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We use Lie symmetry analysis to solve a boundary value problem that arises in chemical
engineering, namely, mass transfer during the contact of a solid slab with an overhead flowing
fluid. This problem was earlier tackled using Adomian decomposition method (Fatoorehchi and
Abolghasemi 2011), leading to the Adomian series form of solution. It turns out that the application
of Lie group analysis yields an elegant form of the solution. After introducing the governing
mathematical model and some preliminaries of Lie symmetry analysis, we compute the Lie point
symmetries admitted by the governing equation and use these to construct the desired solution as
an invariant solution.

1. Introduction

A simplified model for mass transfer phenomenon from a horizontal flat plate fixed along a
laminar fluid flow is considered [1]. Imagine a solid slab placed horizontally on the x-axis
as shown in Figure 1. The free stream velocity is denoted by u∞ (m/s), CA0 is the initial
concentration of molecules of species A (mol/m3), CAi is the concentration of molecules of
species A at the plate interface (mol/m3), δ is the momentum (or hydrodynamic) boundary
layer thickness (m), and δc is the concentration boundary layer thickness (m). Molecules of
species A from the solid slab diffuse along the y-axis only to be swept downstream by the
fluid flow in the hydrodynamic boundary layer. Subject to a number of assumptions (given
in [1]), mass balance for species A over an infinitesimal element based on the Cartesian
coordinates leads to the PDE

√
xCyy = αyCx, (1.1)
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Figure 1:Molecules of species A from the solid slab diffuse along the y-axis only to be swept downstream
by fluid flow in the hydrodynamic boundary layer.

for the concentration C of molecules of species A, with the associated boundary conditions

BC1 : C
(
x, y

)
= CA0 when y = δ(x)

BC2 : C(x, 0) = CAi,
(1.2)

where δ(x) =
√
x/β, and α and β are constants. Precisely

α =
3u1.5∞

9.28Dv0.5
, β =

2D
3u∞

α, (1.3)

where D is the diffusion coefficient (m2/s) and v is the kinematic viscosity (m2/s). The rest
of the paper is organised as follows. In Section 2 we present preliminaries of Lie symmetry
analysis. Section 3 is the thrust of the paper. In this sectionwe determine Lie point symmetries
admitted by the governing PDE and subsequently the basis generator of the one-dimensional
Lie symmetry algebra admitted by the boundary value problem (BVP). We then construct the
solution to the BVP as an invariant solution. We give concluding remarks in Section 4.

2. Lie Symmetry Analysis of Differential Equations

There are many good introductions to Lie symmetry analysis of differential equations [2–6].
We will however indulge in a little introduction of the subject for completeness and to whet
the appetite of the readers who could be new to the subject. Consider a scalar PDE of order k,

F
(
x, u, u(1), u(2), . . . , u(k)

)
= 0, (2.1)

with n independent variables, x = (x1, x2, . . . , xn), and one dependent variable u, where
u(j) represents all the jth order partial derivatives of u with respect to x. An element of
the set represented by u(j) is denoted by ui1i2,...,ij = ∂u/∂xi1∂xi2 , . . . , ∂xij , ij = 1, 2, . . . , n for
j = 1, 2, . . . , k. We want to define invariance of (2.1) under a one-parameter Lie group of
transformations in the parameter ε

x̃i = Xi(x, u; ε) = εξi(x, u) +O
(
ε2
)
,

ũ = U(x, u; ε) = εη(x, u) +O
(
ε2
)
,

(2.2)
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i = 1, 2, . . . , n, acting on the (x, u)-space. The group (2.2) has as its infinitesimal generator

X = ξi(x, u)∂xi + η(x, u)∂u, (2.3)

where

ξi(x, u) =
∂Xi

∂ε
(x, u; ε)

∣
∣
∣
∣
ε=0
, i = 1, 2, . . . , n,

η(x, u) =
∂Ui

∂ε
(x, u; ε)

∣
∣
∣
∣
ε=0
,

(2.4)

and the kth extension given by

x̃i = Xi(x, u; ε) = εξi(x, u) +O
(
ε2
)
,

ũ = U(x, u; ε) = εη(x, u) +O
(
ε2
)

...

ũi1i2···ik = Ui1i2···ik
(
x, u, u(1), u(2), . . . , u(k); ε

)

= ui1i2···ik + εη
(k)
i1i2···ik

(
x, u, u(1), u(2), . . . , u(k)

)
+O

(
ε2
)
,

(2.5)

where i = 1, 2, . . . , n and ij = 1, 2, . . . , n for j = 1, 2, . . . , k. The kth extension of the group (2.2)
is generated by the following (kth extended) infinitesimal generator:

X(k) = ξi(x, u)∂xi + η(x, u)∂u + η
(1)
i

(
x, u, u(1)

)
∂ui + · · · + η(k)i1i2···ik∂i1i2···ik , (2.6)

with the explicit formulas for the extended infinitesimals given recursively by

η
(1)
i = Diη − (

Diξj
)
uj, i = 1, 2, . . . , n,

η
(k)
i1i2···ik−1 = Dikη

(k−1)
i1i2···ik −

(
Dikξj

)
ui1i2...ik−1j ,

(2.7)

ij = 1, 2, . . . , n for j = 1, 2, . . . , k with k ≥ 2, where Di is the total derivative operator defined
by

Di =
D

Dxi
=

∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · · + uii1i2···in

∂

∂ui1i2···in
+ · · · , (2.8)

with summation over a repeated index.
We say that (2.1) admits (or is invariant under) the Lie group of point transformations

(2.2) if (2.1) has the same form in the new variables x̃ = (x̃1, x̃2, . . . , x̃n) and ũ, that is,

F
(
x̃, ũ, ũ(1), ũ(2), . . . , ũ(k)

)
= 0. (2.9)



4 Mathematical Problems in Engineering

When this is the case we sometimes (loosely) simply say that X (the infinitesimal generator
defined in (2.3)) is a symmetry of (2.1). Invariance of a differential equation under a given
Lie group of transformations is neatly characterised by the infinitesimal criterion. Equation
(2.1) is invariant under the Lie group of transformations (2.2) if and only if

X(k)F
(
x, u, u(1), u(2), . . . , u(k)

)
= 0 when F

(
x, u, u(1), u(2), . . . , u(k)

)
= 0. (2.10)

The infinitesimal criterion (2.10) provides a key to the explicit determination of symmetry
groups admitted by differential equations. Using a straightforward algorithm based on (2.10)
one obtains infinitesimals of the Lie group of point transformations that leaves a given
differential equation invariant. The tedious algebraic calculations involved in this process
are today done easily, often automatically, thanks to powerful Computer Algebra Systems
(CAS) like Maple and Mathematica, Maxima and Reduce, and the many specific packages
for performing symmetry analysis of differential equations [7–13].

An admissible Lie group characterises symmetry properties of a differential equation
and is used for, among other things, complete integration (in the case of ODEs) or con-
struction of special exact solutions of the differential equation (see, e.g., [14–17]). For
boundary (initial) value problems (BIVPs) there is a principle, the invariance principle, which
states that if a BIVP is invariant under a given group, then one should seek the solution to
the problem among the functions invariant under the admitted group. To state this principle
concretely consider a BIVP

F
(
x, u, u(1), u(2), . . . , u(k)

)
= 0, (2.11)

u|s = h(x), (2.12)

where s is a given manifold. Suppose that (2.11) admitsm one-parameter symmetries

Xi = ξj(x, u)∂xj + η(x, u)∂u, i = 1, . . . , m. (2.13)

We say that (2.11)-(2.12) is invariant under a symmetry

X =
m∑

i=1

εiXi, (2.14)

for some constants εi, provided that

(i) the manifold s is invariant under X;

(ii) the boundary (initial) condition u|s = h(x) is invariant under X restricted to s.

We now state the invariance principle [15, 18]: if the BIVP (2.11)-(2.12) admits one-
parameter symmetries Xμ, one should seek the solution of the problem among the functions
invariant underXμ. Successful application of the invariance principle to solve BIVPs has been
reported in a number of papers (see, e.g., [17, 19–21]).
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3. Solution of the BVP (1.1)-(1.2)

Using LIE [8, 13] we obtain that (1.1) admits an infinite dimensional Lie symmetry algebra
spanned by the following operators:

X1 =
(

1√
x

)
∂x, X2 = y∂y + 2x∂x,

X3 = ∂C, X4 = yx3/2∂y + x5/2∂x − C
(
αy3

4
+ x3/2

)

∂C,

(3.1)

Xφ = φ
(
x, y

)
∂C, (3.2)

where φ(x, y) is an arbitrary solution of (1.1).
In the light of the invariance principle, the starting point in the “search” for the

solution of (1.1)-(1.2) is the determination of the subalgebra of the Lie algebra spanned by
the symmetries in (3.1) that leaves the boundary conditions (1.2) invariant. To do this we
construct a special linear combination,

X =
4∑

i=1

εiXi, (3.3)

of the symmetries in (3.1), with the constants εi’s suitably chosen so that the boundary
conditions (1.2) are invariant under (3.3), that is, we require that

X(C − CA0) = 0 when y = δ(x),

X(C − CAi) = 0 when y = 0.
(3.4)

From (3.4) we obtain that

ε3 − ε4
(
1 +

α

4β3

)
x3/2 = 0, (3.5)

from which it follows that ε3 = ε4 = 0. Therefore (3.3) reduces to

Γ =
(
2x +

κ√
x

)
∂x + y∂y, (3.6)

the general form of the symmetry admitted by both the PDE (1.1) and the boundary
conditions (1.2), where κ is an arbitrary constant. We can now assume the existence of an
invariant solution C = φ(x, y) of the BVP (1.1)-(1.2), the form of which is determined by
functions invariant under the group generated by (3.6). The characteristic equations of (3.6),

dx
2x + κ/

√
x
=

dy
y

=
dC
0
, (3.7)
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yield the integrals

J1 =
y3

2x3/2 + κ
,

J2 = C,

(3.8)

from the first and second equations, respectively. These integrals are the similarity variables
of the BVP and the invariant solution is expressed in terms of them in the form

J2 = φ(J1), (3.9)

or

C
(
x, y

)
= φ

(
y3

2x3/2 + κ

)

, (3.10)

where φ is an arbitrary function. Upon substituting (3.10) into (1.1) we obtain the following
second-order linear ODE:

3zφ′′(z) + (2 + αz)φ′(z) = 0. (3.11)

The solution of (3.11) is

φ(z) = K1 +K2Γ
(
1
3
,
αz

3

)
, (3.12)

where K1 and K2 are arbitrary constants and Γ(a, z) is the incomplete gamma function
defined by

Γ(a, z) =
∫∞

z

ta−1e−tdt. (3.13)

Wenowhave that all invariant solutions of (1.1) arising from (3.6) are embedded in the family
of solutions (3.10). The values of K1 and K2 in (3.12) are determined from the boundary
conditions (1.2):

C
(
x, y

)|y=δ(x) = CA0 =⇒ K1 +K2Γ
(
1
3
, ϕ(x)

)
= CA0,

C(x, 0) = CAi =⇒ K1 +K2Γ
(
1
3

)
= CAi,

(3.14)

where

ϕ(x) =
αx3/2

3β3
(
2x3/2 + κ

) , Γ(z) =
∫∞

0
tz−1e−tdt. (3.15)
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We now solve the equations (3.14) simultaneously for K1 and K2. We obtain that K1 and K2

are constants only if we set

κ = 0, (3.16)

in which case

K1 =
CA0Γ(1/3) − CAi Γ

(
1/3, α/6β3

)

Γ(1/3) − Γ
(
1/3, α/6β3

) ,

K2 =
CA0 − CAi

Γ
(
1/3, α/6β3

) − Γ(1/3)
.

(3.17)

Finally from (3.10), (3.12), and (3.17) we have that the BVP (1.1)-(1.2) is solved by

C
(
x, y

)
=
CA0Γ(1/3) + (CAi − CA0) Γ

(
1/3, αy3/6x3/2) − CAi Γ

(
1/3, α/6 β3

)

Γ(1/3) − Γ
(
1/3, α/6 β3

) . (3.18)

4. Concluding Remarks

When a PDE is richly endowed with Lie point symmetries (i.e., when the PDE admits the
Lie symmetry algebras sl(2,R)

⊕
sA1 or sl(2,R)

⊕
sW , whereW is the Heisenberg-Weyl [19])

the symmetry analysis approach usually provides a neat solution (when it exists) to the
associated BIVP. Algorithms for obtaining admitted Lie point symmetries and for using
the symmetries to construct invariant solutions are well developed and quite routine. It
is instructive to compare the solution obtained in this paper, (3.18), with the series-form
solution obtained by Fatoorehchi and Abolghasemi [1] via Adomian decomposition:

C
(
x, y

) − CAi

CA0 − CAi
= λβ

(

w0yx
−0.5 − α

24
w1y

4x−2 +
α2

504
w2y

7x−3.5 − α3

12960
w3y

10x−5

+
α4

404352
w1y

13x−6.5 − α5

14929920
w5y

16x−8 + · · ·
)

,

(4.1)

wherewi’s and λ are “suitable” constants. As reported in [1] one can also solve (1.1)-(1.2) by
the combination of variables method, the starting point of which is the assumption that

C
(
x, y

)
= ψ

(
ynxm

)
(4.2)
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for suitable numbers m and n and some function ψ. This approach also leads to the exact
solution

C
(
x, y

) − CAi

CA0 − CAi
=

3
√
α/3

Γ(4/3)

(

yx−0.5 − αy4x−2

3 × 4
+
α2y7x−3.5

9 × 2! × 7
− α3y10x−5

27 × 3! × 10

+
α4y13x−6.5

81 × 4! × 13
− α5y16x−8

243 × 5! × 16
+ · · ·

)

.

(4.3)

We remark here that Fatoorehchi and Abolghasemi [1] only determine the constantswi’s and
λ by comparing (4.1) with the exact solution (4.3). These constants are determined to be

λ =
4.64/ 3

√
9.28

Γ(4/3)Sc1/3
, wi = 2i, (4.4)

where Sc is the Schmidt number.
Finally, it is noteworthy that in the combination of variables approach to the solution

of (1.1)-(1.2) it turns out thatm = −1/2 and n = 1 [1]. This makes (3.10) and (4.2) equivalent
in the light of (3.16).
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