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A dynamic stationary semianalytical solution for a spatially constant load applied over a
rectangular surface within a viscoelastic isotropic full space is presented. The solution is obtained
within the frame of a double Fourier integral transform. Closed-form solutions for general loadings
within the full space are furnished in the transformed wave number domain. Expressions for three
boundary value problems, associated to a normal and two tangential rectangular loadings in the
original physical space, are given in terms of a double inverse Fourier integral. These inverse
integral transforms must be evaluated numerically. In the second part of the present paper a
strategy to evaluate these integrals is described, the procedure validated and a number of original
results are reported.

1. Introduction

The dynamics of unbounded domains is characterized by outgoing and nonreflected waves
which carry energy away from the perturbation source. The withdrawal of energy in the
form of nonreflected outgoing waves, radiating waves, introduces in the unboundedmedium
a damping mechanism called geometric damping. The mathematical expression governing
this condition is known as Sommerfeld radiation condition (SRC) [1, 2]. Many relevant
geomechanical problems deal with the modeling of engineering structures interacting with
the soil. A proper modeling of the dynamic soil-structure interaction problem (DSSI) must
take the Sommerfeld radiation condition into account.

This has been recognized by early researchers like Reissner [3], who developed a
semianalytical solution for a harmonic vibrating circular load applied at the surface of an
elastic half-space. Later on, Lysmer [4] used Reissner’s solution within a superposition
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scheme to describe the interaction of rigid circular surface foundation interacting with the
soil. Based on the semianalytical solution of a rectangular load applied at the surface of
the half-space Wong and Luco [5] devised a scheme to model the interaction of surface
foundation of arbitrary shape also with the elastic soil.

The synthesis of a semianalytical solution for a rectangular load of constant amplitude
over a 3D viscoelastic-half space was determined by Gaul in his dissertation [6]. The work of
Gaul used a double Fourier integral transform as the mathematical framework. The final
solution was obtained through the numerical realization of inverse integral transforms.
Gaul applied the obtained solution to analyze surface foundation interacting with the
homogeneous viscoelastic half-space [7]. Half-space semianalytical solutions were used by
Dasgupta [8] in conjunction with the Finite Element Method to model the interaction of rigid
foundations embedded in the elastic half-space. A hybrid approach for 3D analysis based on
the distributed load solutions has been proposed by Mita and Luco [9].

The solution of a 2D transverse isotropic full space subjected to a concentrated
load and also to a spatially distributed load of constant amplitude and finite width under
harmonic time behavior was determined by Rajapakse and Wang [10, 11]. The axisymmetric
case was also solved by Wang [12] and used within the context of the Indirect Boundary
Element Method (IBEM) to describe the dynamic response of buried structures.

Distributed load solutions for a transverse isotropic media with inclined principal
axis were furnished by Barros and De Mesquita Neto [13]. Similar solutions for spatially
constant distributed loads of finite width applied inside a 2D transverse isotropic were used
by Barros and De Mesquita Neto [14] to analyzed the structure-soil-structure interaction
with the IBEM. The solution for a distributed load with a singularity at one extremity was
determined by Barros and De Mesquita Neto [15]. This solution was used to obtain a very
efficient and accurate scheme to analyze the interaction of 2D rigid foundations with a half-
space. A semianalytical solution for linear porous saturated full space was synthesized by
Senjuntichai and Rajapakse [16].

In the previously cited work the mathematical framework to obtain these semianalyt-
ical solutions was the single and double Fourier integral transforms for the 2D and 3D cases,
respectively. For the axisymmetric case the Hankel transform has been used.

In the last years the Radon transform has been applied to synthesize fundamental
(point load) solutions for anisotropic full spaces [17, 18]. Using the Fourier and the Radon
integral transforms, semianalytical solutions for concentrated and distributed 3D harmonic
loads on the half-space surface were obtained, respectively, by Mesquita et al. [19] and by
Adolph et al. [20].

Distributed solutions for the 2D static case and their application to the Boundary
Element Method have been reported by Crouch and Starfield [21]. A series of static solutions
for distributed loads in transversely isotropic half-spaces have been listed by Wang and
Liao [22]. Static closed-form solutions for transversely isotropic 3D half-spaces for the case
of buried rectangular and triangular loads, with nonconstant spatial load variation, were
synthesized by Wang and his coworkers [23, 24].

Distributed load solutions for full spaces or half-spaces can be used directly as
elements of analysis in geomechanical engineering problems [25] or as auxiliary states,
auxiliary solutions, to model more general problems together with a numerical scheme such
as the Boundary Element Method [14, 21, 26].

In the present paper a dynamic stationary semianalytical solution for a spatially
constant load applied over a rectangular surface within a viscoelastic isotropic full space
is presented. The solution is obtained within the frame of a double Fourier integral
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Figure 1: Traction loadings for the three boundary value problems.

transform. Close form solutions for general loadings within the full space are furnished
in the transformed wave number domain. Expressions for the solution in the original
physical domain for the case of a rectangular load of constant amplitude are furnished as
inverse double Fourier integrals. In an accompanying paper the strategy used to perform
the numerical integration of these expressions is addressed. The validation and a series of
dynamic results are presented.

2. Problem Statement

The boundary value problem to be solved consists of a 3D isotropic full space subjected to a
harmonic load. The presented formulation allows any spatially constant load distribution to
be considered. Solution expressions for concentrated loads (Green’s functions) are indicated
but not evaluated. The displacement solutions for a spatially uniformly distributed normal
and tangential load over a rectangular surface with dimensions 2A × 2B on the plane x-y
are furnished and numerically evaluated. Figures 1(a) to 1(c) show the cases of normal and
tangential loads applied to a rectangular surface.

The problem is governed by the Navier-Cauchy differential equations which, in terms
of the displacement components Ui = Ui(x,y, z, ω) (i = x,y, z) and in the absence of body
forces, may be expressed as [27]

μ∗Ui,jj +
[
λ∗ + μ∗]Uk,ki = −ω2ρUi. (2.1)

In (2.1), ρ is the density of themedium andω is the circular frequency and μ∗ and λ∗ are
complex Lamé parameters, containing the elastic constitutive parameters of the medium λ, μ,
and a viscoelastic model represented by frequency-dependent internal damping coefficients
[28]:

λ∗ = λ
[
ηRλ + iηIλ(ω)

]
,

μ∗ = μ
[
ηRμ + iηIμ(ω)

]
.

(2.2)
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In the present work the internal damping coefficients are assumed to be equal, ηIλ =
ηIμ = η. The real part of the complex coefficient is taken to be constant and of unit value, ηRλ =
ηRμ = 1. Considering the Kroenecker Delta δij , for a linear isotropic continua the components
of the stress tensor σij can be expressed in terms of the displacement components Ui:

σij = μ∗(Ui,j +Uj,i

)
+ δijλ

∗Uk,k. (2.3)

3. Solution Strategy

The solution strategy adopted in this paper is based on the classical Helmhotz decomposition
of a vector field into a scalar dilatation and a vector rotational field [29].

With the aid of the vector identity

∇2U = ∇(∇ •U) − ∇ × (∇ ×U) (3.1)

which may also be written in indicial notation

Ui,jj = Uj,ji − eijk
(
eklmUm,lj

)
. (3.2)

Equation (2.1)may be written as

μ∗[Uj,ji − eijk
(
eklmUm,lj

)]
+
[
λ∗ + μ∗]Uk,ki = −ω2ρUi. (3.3)

Now using the following definition for the rotation components Ωn:

2Ωnên = enklUl,kên = ∇ ×U, (3.4)

and for the dilatation part

Δ = Uj,j = ∇ •U. (3.5)

Equation (3.3) can be recast into

[
λ∗ + 2μ∗]

ω2ρ
Δ,i −

μ∗

ω2ρ
2eimnΩn,m +Ui = 0. (3.6)

Defining the complex velocities of dilatational c∗L and distortional c∗S waves and
complex wave numbers k∗

L and k∗
S such that

k∗
L
2 =

ω2

c∗L
2
, c∗L

2 =
λ∗ + 2μ∗

ρ
,

k∗
S
2 =

ω2

c∗S
2
, c∗S

2 =
μ∗

ρ
.

(3.7)
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Equation (3.6)may be written as

Ui = − 1

k∗
L
2
Δ,i +

2

k∗
S
2
eimnΩn,m = 0. (3.8)

Equation (3.6) illustrates well the very complex nature of the displacement equations of
motion. Considering the vector identities

eijkΔk,j = 0,

∂

∂xi
[eimnΩn,m] = 0.

(3.9)

It is possible to transform (3.6) into two decoupled wave equations by taking the divergent
and the curl of that expression, leading to

Δ +
1

k∗
L
2
Δ,ii = 0, (3.10)

Ωi +
1

k∗
S
2
Ωi,jj = 0. (3.11)

Equations (3.10) and (3.11) shows that the displacement field Ui is composed of a rotation
free scalar dilatation fieldΔ and a dilatation-free rotational fieldΩi. This decomposition of the
equations of motion (2.1) into two independent wave equations is known as the Helmholtz
decomposition of a vector field. The decomposition is complete under the restriction that the
rotation field must be divergent-free [29]:

Ωi,i = 0. (3.12)

The stress field can also be expressed in terms of dilatation and rotation parts by
substituting (3.8) in (2.3):

σij = μ∗
[

δij
1 − 2n2

n2
Δ − 2

k∗
L
2
Δ,ij +

2

k∗
S
2

(
eiklΩl,kj + ejlkΩk,li

)
]

. (3.13)

In (3.13), the following parameter is used:

n2 =
k∗
L
2

k∗
S
2
. (3.14)
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Trial Solutions

To proceed with the solution, the unbounded full space is divided in two domains, −∞ < z ≤
0 and 0 < z < +∞, respectively. For each domain a trial solution (Ansatz function) is given.

For domain 1,

Δ(1) = A(1)k∗
L
2 exp

[
αLz + i

(
βx + γy

)]
, (3.15)

Ω(1)
j = B

(1)
j k∗

S
2 exp

[
αSz + i

(
βx + γy

)]
. (3.16)

And for domain 2,

Δ(2) = A(2)k∗
L
2 exp

[−αLz + i
(
βx + γy

)]
, (3.17)

Ω(2)
j = B

(2)
j k∗

S
2 exp

[−αSz + i
(
βx + γy

)]
. (3.18)

The superscripts (1) and (2) in (3.15) to (3.18) are used to denote quantities associated
with the domains bounded by −∞ < z ≤ 0 and 0 < z < +∞, respectively. The 8 constants
present at the trial solutions (3.15) to (3.18), namely, A(m) and B

(m)
j with (j = 1, 2, 3) and

(m = 1, 2) are to be determined by the boundary conditions prescribed at the interface of the
two domains.

If the trial functions (3.15) to (3.18) are substituted into (3.10) and (3.11) then, for a
nontrivial solution of the problem, A(m) /= 0 and B

(m)
j /= 0 with (j = 1, 2, 3) and (m = 1, 2), it is

necessary that the following conditions are satisfied:

α2
L =

(
β2 + γ2

)
− k∗

L
2,

α2
S =

(
β2 + γ2

)
− k∗

S
2.

(3.19)

The trial solutions (3.15) to (3.18) must also satisfy the Sommerfeld radiation
condition, which states that the waves at points far from the energy source must be outgoing
and not incoming waves [1]. In the context of the trial functions (3.15) to (3.18), the radiation
condition implies that the real part of the coefficients αL and αS must be a positive value. The
variables β and γ in the trial solutions are wave numbers corresponding, respectively, to the
x and y Cartesian directions.

The additional criterion given in (3.12), which establishes that the vector field Ω has
zero divergence (Ωi,i = 0), allows the three components of the displacement field Ui to be
uniquely determined from the four components of Δ and Ωn (n = 1, 2, 3) [29]. Applying
(3.12) in (3.16) and (3.18) yields

B
(1)
3 =

−i
αS

[
βB1 + γB2

]
,

B
(2)
3 =

i

αS

[
βB1 + γB2

]
.

(3.20)
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Displacement Solutions

The expressions for the displacement field of the domain 1 are obtained when (3.15) and
(3.16) are substituted into (3.8)

U
(1)
X =

{
−A(1)iβ exp(αLz) +

2
αS

[
B
(1)
1 βγ + B

(1)
2

(
γ2 − α2

S

)]
exp(αSz)

}
exp

[
i
(
βx + γy

)]
, (3.21)

U
(1)
Y =

{
−A(1)iγ exp(αLz) +

2
αS

[
B
(1)
1

(
−β2 + α2

S

)
− B

(1)
2 βγ

]
exp(αSz)

}
exp

[
i
(
βx + γy

)]
, (3.22)

U
(1)
Z =

{
−A(1)αL exp(αLz) − 2i

[
B
(1)
1 γ − B

(1)
2 β

]
exp(αSz)

}
exp

[
i
(
βx + γy

)]
. (3.23)

Analogously, (3.17) and (3.18) are substituted into (3.8) to obtain the displacement
field of the domain 2:

U
(2)
X =

{
−A(2)iβ exp(−αLz) − 2

αS

[
B
(2)
1 βγ − B

(2)
2

(
−γ2 + α2

S

)]
exp(−αSz)

}
exp

[
i
(
βx + γy

)]
,

(3.24)

U
(2)
Y =

{
−A(2)iγ exp(−αLz) +

2
αS

[
B
(2)
1

(
β2 − α2

S

)
+ B

(2)
2 βγ

]
exp(−αSz)

}
exp

[
i
(
βx + γy

)]
,

(3.25)

U
(2)
Z =

{
A(2)αL exp(−αLz) − 2i

[
B
(2)
1 γ − B

(2)
2 β

]
exp(−αSz)

}
exp

[
i
(
βx + γy

)]
. (3.26)

Stress Solutions

The expressions for the stress field of the domain 1 are obtained when (3.15) and (3.16) are
substituted into (3.13):

σ
(1)
XX = μ∗

{
A(1)

(
β2 − γ2 − α2

S + 2α2
L

)
eαLz +

4iβ
αS

[
B
(1)
1 βγ + B

(1)
2

(
γ2 − α2

S

)]
eαSz

}
ei(βx+γy), (3.27)

σ
(1)
XY = 2μ∗

{
A(1)βγeαLz +

i

αS

[
B
(1)
1

(
γ2β + βα2

S − β3
)
+ B

(1)
2

(
γ3 − γα2

S − β2γ
)]

eαSz

}
ei(βx+γy),

(3.28)

σ
(1)
XZ = 2μ∗

{
−iA(1)βαLe

αLz +
[
2B(1)

1 βγ + B
(1)
2

(
γ2 − α2

S − β2
)]

eαSz
}
ei(βx+γy), (3.29)

σ
(1)
YY = μ∗

{
A(1)

(
γ2 − β2 − α2

S + 2α2
L

)
eαLz +

4iγ
αS

[
B
(1)
1

(
α2
S − β2

)
− B

(1)
2 βγ

]
eαSz

}
ei(βx+γy), (3.30)
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σ
(1)
YZ = 2μ∗

{
−iA(1)γαLe

αLz +
[
B
(1)
1

(
α2
S + γ2 − β2

)
− 2B(1)

2 βγ
]
eαSz

}
ei(βx+γy), (3.31)

σ
(1)
ZZ = μ∗

{
−A(1)

(
γ2 + β2 + α2

S

)
eαLz − 4iαS

[
B
(1)
1 γ − B

(1)
2 β

]
eαSz

}
ei(βx+γy). (3.32)

Analogously, (3.17) and (3.21) are substituted into (3.13) to obtain the stress field of
the domain 2:

σ
(2)
XX = μ∗

{
A(2)

(
β2 − γ2 − α2

S + 2α2
L

)
e−αLz − 4iβ

αS

[
B
(2)
1 βγ + B

(2)
2

(
γ2 − α2

S

)]
e−αSz

}
ei(βx+γy), (3.33)

σ
(2)
XY = 2μ∗

{
A(2)βγe−αLz − i

αS

[
B
(2)
1

(
γ2β + βα2

S − β3
)
+ B

(2)
2

(
γ3 − γα2

S − β2γ
)]

e−αSz

}
ei(βx+γy),

(3.34)

σ
(2)
XZ = 2μ∗

{
iA(1)βαLe

−αLz +
[
2B(2)

1 βγ + B
(2)
2

(
γ2 − α2

S − β2
)]

e−αSz
}
ei(βx+γy), (3.35)

σ
(2)
YY = μ∗

{
A(2)

(
γ2 − β2 − α2

S + 2α2
L

)
e−αLz − 4iγ

αS

[
B
(2)
1

(
α2
S − β2

)
− B

(2)
2 βγ

]
e−αSz

}
ei(βx+γy), (3.36)

σ
(2)
YZ = 2μ∗

{
iA(2)γαLe

−αLz +
[
B
(2)
1

(
α2
S + γ2 − β2

)
− 2B(2)

2 βγ
]
e−αSz

}
ei(βx+γy), (3.37)

σ
(2)
ZZ = μ∗

{
−A(2)

(
γ2 + β2 + α2

S

)
e−αLz + 4iαS

[
B
(2)
1 γ − B

(2)
2 β

]
e−αSz

}
ei(βx+γy). (3.38)

4. Boundary-Value Problem

The displacement and stress solutions given in (3.21) to (3.38) can be regarded as solutions
in the wave number domain (β, γ). It can be shown that these solutions written in terms
of the trial functions (3.15) to (3.18) are tantamount to solutions in the transformed Fourier
wave number domain (β, γ) [12, 13, 26]. There are 6 independent constants to be determined
from the 6 boundary conditions at the domains’ interface. The 8 constantsA(m) and B

(m)
j with

(j = 1, 2, 3) and (m = 1, 2) that are subjected to the 2 restrictions given in (3.20).
Since (3.21) to (3.38) are in the Fourier wave number domain (β, γ), the boundary

conditions at the interface at the two medium must also be given in this wave number
domain. There are two kinds of boundary conditions to be prescribed at the interface, namely,
displacement and tractions conditions.

Displacement Boundary Conditions

Regardless of the traction boundary conditions, displacement continuity at the domain
interfaces (z = 0) is prescribed. Using (3.21) to (3.26) continuity conditions gives rise to the
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following set of equations:

U
(1)
X

(
x,y, z = 0

) −U
(2)
X

(
x,y, z = 0

)

=

{

−iβA(1)+iβA(2)+
2βγ
αS

B
(1)
1 +

2
(
γ2−α2

S

)

αS
B
(1)
2 +

2βγ
αS

B
(2)
1 +

2
(
γ2 − α2

S

)

αS
B
(2)
2

}

ei(βx+γy) =0,

(4.1)

U
(1)
Y

(
x,y, z = 0

) −U
(2)
Y

(
x,y, z = 0

)

=

{

−iγA(1)+iγA(2)− 2
(
β2−α2

S

)

αS
B
(1)
1 − 2βγ

αS
B
(1)
2 − 2

(
β2−α2

S

)

αS
B
(2)
1 − 2βγ

αS
B
(2)
2

}

ei(βx+γy) =0,

(4.2)

U
(1)
Z

(
x,y, z = 0

) −U
(2)
Z

(
x,y, z = 0

)

=
{
−αLA

(1) − αLA
(2) − 2iγB(1)

1 + 2iβB(1)
2 + 2iγB(2)

1 − 2iβB(2)
2

}
ei(βx+γy) = 0.

(4.3)

Traction Boundary Conditions

The stress boundary conditions vary according to whether the loading is vertical (applied
in the direction of z) or transversal (applied in the directions of x or y), see Figure 1. These
distinct boundary conditions will give rise to three boundary value problems. The following
subsections investigate each of these cases.

4.1. The First BVP-Displacements Field due to Vertical Load in
the Wave Number Domain

Consider the case in which the infinite medium is subjected to a harmonic vertical load,
applied in its plane x-y (z = 0) (see Figure 1(a)), given by the following expression in the
Fourier wave number domain:

pZ
(
β, γ

)
= pZ

(
β, γ

)
exp

[
i
(
βx + γy

)]
. (4.4)

The boundary conditions prescribe stress continuity at the interface in the tangential
directions x and y, and a jump or discontinuity in the normal direction z due to the applied
normal load pZ(β, γ), leading to the expressions:

σ
(1)
ZZ

(
x,y, z = 0

) − σ
(2)
ZZ

(
x,y, z = 0

)
= pZ

(
β, γ

)
,

σ
(1)
ZX

(
x,y, z = 0

) − σ
(2)
ZX

(
x,y, z = 0

)
= 0,

σ
(1)
ZY

(
x,y, z = 0

) − σ
(2)
ZY

(
x,y, z = 0

)
= 0.

(4.5)
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These boundary conditions are applied to (3.27) to (3.38) to obtain:

σ
(1)
ZZ

(
x,y, z = 0

) − σ
(2)
ZZ

(
x,y, z = 0

)

= μ∗
{
−
(
γ2 + β2 + α2

S

)
A(1) − 4iαSγB

(1)
1 + 4iαSβB

(1)
2

+
(
γ2 + β2 + α2

S

)
A(2) − 4iαSγB

(2)
1 + 4iαSβB

(2)
2

}
ei(βx+γy) = pZ

(
β, γ

)
ei(βx+γy),

(4.6)

σ
(1)
ZX

(
x,y, z = 0

) − σ
(2)
ZX

(
x,y, z = 0

)

= 2μ∗
{
−iαLβA

(1) + 2βγB(1)
1 +

(
γ2 − β2 − α2

S

)
B
(1)
2

−iαLβA
(2) − 2βγB(2)

1 −
(
γ2 − β2 − α2

S

)
B
(2)
2

}
ei(βx+γy) = 0,

(4.7)

σ
(1)
ZY

(
x,y, z = 0

) − σ
(2)
ZY

(
x,y, z = 0

)

= 2μ∗
{
−iαLγA

(1) +
(
γ2 − β2 + α2

S

)
B
(1)
1 − 2βγB(1)

2

−iαLγA
(2) −

(
γ2 − β2 + α2

S

)
B
(2)
1 + 2βγB(2)

2

}
ei(βx+γy) = 0.

(4.8)

Equations (4.1) to (4.3) and (4.6) to (4.8) form an algebraic system of six equations,
fromwhich the six unknowns of the problem,A(m)

1 , B(m)
1 , and B

(m)
2 (m = 1, 2), can be obtained:

−iβA(1) + iβA(2) +
2βγ
αS

B
(1)
1 +

2βγ
αS

B
(2)
1 +

2
(
γ2 − α2

S

)

αS
B
(1)
2 +

2
(
γ2 − α2

S

)

αS
B
(2)
2 = 0,

−iγA(1) + iγA(2) − 2
(
β2 − α2

S

)

αS
B
(1)
1 − 2

(
β2 − α2

S

)

αS
B
(2)
1 − 2βγ

αS
B
(1)
2 − 2βγ

αS
B
(2)
2 = 0,

−αLA
(1) − αLA

(2) − 2iγB(1)
1 + 2iγB(2)

1 + 2iβB(1)
2 − 2iβB(2)

2 = 0,

−
(
γ2 + β2 + α2

S

)
A(1)+

(
γ2 + β2 + α2

S

)
A(2)−4iαSγB

(1)
1 −4iαSγB

(2)
1 +4iαSβB

(1)
2 +4iαSβB

(2)
2 =

pZ
μ∗ ,

−iαLβA
(1) − iαLβA

(2) + 2βγB(1)
1 − 2βγB(2)

1 +
(
γ2 − β2 − α2

S

)
B
(1)
2 −

(
γ2 − β2 − α2

S

)
B
(2)
2 = 0,

−iαLγA
(1) − iαLγA

(2) +
(
γ2 − β2 + α2

S

)
B
(1)
1 −

(
γ2 − β2 + α2

S

)
B
(2)
1 − 2βγB(1)

2 + 2βγB(2)
2 = 0.

(4.9)

The solution of (4.9) leads to

A(1) = −A(2) =
1
2
pZ

(
β, γ

)

μ∗k∗
S
2

, (4.10)

B
(1)
1 = B

(2)
1 =

1
4
i
γpZ

(
β, γ

)

μ∗αSk
∗
S
2
, (4.11)

B
(1)
2 = B

(2)
2 = −1

4
i
βpZ

(
β, γ

)

μ∗αSk
∗
S
2
. (4.12)
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The displacement field in the Fourier transformed wave number domain due to the
vertical loading pZ(β, γ) is obtained by substituting (4.10) to (4.12) into (3.21) to (3.26):

U
(1)
XZ = −1

2
iβ
pZ

(
β, γ

)

μ∗k∗
S
2 (eαLz − eαSz)ei(βx+γy),

U
(1)
YZ = −1

2
iγ
pZ

(
β, γ

)

μ∗k∗
S
2 (eαLz − eαSz)ei(βx+γy),

U
(1)
ZZ = −1

2
pZ

(
β, γ

)

αSμ∗k∗
S
2

[
αSαLe

αLz −
(
γ2 + β2

)
eαSz

]
ei(βx+γy),

U
(2)
XZ =

1
2
iβ
pZ

(
β, γ

)

μ∗k∗
S
2

(
e−αLz − e−αSz

)
ei(βx+γy),

U
(2)
YZ =

1
2
iγ
pZ

(
β, γ

)

μ∗k∗
S
2

(
e−αLz − e−αSz

)
ei(βx+γy),

U
(2)
ZZ = −1

2
pZ

(
β, γ

)

αSμ∗k∗
S
2

[
αSαLe

−αLz −
(
γ2 + β2

)
e−αSz

]
ei(βx+γy).

(4.13)

In this paper, U(m)
ik

indicates the displacement of a point at medium m in the direction
i due to a loading in the direction k.

4.2. The Second BVP-Displacements Field due to the Tangential Load in
Y Direction in the Wave Number Domain

Consider the case in which the infinite medium is subjected to a harmonic vertical load,
applied in its plane x-y (z = 0) (see Figure 1(b)), given by the following expression in the
Fourier wave number domain:

pY
(
β, γ

)
= pY

(
β, γ

)
exp

[
i
(
βx + γy

)]
. (4.14)

The boundary conditions prescribe stress continuity at the interface in the normal
direction z and in the tangential directions x as well as a jump or discontinuity in the y
direction due to the applied normal load pY (β, γ), leading to the expressions:

σ
(1)
ZZ

(
x,y, z = 0

) − σ
(2)
ZZ

(
x,y, z = 0

)
= 0,

σ
(1)
ZX

(
x,y, z = 0

) − σ
(2)
ZX

(
x,y, z = 0

)
= 0,

σ
(1)
ZY

(
x,y, z = 0

) − σ
(2)
ZY

(
x,y, z = 0

)
= pY

(
β, γ

)
.

(4.15)
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These traction boundary conditions (4.15) substituted in (3.27) to (3.38) together with
continuity equations (4.1) to (4.3) form an algebraic system of six equations, from which the
six unknowns of the problem, A(m)

1 , B(m)
1 , and B

(m)
2 (m = 1, 2), can be obtained:

−iβA(1) + iβA(2) +
2βγ
αS

B
(1)
1 +

2βγ
αS

B
(2)
1 +

2
(
γ2 − α2

S

)

αS
B
(1)
2 +

2
(
γ2 − α2

S

)

αS
B
(2)
2 = 0,

−iγA(1) + iγA(2) − 2
(
β2 − α2

S

)

αS
B
(1)
1 − 2

(
β2 − α2

S

)

αS
B
(2)
1 − 2βγ

αS
B
(1)
2 − 2βγ

αS
B
(2)
2 = 0,

−αLA
(1) − αLA

(2) − 2iγB(1)
1 + 2iγB(2)

1 + 2iβB(1)
2 − 2iβB(2)

2 = 0,

−
(
γ2 + β2 + α2

S

)
A(1) +

(
γ2 + β2 + α2

S

)
A(2) − 4iαSγB

(1)
1 − 4iαSγB

(2)
1 + 4iαSβB

(1)
2 + 4iαSβB

(2)
2 = 0,

−iαLβA
(1) − iαLβA

(2) + 2βγB(1)
1 − 2βγB(2)

1 +
(
γ2 − β2 − α2

S

)
B
(1)
2 −

(
γ2 − β2 − α2

S

)
B
(2)
2 = 0,

−iαLγA
(1) − iαLγA

(2) +
(
γ2 − β2 + α2

S

)
B
(1)
1 −

(
γ2 − β2 + α2

S

)
B
(2)
1 − 2βγB(1)

2 + 2βγB(2)
2 =

pY
2μ∗ .

(4.16)

The solution of the system (4.16) leads to

A(1) = A(2) =
1
2
γpY

(
β, γ

)

αLμ∗k∗
S
2
,

B
(1)
1 = −B(2)

1 = −1
4
pY

(
β, γ

)

μ∗k∗
S
2

,

B
(1)
2 = B

(2)
2 = 0.

(4.17)

The displacement field in the Fourier transformed wave number domain due to the
transversal loading pY (β, γ) is obtained by substituting (4.17) into (3.21) to (3.26):

U
(1)
XY =

1
2
γβ

pY
(
β, γ

)

αLαSμ∗k∗
S
2 (αSe

αLz − αLe
αSz)ei(βx+γy),

U
(1)
YY =

1
2

pY
(
β, γ

)

αLαSμ∗k∗
S
2

[
γ2αSe

αLz + αL

(
β2 − α2

S

)
eαSz

]
ei(βx+γy),

U
(1)
ZY = −1

2
iγ
pY

(
β, γ

)

μ∗k∗
S
2 (eαLz − eαSz)ei(βx+γy),

U
(2)
XY =

1
2
γβ

pY
(
β, γ

)

αLαSμ∗k∗
S
2

(
αSe

−αLz − αLe
−αSz

)
ei(βx+γy),

U
(2)
YY =

1
2

pY
(
β, γ

)

αLαSμ∗k∗
S
2

[
γ2αSe

−αLz + αL

(
β2 − α2

S

)
e−αSz

]
ei(βx+γy),

U
(2)
ZY =

1
2
iγ
pY

(
β, γ

)

μ∗k∗
S
2

(
e−αLz − e−αSz

)
ei(βx+γy).

(4.18)
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4.3. The Third BVP-Displacements Field due to the Tangential Load in
X Direction in the Wave Number Domain.

Consider the case in which the infinite medium is subjected to a harmonic vertical load,
applied in its plane x-y (z = 0) (see Figure 1(c)), given by the following expression in the
Fourier wave number domain:

pX
(
β, γ

)
= pX

(
β, γ

)
exp

[
i
(
βx + γy

)]
. (4.19)

The boundary conditions prescribe stress continuity at the interface in the normal
direction z and in the tangential directions y as well as a jump or discontinuity in the x
direction due to the applied normal load pX(β, γ), leading to the expressions:

σ
(1)
ZZ

(
x,y, z = 0

) − σ
(2)
ZZ

(
x,y, z = 0

)
= 0,

σ
(1)
ZX

(
x,y, z = 0

) − σ
(2)
ZX

(
x,y, z = 0

)
= pX

(
β, γ

)
,

σ
(1)
ZY

(
x,y, z = 0

) − σ
(2)
ZY

(
x,y, z = 0

)
= 0.

(4.20)

These traction boundary conditions (4.20) substituted in (3.27) to (3.38) together with
continuity equations (4.1) to (4.3) form an algebraic system of six equations, from which the
six unknowns of the problem, A(m)

1 , B(m)
1 , and B

(m)
2 (m = 1, 2), can be obtained:

−iβA(1) + iβA(2) +
2βγ
αS

B
(1)
1 +

2βγ
αS

B
(2)
1 +

2
(
γ2 − α2

S

)

αS
B
(1)
2 +

2
(
γ2 − α2

S

)

αS
B
(2)
2 = 0,

−iγA(1) + iγA(2) − 2
(
β2 − α2

S

)

αS
B
(1)
1 − 2

(
β2 − α2

S

)

αS
B
(2)
1 − 2βγ

αS
B
(1)
2 − 2βγ

αS
B
(2)
2 = 0,

−αLA
(1) − αLA

(2) − 2iγB(1)
1 + 2iγB(2)

1 + 2iβB(1)
2 − 2iβB(2)

2 = 0,

−
(
γ2 + β2 + α2

S

)
A(1) +

(
γ2 + β2 + α2

S

)
A(2) − 4iαSγB

(1)
1 − 4iαSγB

(2)
1 + 4iαSβB

(1)
2 + 4iαSβB

(2)
2 = 0,

−iαLβA
(1) − iαLβA

(2) + 2βγB(1)
1 − 2βγB(2)

1 +
(
γ2 − β2 − α2

S

)
B
(1)
2 −

(
γ2 − β2 − α2

S

)
B
(2)
2 =

pX
2μ∗ ,

−iαLγA
(1) − iαLγA

(2) +
(
γ2 − β2 + α2

S

)
B
(1)
1 −

(
γ2 − β2 + α2

S

)
B
(2)
1 − 2βγB(1)

2 + 2βγB(2)
2 = 0.

(4.21)

The solution of the system (4.21) leads to

A(1) = A(2) =
1
2
i
βpX

(
β, γ

)

αLμ∗k∗
S
2
,

B
(1)
1 = B

(2)
1 = 0,

B
(1)
2 = −B(2)

2 =
1
4
pX

(
β, γ

)

μ∗k∗
S
2

.

(4.22)
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The displacement field in the Fourier transformed wave number domain due to the
transversal loading pX(β, γ) is obtained by substituting (4.22) into (3.21) to (3.26):

U
(1)
XX =

1
2

pX
(
β, γ

)

αLαSμ∗k∗
S
2

[
β2αSe

αLz + αL

(
γ2 − α2

S

)
eαSz

]
ei(βx+γy),

U
(1)
YX = +

1
2
βγ

pX
(
β, γ

)

αLαSμ∗k∗
S
2 (αSe

αLz − αLe
αSz)ei(βx+γy),

U
(1)
ZX = −1

2
iβ
pX

(
β, γ

)

μ∗k∗
S
2 (eαLz − eαSz)ei(βx+γy),

U
(2)
XX =

1
2

pX
(
β, γ

)

αLαSμ∗k∗
S
2

[
β2αSe

−αLz + αL

(
γ2 − α2

S

)
e−αSz

]
ei(βx+γy),

U
(2)
YX = +

1
2
βγ

pX
(
β, γ

)

αLαSμ∗k∗
S
2

(
αSe

−αLz − αLe
−αSz

)
ei(βx+γy),

U
(2)
ZX =

1
2
iβ
pX

(
β, γ

)

μ∗k∗
S
2

(
e−αLz − e−αSz

)
ei(βx+γy).

(4.23)

4.4. Displacements Field in the Transformed Space

Equations (4.13), (4.18), and (4.23) express the component of displacementU(m)
ik

with distinct
expressions for each media m = 1 and m = 2. In the following equations, a single expression
for the components Uik is given for both media through a small adaptation of the coordinate
z. In these equations, Uik indicates the displacement of a point of coordinates (x,y, z) of the
full space in the direction i (i = x,y, z) due to a loading applied in the direction k (k = x,y, z).

For the first problem with normal loading pZ:

UXZ

(
β, γ

)
=

z

|z| iβ
pZ

(
β, γ

)

2μ∗k∗
S
2

(
e−αL|z| − e−αS|z|

)
ei(βx+γy),

UYZ

(
β, γ

)
=

z

|z| iγ
pZ

(
β, γ

)

2μ∗k∗
S
2

(
e−αL|z| − e−αS|z|

)
ei(βx+γy),

UZZ

(
β, γ

)
= − pZ

(
β, γ

)

2αSμ∗k∗
S
2

[
αSαLe

−αL|z| −
(
γ2 + β2

)
e−αS|z|

]
ei(βx+γy).

(4.24)

For the second problem with tangential loading pY :

UXY

(
β, γ

)
= βγ

pY
(
β, γ

)

2αLαSμ∗k∗
S
2

(
αSe

−αL|z| − αLe
−αS|z|

)
ei(βx+γy),

UYY

(
β, γ

)
=

pY
(
β, γ

)

2αLαSμ∗k∗
S
2

[
γ2αSe

−αL|z| + αL

(
β2 − α2

S

)
e−αS|z|

]
ei(βx+γy),

UZY

(
β, γ

)
=

z

|z| iγ
pY

(
β, γ

)

2μ∗k∗
S
2

(
e−αL|z| − e−αS|z|

)
ei(βx+γy).

(4.25)
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And for the third problem with tangential loading pX :

UXX

(
β, γ

)
=

pX
(
β, γ

)

2αLαSμ∗k∗
S
2

[
β2αSe

−αL|z| + αL

(
γ2 − α2

S

)
e−αS|z|

]
ei(βx+γy),

UYX

(
β, γ

)
= βγ

pX
(
β, γ

)

2αLαSμ∗k∗
S
2

(
αSe

−αL|z| − αLe
−αS|z|

)
ei(βx+γy),

UZX

(
β, γ

)
=

z

|z| iβ
pX

(
β, γ

)

2μ∗k∗
S
2

(
e−αL|z| − e−αS|z|

)
ei(βx+γy).

(4.26)

Equations (4.24) to (4.26) furnish displacement solutions for the full space for the three
boundary value problems in the wave number domain for any loading traction function
pi(β, γ) (i = x,y, z).

4.5. Uniformly Distributed Traction Loadings in the Wave Number Domain

Consider the vertical harmonic load pZ(x,y, z) depicted in Figure 1(a). Let this load have a
uniform intensity pZ distributed over a rectangular surface with dimensions 2A × 2B, placed
at the interface plane x-y (z = 0). In the original physical domains (x,y, z) this load can be
written as

pZ
(
x,y, z = 0

)
=

{
−pZ,

(
x,y, z = 0

) ∈ |x| ≤ A ∪ ∣∣y
∣∣ ≤ B,

0,
(
x,y, z = 0

) ∈ |x| > A ∪ ∣∣y
∣∣ > B.

(4.27)

The loading can be transformed to the wave number domain pZ(β, γ) using the double
integral Fourier transform:

pZ
(
β, γ

)
=
∫∞

−∞

{∫∞

−∞
pZ

(
x,y, z = 0

)
e−iβxdx

}
e−iγydy,

pZ
(
β, γ

)
= −pZ

∫B

−B

{∫A

−A
e−iβxdx

}

e−iγydy
(4.28)

and finallly

pZ
(
β, γ

)
= −4PZ

βγ
sin

(
βA

)
sin

(
γB

)
. (4.29)

Analogously, the tangential loads in the wave number domain may be expressed as

pY
(
β, γ

)
= −4PY

βγ
sin

(
βA

)
sin

(
γB

)
,

pX
(
β, γ

)
= −4PX

βγ
sin

(
βA

)
sin

(
γB

)
.

(4.30)
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Substituting (4.29), (4.30), and (83), respectively into expressions (4.24), (4.25), and
(4.26) results in the displacement solutions for the three boundary value problems in the
transformed wave number domain. The next step is to recover the solution in the original
physical Cartesian domain (x,y, z).

It should be noted that the solutions presented in (4.24), (4.25), and (4.26) for the
displacements of the three boundary value problems in the wave number domain are quite
general, in the sense that any loading function pi(β, γ) (i = x,y, z) may be used as a traction
condition at the interface. If the wave number integral transform of Dirac’s Delta distribution
is used as the loading function, the dynamic stationary Green’s function, the full space
fundamental solution is obtained.

4.6. Displacement Fields in the Original Cartesian Space

Applying a double inverse Fourier integral to (4.24) to (4.26), considering the traction
loadings given in (4.29) to (83), leads to the displacement solutions in the original physical
space (x,y, z).

For the first BVP with normal excitation pZ

UXZ

(
x,y, z

)
= − 1

4π2

∫∫∞

−∞
b
(
β, γ

) z

|z| i
2PZ

γμ∗k∗
S
2

(
e−αL|z| − e−αS|z|

)
dβ dγ,

UYZ

(
x,y, z

)
= − 1

4π2

∫∫∞

−∞
b
(
β, γ

) z

|z| i
2PZ

βμ∗k∗
S
2

(
e−αL|z| − e−αS|z|

)
dβ dγ,

UZZ

(
x,y, z

)
= +

1
4π2

∫∫∞

−∞
b
(
β, γ

) 2PZ

βγαSμ∗k∗
S
2

[
αSαLe

−αL|z| −
(
γ2 + β2

)
e−αS|z|

]
dβ dγ.

(4.31)

For the second BVP with tangential excitation pY

UXY

(
x,y, z

)
= − 1

4π2

∫∫∞

−∞
b
(
β, γ

) 2PY

αLαSμ∗k∗
S
2

(
αSe

−αL|z| − αLe
−αS|z|

)
dβ dγ,

UYY

(
x,y, z

)
= − 1

4π2

∫∫∞

−∞
b
(
β, γ

) 2PY

βγαLαSμ∗k∗
S
2

[
γ2αSe

−αL|z| + αL

(
β2 − α2

S

)
e−αS|z|

]
dβ dγ,

UZY

(
x,y, z

)
= − 1

4π2

∫∫∞

−∞
b
(
β, γ

) z

|z| i
2PY

βμ∗k∗
S
2

(
e−αL|z| − e−αS|z|

)
dβ dγ.

(4.32)
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For the third BVP with tangential excitation pX

UXX

(
x,y, z

)
= − 1

4π2

∫∫∞

−∞
b
(
β, γ

) 2PX

βγαLαSμ∗k∗
S
2

[
β2αSe

−αL|z| + αL

(
γ2 − α2

S

)
e−αS|z|

]
dβ dγ,

UYX

(
x,y, z

)
= − 1

4π2

∫∫∞

−∞
b
(
β, γ

) 2PX

αLαSμ∗k∗
S
2

(
αSe

−αL|z| − αLe
−αS|z|

)
dβ dγ,

UZX

(
x,y, z

)
= − 1

4π2

∫∫∞

−∞
b
(
β, γ

) z

|z| i
2PX

γμ∗k∗
S
2

(
e−αL|z| − e−αS|z|

)
dβ dγ.

(4.33)

In (4.31) to (4.33), the following notation has been adopted:

b
(
β, γ

)
= sin

(
βA

)
sin

(
γB

)
exp

[
i
(
βx + γy

)]
. (4.34)

The improper integrals from (4.31) to (4.33) can be simplified according to the
behavior of their integrands—whether they are odd or even functions. For the first problem
this simplification leads to

UXZ

(
x,y, z

)
=

z

|z|DNPZ

∫∞

0

{∫∞

0
β
(
e−αL|z| − e−αS|z|

)sβsβx
A0kβ

dkβ

}
sγcγy

A0b0kγ
dkγ ,

UYZ

(
x,y, z

)
=

z

|z|DNPZ

∫∞

0

{∫∞

0
γ
(
e−αL|z| − e−αS|z|

)sβcβx
A0kβ

dkβ

}
sγsγy

A0b0
dkγ ,

UZZ

(
x,y, z

)
= DNPZ

∫∞

0

{∫∞

0

αSαLe
−αL|z| − (

β2 + γ2
)
e−αS|z|

αS

sβcβx

A0kβ
dkβ

}
sγcγy

A0b0kγ
dkγ .

(4.35)

For the second BVP with tangential excitation pY

UXY

(
x,y, z

)
= −DNPY

∫∞

0

{∫∞

0
βγ

αSe
−αL|z| − αLe

−αS|z|

αSαL

sβsβx

A0kβ
dkβ

}
sγsγy

A0b0kγ
dkγ ,

UYY

(
x,y, z

)
= −DNPY

∫∞

0

{∫∞

0

γ2αSe
−αL|z| + αL

(
β2 − α2

S

)
e−αS|z|

αSαL

sβcβx

A0kβ
dkβ

}
sγcγy

A0b0kγ
dkγ ,

UZY

(
x,y, z

)
= DNPY

z

|z|
∫∞

0

{∫∞

0
γ
(
e−αL|z| − e−αS|z|

)sβcβx
A0kβ

dkβ

}
sγsγy

A0b0kγ
dkγ .

(4.36)
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For the third BVP with tangential excitation pX

UXX

(
x,y, z

)
= −DNPX

∫∞

0

{∫∞

0

β2αSe
−αL|z| +

(
γ2 − α2

S

)
αLe

−αS|z|

αSαL

sβcβx

A0kβ
dkβ

}
sγcγy

A0b0kγ
dkγ ,

UYX

(
x,y, z

)
= −DNPX

∫∞

0

{∫∞

0
βγ

αSe
−αL|z| − αLe

−αS|z|

αSαL

sβsβx

A0kβ
dkβ

}
sγsγy

A0b0kγ
dkγ ,

UZX

(
x,y, z

)
= DNPX

z

|z|
∫∞

0

{∫∞

0
β
(
e−αL|z| − e−αS|z|

)sβsβx
A0kβ

dkβ

}
sγcγy

A0b0kγ
dkγ .

(4.37)

In (4.35) to (4.37), the following notation is adopted:

DN =
2AB

π2μ∗
(
ηRS + iηIS

)
,

b0 =
B

A
,

β =
A0

A
kβ,

γ =
A0

A
kγ ,

k∗
S
2 =

(
A0

A

)2 1
(
ηRS + iηIS

) ,

k∗
L
2 =

(
A0

A

)2 n2
(
ηRL + iηIL

) ,

sβ = sin
(
A0kβ

)
,

sβx = sin
(
A0kβ

x

A

)
,

sγ = sin
(
A0b0kγ

)
,

sγy = sin
(
A0b0kγ

y

B

)
,

cβ = cos
(
A0kβ

)
,

cβx = cos
(
A0kβ

x

A

)
,

cγ = cos
(
A0b0kγ

)
,

cγy = cos
(
A0b0kγ

y

B

)
.

(4.38)

Equations (4.35) to (4.37) represent the final set of expressions of the displacement field
of a three-dimensional isotropic, viscoelastic full space subjected to transversal and vertical
harmonic loadings uniformly distributed over a rectangular surface 2A × 2B in the plane
x-y (z = 0) of the full space. These expressions must be evaluated numerically.
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5. Concluding Remarks

In the present paper, general expressions for displacement response of a three-dimensional
isotropic viscoelastic full space under stationary dynamic loadingwere obtained. A particular
solution for the case of a rectangular load of constant spatial amplitude applied at the interior
of the full space is given in the transformed wave number domains. Expressions for three
boundary value problems, associated to a normal and two tangential loadings in the original
physical space, are given in terms of a double inverse Fourier integral. These inverse integral
transforms must be evaluated numerically. In the second part of the present paper a strategy
to evaluate these integrals is described, the procedure validated and a number of original
results are reported.
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