050 3.33

changed 26 times. The optimal value of the control criterion was found to be equal to 6.602054
in time 2.92.

Table 1 contains some information on the solution of problem (8.1) for other
quantization periods.
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Figure 4: Optimal state variables x3(t), x4(t).

Of course, one can solve problem (8.1) by LP methods, transforming the problem
(4.6)–(7.8). In doing so, one integration of the system is sufficient to form the matrix of the
LP problem. However, such “static” approach is concerned with a large volume of required
operative memory, and it is fundamentally different from the traditional “dynamical”
approaches based on dynamical models (2.3)–(2.6). Then, problem (2.3)–(2.6)was solved.

In Figure 1, there are control u(t) and switching function for minimum principle. In
Figure 2, there is phaseportrait (x1, x3) for a system (8.1). In Figure 3, there are state variables
x1(t), x2(t) for a system (8.1). In Figure 3, state variables x3(t), x4(t) for a system (8.1). In
Figure 4, state variables x1(t), x2(t) for a system (8.1).
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