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With the global climate change, drought disasters occur frequently. Drought prediction is an
important content for drought disaster management, planning and management of water resource
systems of a river basin. In this study, a short-term drought prediction model based on deep
belief networks (DBNs) is proposed to predict the time series of different time-scale standardized
precipitation index (SPI). The DBN model is applied to predict the drought time series in the
Huaihe River Basin, China. Comparedwith BP neural network, the DBN-based drought prediction
model has shown better predictive skills than the BP neural network for the different time-scale
SPI. This research can improve drought prediction technology and be helpful for water resources
managers and decision makers in managing drought disasters.

1. Introduction

With the global environmental degradation and water resource shortages, droughts are
becoming increasingly eye catching and have aroused the attention of many countries
and regions. Drought is considered the most complex but least understood of all natural
hazards, affecting more people than any other disasters [1]. In recent years, drought disasters
continuously happened and caused serious impact on production and life in China. The
losses caused by drought ranked the first in all natural hazards in China [2]. For example,
in the extreme drought in Southwest China during 2009 to 2010, five provinces and cities
suffered droughts which have seriously threatened people’s life and economic production
activities. The Chinese northern region also suffered severe drought in 2011. Long and
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severe droughts have direct impacts on industrial production, people’s lives, and ecological
environment and even lead to desertification and other natural disasters. Droughts have
become serious constraints to the sustainable development of Chinese society and economy
[3, 4]. Drought prediction is an important content in the planning and management of
water resource systems of a river basin. How to effectively monitor and forecast droughts
has become the research focus, which can help to take effective strategies and measures to
mitigate the damages of droughts.

There are some forecasting methods used in drought prediction fields. Lohani and
Loganathan used a nonhomogeneous Markov chain model to characterize the stochastic
behavior of drought, and an early-warning system in the form of a decision tree enumerating
is proposed for drought management [5]. Jia et al. established a grey-time series combined
method (GTCM) to predict annual precipitation of Huangcun Meteorological Observation,
Daxing county, Beijing [6]. Yang et al. proposed a chaotic Bayesian method based on
multiple criteria decision making to forecast nonlinear hydrological time series, which
can be applied in drought forecast [7]. The predictability of drought severity from
spatiotemporal varying indices of large-scale climate phenomena was studied by integrating
linear and nonlinear statistical data models, and the model was used for the Murray-
Darling Basin (MDB) in Australia [8]. Meteorological droughts were characterized using
the standardized precipitation index (SPI) developed by McKee et al. [9]. Drought classes
based on standardized precipitation index (SPI) values were derived by Markov chain
model in Alentejo, Southern Portugal [10]. Peng et al. used weighted Markov chain to
predict the future drought index, weighted by the standardized self-coefficients. The drought
indexes of Nanjing city from 1959 to 2004 were a specific application with this method
and satisfactory results were obtained [11]. SPI is calculated from monthly precipitation
data collected from 36 weather stations in Guanzhong plain and Weibei tablelands, and the
Markov chain model with weights was applied to predict SPI drought intensity by using
standardized self-coefficients as weights [12]. The vegetation temperature condition index
(VTCI) based on remote sensing data is used for drought monitoring. The ARIMA models
were developed to simulate the VTCI series and be used in Guanzhong Plain in China [13].
The loglinear modeling for three-dimensional contingency tables was used for short-term
prediction of drought severity classes. The results show that three-dimensional loglinear
modeling of monthly drought class transitions is able to capture the trends for both drought
initiation, establishment, and drought dissipation [14]. Mishra and Desai compared linear
stochastic model (ARIMA/SARIMA), recursive multistep neural network (RMSNN), and
direct multisteps neural network (DMSNN) for drought forecasting by using standardized
precipitation index (SPI) series as drought index in the Kansabati River Basin in India
[15]. Traditionally, forecasting research and practice has been dominated by conventional
statistical methods. Recently, the study of long range or long memory has received many
attentions in forecasting. Hurst developed a test for long-range dependence and found
significant long-term correlations among fluctuations in the Nile’s outflows and described
these correlations in terms of power laws [16]. Mathematical models with long-range
dependence were first introduced to statistics by Mandelbrot and his workers [17–19]. Long-
range dependence is often encountered in practice, not only in hydrology, geophysics, and
finance, but also in all fields of statistical applications [20–24]. Pelletier and Turcotte present
power spectra of time-series data for tree ring width chronologies, atmospheric temperatures,
river discharges, and precipitation averaged over hundreds of stations worldwide. They
thought that long-range persistence can have a dramatic effect on the likelihood of severe
hydrologic drought and computed recurrence intervals for droughts of different magnitudes,
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durations, and coefficients of variation [25]. Radziejewski and Kundzewicz computed fractal
dimensions of crossings of Warta flows by using a novel variant of the box-counting method,
and spectral properties are compared between the time series of flows [26]. Li et al. computed
long-range dependence (LRD) of sea level and thought that sea level is multiscaled and heavy
tailed [27].

Recently, deep belief networks (DBNs) are proposed by Hinton. The DBN is a
probabilistic generative model, the bottom layer is observable, and the multiple hidden
layers are created by stacking multiple restricted Boltzmann machines (RBMs) on top of
each other [28]. Hinton et al. derived a way to perform fast, greedy learning of deep
belief networks (DBN) one layer at a time, with the top two layers forming an undirected
bipartite graph [29]. DBNs and restricted Boltzmann machines (RBMs) have already been
applied successfully to solve many problems [30]. Lee et al. present a convolutional
deep belief networks and are used to scale the realistic image sizes [31]. A novel text
classification approach based on deep belief networks is proposed, and the proposed method
outperforms traditional classifier based on support vector machine [32]. Zhou et al. present
a discriminative deep belief networks (DDBNs) to address the image classification problem
with limited labeled data. Experiments on the artificial dataset and real image datasets show
that DDBN outperforms most semisupervised algorithms [33]. Chao et al. proposed a deep
belief network (DBN) to forecast the foreign exchange rate. In their experiments, both British
pound/US dollar and Indian rupee/US dollar exchange rates are forecasted, and the results
show that deep belief networks (DBNs) achieve better performance than feed-forward neural
networks [34]. Deep learning techniques have also been shown to perform significantly better
than other techniques for problems such as image classification and handwriting analysis
[31].

In this paper, we propose a deep belief network (DBN) for short-term prediction of
drought index. The aims of this study are to present and evaluate the performance of DBN
model as a drought prediction method. This model was applied to forecast drought index
using standardized precipitation index (SPI) series in the Huaihe River Basin, China. The
results are compared and analyzed with BP neural network for demonstration of the validity
of the DBN model. The remainder of the paper is organized as follows. In Section 2, the
standardized precipitation index (SPI) and BP neural network are introduced, and the deep
belief networks (DBN) model for drought index prediction is proposed. In Section 3, a case
is studied, and discussions are arranged. Finally in Section 4, the main conclusions and a
discussion for future work are given.

2. Methodology

2.1. Standardized Precipitation Index (SPI)

The SPI was formulated by Mckee et al. of the Colorado Climate Center in 1993. The purpose
is to assign a single numeric value to the precipitation which can be compared across regions
with markedly different climates [11]. The SPI is an index based on the probability of
precipitation for any time scale. Technically, the SPI is the number of standard deviations
that the observed value would deviate from the long-term mean, for a normally distributed
random variable. The SPI can be computed for different time scales and can provide early
warning of drought and help assess drought severity. The SPI is a probability index that
considers only precipitation, while Palmer’s indices are water balance indices that consider
water supply (precipitation), demand (evapotranspiration), and loss (runoff). So, SPI is less
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complex than PDSI [35]. Now, the standardized precipitation index (SPI) is widely accepted
and used throughout the world [36]. The computing procedure of the SPI value is as follows
[37, 38].

Assuming that a precipitation series of some time scale is x, then its probability density
function of Γ distribution is expressed as

f(x) =
1

βγΓ
(
γ
)xγ−1e−x/β, x > 0, (2.1)

where Γ(γ) is a gamma function and Γ(γ) =
∫∞
0 xγ−1e−xdx. β and γ are the shape parameter

and the scale parameter, respectively, and β > 0, γ > 0. The precipitation value x > 0.
The shape and scale parameters can be estimated by the maximum likelihood method

as follows:

γ̂ =
1 +
√
1 + 4A/3
4A

,

β̂ =
x

γ̂
,

(2.2)

where A = ln(x) − (1/n)
∑n

i=1 lnxi, n stands for the number of precipitation observations, xi

are the samples of the precipitation data, and x is the mean of these samples.
The gamma distribution is not defined for x = 0; however, the actual precipitation

can be 0. Therefore, cumulative probability of precipitation for a certain time scale can be
calculated using the following formula [38, 39]:

H(x) = u + (1 − u)F(x), (2.3)

where F(x) = (1/Γ(γ̂))
∫x
0 tγ̂−1e−tdt and t = x/β̂. u is the probability of zero precipitation and

can be calculated as m/n. m is the total number of precipitation series, and n is the number
of zeros in the precipitation series.

The cumulative probability,H(x), is then transformed to the standard normal random
variable with mean as zero and variance as one. Following Edwards and Mckee [40] and
Hughes and Saunders [41], SPI can be obtained as follows:

SPI =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
(

t − c0 + c1t + c2t
2

1 + d1t + d2t2 + d3t3

)

for 0 < H(x) ≤ 0.5,

t − c0 + c1t + c2t
2

1 + d1t + d2t2 + d3t3
for 0.5 < H(x) < 1,

(2.4)
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Figure 1: The structure of BP neural network.

where

t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√

ln
(

1
(H2(x))

)
for 0 < H(x) ≤ 0.5,

√√√
√ln

(
1

(1 −H(x))2

)

for 0.5 < H(x) < 1.

(2.5)

In (2.4), the ci and di are parameters during the computing process and c0 = 2.515517,
c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.

According to SPI, drought can be classified. When the value of SPI is continuously
negative, a drought event occurs. The event ends when the SPI becomes positive.

2.2. Backpropagation Neural Network (BPNN)

The BP neural network is a kind of multilayer feed-forward networks with training by error
backpropagation algorithm [42]. It is a kind of supervised learning neural network, the
principle behind which involves using the steepest gradient descent method to reach any
small approximation. A general model of the BP neural network has a structure as described
in Figure 1.

In Figure 1, there are three layers contained in BP: input layer, hidden layer, and output
layer. Two nodes of each adjacent layer are directly connected, which is called a link. Each link
has a weighted value presenting the relational degree between two nodes. The algorithm of
BP neural network is to input the training samples from the input layer and then obtain
the calculation output through the operation of corresponding thresholds, functions, and
connection weights between nodes [42, 43]. The node function has usually selected S-type
function as follows:

f(x) =
1

1 + e−x/Q
. (2.6)

The Q in the equation is a Sigmoid parameter which is the form of adjusted activation
function, and the specific algorithm is introduced in [44]. The output error is obtained by
the comparison between the calculation output and the sample output. If the error does not
meet the requirements, the network weights and thresholds usually are adjusted along the
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Figure 2: A DBN structure with L hidden layers.
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Figure 3: A RBM structure.

negative gradient direction of network error and finally reach the minimum network error
[45]. The number of hidden layer nodes is firstly determined by employing an empirical
formula in the design stage and finally adjusted by comparing the efficiencies of different
numbers of hidden layer nodes in neural network training stage [46].

2.3. Deep Belief Networks

A deep belief network (DBN) is a generative model with an input layer and an output layer,
separated by many layers of hidden stochastic units. The multilayer neural network can
efficiently be trained by composing RBMs using the feature activations of one layer as the
training data for the next. Figure 2 shows an example of a DBN structure [28].

Usually a DBN consists of two kinds of different layers. They are visible layer and
hidden layer. Visible layers contain input nodes and output nodes, and hidden layers contain
hidden nodes. Hinton et al. proposed a greedy layerwise unsupervised learning algorithm
for DBNs which is based on sequence training with restricted Boltzmann machines (RBMs)
[28, 34]. A restricted Boltzmann machine (RBM) is composed of two different layers of units,
with weighted connection between them. It consists of one layer of visible nodes (neurons)
and one layer of hidden units. Figure 3 shows an RBM structure. Nodes in each layer have no
connections between them and are connected to all other units in another layer. Connections
between nodes are bidirectional and symmetric. Restricted Boltzmann machines (RBMs)
have been used as generative models of many different types of data including labeled or
unlabeled images windows of mel-cepstral coefficients that represent speech, and so on.
Their most important use is as learning modules that are composed to form deep belief nets
[28].
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Let vi and hj represent the states of visible node i and hidden node j, respectively.
For binary state nodes, that is, vi and hj ∈ {0, 1}, the state of hj is set to 1 with probabilities
[47]:

phj = p
(
hj = 1 | ν) = σ

(

bj +
∑

i

wijνi

)

, (2.7)

where σ(x) is the logistic sigmoid function 1/(1 + exp(−x)), bj is the bias of j, and νi is the
binary state.wij is the weight between νi and hj . After binary states have been chosen for the
hidden units, then set the state of νi to be 1 with probability

pνi = p(νi = 1 | h) = σ

⎛

⎝bi +
∑

j

wijhj

⎞

⎠. (2.8)

The training process of the RBM is described as follows. Firstly, a training sample is
presented to the visible nodes, and the {νi} is obtained. Then the hidden nodes state that {hj}
are sampled according to probabilities in (2.7). This process is repeated once more to update
the visible and then the hidden nodes, and the one-step “reconstructed” states ν′i and h′

j are
obtained. The update in a weight is given as follows:

Δwij = η
(〈

νihj

〉 −
〈
ν′ih

′
j

〉)
, (2.9)

where η is the learning rate, and 〈·〉 refers to the expectation of the training data.
A continuous restricted Boltzmann machine (CRBM) is considered by Chao et al. [34]

and Chen and Murray [48]. Suppose the inputs nodes with state {si}, then the output nodes
sj can be computed as follows:

sj = ϕj

(
∑

i

wijsi + σ ·Nj(0, 1)

)

, (2.10)

where ϕj(x) is a sigmoid function with lower and upper asymptotes at θL and θH , ϕj(xj) =
θL+(θH−θL)·(1/(1+e−ajxj )).Nj(0, 1) represents a unit Gaussian. σ is a constant, and parameter
aj is a “noise-control” parameter which controls the slope of the sigmoid function [49]. The
update equations for wij and aj are

Δwij = ηw
(〈

sisj
〉 −
〈
s′is

′
j

〉)
,

Δaj =
ηa

a2
j

(〈
s2j

〉
−
〈
s′2j
〉)

,
(2.11)

where ηw and ηa represent the learning rates, s′j denotes the one-step sampled state of node
j, and 〈·〉 refers to the expectation of the training data. We train sequentially as many RBMs
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as the number of hidden layers in the DBN to construct a DBNmodel. We adopt the learning
algorithm according to [28, 34, 50]. The method of stacking CRBMs makes it possible to
train many layers of hidden units efficiently and is one of the most common deep learning
strategies. As each new layer is added, the overall generative model gets better. This process
of learning is continued until a prescribed number of hidden layers in the DBN have been
trained. In order to apply DBNmodel to drought prediction using SPI series, the DBNmodel
with two hidden layers is selected in this paper. Themain steps using DBNmodel for drought
index prediction are as follows.

Step 1. Compute the different time-scale SPI series by precipitation data.
The different time-scale SPI series are computed by precipitation data by the

description method in Section 2.1, and different time-scale SPI series are obtained.

Step 2. Normalize the SPI series by formula (2.12) as follows:

SPI′ =
SPI − SPImin

SPImax − SPImin
, (2.12)

where SPI′ and SPI represent the normalized and original SPI data, respectively. The SPImin

represents the minimum value of the corresponding SPI series, and SPImax represents the
maximum value of the corresponding SPI series.

Step 3. Determine the optimal network structure by experiments.
Determine the number of input nodes, the numbers of the first hidden and second

hidden nodes, and weight coefficients by learning algorithm. The data of SPI series are split
into two parts. The first part is used as a training sample, and the rest is used as a testing
sample. During the training process, the network structures for different time-scale SPI series
are determined according to the criterion of smallest RMSE and MAE.

Step 4. Forecast drought index based on DBN model and results analysis.

3. Case Study

3.1. Experimental Design

We use four data sets of precipitation in the experiments. Four hydrologic stations were
considered in this study. They are Bengbu, Fuyang, Xuchang, and Zhumadian in Huaihe
River Basin which is located in the eastern part of China. Data sets contain monthly
precipitation during 1958–2006. These data are used to calculate four different time scales
of standardized precipitation index (SPI), that is, SPI3, SPI6, SPI9, and SPI12. Taking the
SPI3 as an example, all of the SPI sets are divided into two parts. The observations during
1958–1999 are as training set, and the remaining observations during 2000–2006 are as testing
set.

Our purpose of this research is to explore if the DBNmodel can be usedwell in drought
prediction by using the monthly rainfall data of four hydrologic stations from January 1958
to 2006 to calculate different time scales of SPI in Huaihe River Basin.
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Table 1: The CRBM results of Bengbu SPI3.

Number
of input
nodes

Number
of hidden
nodes

RMSE MAE
Number
of input
nodes

Number
of hidden
nodes

RMSE MAE

2

5 0.1270 0.0980

7

5 0.1107 0.0869

10 0.1276 0.0983 10 0.1114 0.0877

15 0.1306 0.1002 15 0.1113 0.0878

20 0.1276 0.0983 20 0.1113 0.0877

25 0.1274 0.0982 25 0.1123 0.0885

3

5 0.1270 0.0987

8

5 0.1113 0.0865

10 0.1293 0.1000 10 0.1120 0.0871

15 0.1272 0.0988 15 0.1115 0.0866

20 0.1274 0.0989 20 0.1117 0.0869

25 0.1273 0.0988 25 0.1097 0.0864

4

5 0.1292 0.0993

9

5 0.1105 0.0863

10 0.1291 0.0990 10 0.1117 0.0876

15 0.1283 0.0988 15 0.1119 0.0876

20 0.1301 0.0995 20 0.1120 0.0876

25 0.1286 0.0992 25 0.1181 0.0945

5

5 0.1225 0.0929

10

5 0.1112 0.0874

10 0.1230 0.0927 10 0.1116 0.0875

15 0.1235 0.0931 15 0.1123 0.0884

20 0.1232 0.0928 20 0.1115 0.0885

25 0.1248 0.0939 25 0.1121 0.0886

6

5 0.1235 0.0931

10 0.1239 0.0930

15 0.1236 0.0934

20 0.1235 0.0930

25 0.1244 0.0942

In this paper, we use two criteria to evaluate the performance of a DBN in drought
forecasting. They are root mean square error (RMSE) and mean absolute error (MAE). The
formulas of this two predictive accuracy measures are listed as follows:

RMSE =

√√
√∑T

i=1
(
yi − y′

i

)2

T
,

MAE =
∑T

i=1

∣∣yi − y′
i

∣∣

T
,

(3.1)

where yi is the observations of SPI, y′
i is the predicted SPI values, and T is the total number

of predictions.
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Table 2: The DBN results of Bengbu SPI3.

Number
of input
nodes

Number
of first
hidden
nodes

Number
of second
hidden
nodes

RMSE MAE
Number
of input
nodes

Number
of first
hidden
nodes

Number
of second
hidden
nodes

RMSE MAE

5 0.6924 0.5497 5 0.6905 0.5510
10 0.6911 0.5567 10 0.6842 0.5425

5 15 0.7103 0.5787 5 15 0.6858 0.5473
20 0.7006 0.5712 20 0.7138 0.5860
25 0.8051 0.6858 25 0.7068 0.5769
5 0.7048 0.5702 5 0.6881 0.5472
10 0.6911 0.5506 10 0.6899 0.5479

10 15 0.6962 0.5616 10 15 0.6954 0.5548
20 0.7147 0.5874 20 0.7090 0.5775
25 0.7749 0.6606 25 0.7032 0.5805
5 0.6852 0.5453 5 0.6930 0.5545
10 0.6926 0.5596 10 0.7165 0.5887

8 15 15 0.6969 0.5636 9 15 15 0.7300 0.6106
20 0.7265 0.6113 20 0.7218 0.6070
25 0.7316 0.6236 25 0.7488 0.6375
5 0.7224 0.6001 5 0.6915 0.5516
10 0.6923 0.5525 10 0.6962 0.5592

20 15 0.7152 0.5940 20 15 0.7407 0.6245
20 0.6955 0.5560 20 0.7140 0.5885
25 0.7794 0.6679 25 0.7309 0.6136
5 0.6935 0.5570 5 0.6919 0.5563
10 0.6877 0.5496 10 0.7013 0.5637

25 15 0.7037 0.5761 25 15 0.6949 0.5617
20 0.7470 0.6322 20 0.7669 0.6566
25 0.7174 0.5868 25 0.7214 0.6104

We use the learning sample to find an optimal network structure for these four
different time-scales SPI. Taking the SPI3 of Bengbu data as an example, we explain how to
determine an optimal network structure. In our experiment, the DBN has two hidden layers.
The key for our experiment is to determine the numbers of input and hidden nodes. We
determine the optimal number of input nodes and two hidden layer nodes by experiments.
On one hand, neural networks with too few hidden nodes may not have enough power
to model the data. On the other hand, neural networks with too many hidden nodes may
lead to overfitting problems and finally result in poor forecasting performance [30]. In our
experiment, the number of input nodes and hidden nodes of the DBN network structures
is selected by experimentation. The number of input nodes ranges from 2 to 10. Because the
forecasting performance of neural networks is not as sensitive to the number of hidden nodes
as to the number of input nodes, so the number of hidden nodes is selected by five levels, that
is, 5, 10, 15, 20, and 25. We did the experiment for 45 times to find the optimal structure of
DBN.We compared the RMSE andMAE, andwe determined the number of every layer node.
The results are shown in Table 1.
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Table 3: The optimal network structures of DBN.

SPI series Station Number of
input nodes

Number of first
hidden nodes

Number of second
hidden nodes

SPI3

Bengbu 9 5 10
Fuyang 8 20 15
Xuchang 8 20 15

Zhumadian 8 20 15

SPI6

Bengbu 10 5 10
Fuyang 7 5 5
Xuchang 7 5 5

Zhumadian 8 5 5

SPI9

Bengbu 10 5 5
Fuyang 7 5 5
Xuchang 6 5 5

Zhumadian 10 5 15

SPI12

Bengbu 8 5 5
Fuyang 10 5 5
Xuchang 9 5 5

Zhumadian 10 5 5

In Table 1, we find when the CRBM structure is 8-25, the RMSE is the smallest, and
when the CRBM structure is 9-5, the MAE is the smallest. We can find that the most optimal
structure is most likely to appear when the number of input nodes is 8 or 9. Then we do the
next step. The results of the next step have just been shown in Table 2. We can find that the
best DBN structure is 9-5-10-1. That is, the DBN has 9 input nodes, 5 nodes in the first hidden
layer, 10 nodes in the second hidden layer, and 1 output node, and the RMSE and MAE are
the smallest of all.

According to above processes, we can determine the optimal structures of DBN for the
four stations and different time-scale SPI series. We try nine levels of input nodes from 2 to 10
in combination with five hidden nodes (5, 10, 15, 20, and 25) for CRBM training. We can find
the optimal network structure in a similar way for all of the SPI series. The optimal network
structures of DBN for the different four stations and different time-scale SPI series are shown
in Table 3.

3.2. Results and Discussion

In this paper, the DBN and BP neural network model are used for forecasting the different
time-scale SPI series, and the results of their prediction are compared. The quantitative
performance evaluations of DBN and BP neural network are carried out by using RMSE and
MAE. The results are shown in Table 4.

We can find that the prediction errors of the DBN are smaller than the prediction
errors of BP neural network in Table 4. The errors results demonstrate that DBN model
is suitable for the drought prediction in the Huaihe River Basin. DBN model can obtain
smaller RMSE and MAE compared with BP neural network. With the change of the time
scale of SPI from little to large, the RMSE and MAE become smaller. That is, the fitting
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Table 4: The comparison of RMSE and MAE between BP and DBN.

Station Model Errors SPI3 SPI6 SPI9 SPI12

Bengbu

DBN RMSE 0.6842 0.6592 0.5355 0.4797

MAE 0.5425 0.5274 0.3959 0.3553

BP neural
network

RMSE 0.9897 0.6987 0.5899 0.5809

MAE 0.7564 0.5523 0.4157 0.4532

Fuyang

DBN RMSE 0.8112 0.6634 0.5590 0.5620

MAE 0.6527 0.4812 0.3923 0.4282

BP neural
network

RMSE 1.0876 0.8022 0.8032 0.5773

MAE 0.8202 0.5867 0.5509 0.4080

Xuchang

DBN RMSE 0.7258 0.5764 0.5262 0.4236

MAE 0.5714 0.4342 0.3880 0.2976

BP neural
network

RMSE 0.8223 0.6938 0.6783 0.4454

MAE 0.6786 0.5411 0.4725 0.3268

Zhumadian

DBN RMSE 0.7794 0.6239 0.5686 0.4990

MAE 0.6276 0.4792 0.3811 0.3504

BP neural
network

RMSE 1.0780 0.7956 0.7996 0.4474

MAE 0.8147 0.6336 0.5365 0.3144

results of SPI12 are better than SPI9, SPI9 is better than SPI6, and SPI6 is better than SPI3.
In a word, DBN has a higher precision in drought prediction based on SPI than BP neural
network.

Figure 4 shows the test results of SPI3, SPI6, SPI9, and SPI12 of Bengbu station. It is
obvious that the prediction values of different time-scale SPI series are very close to the actual
ones. The comparison results between observations and predicted data of Fuyang station,
Xuchang station, and Zhumadian station are shown in Figures 5, 6, and 7 using DBN and BP
neural network for SPI6 series.

From Figures 5, 6, and 7, the predicted data of SPI based on DBN model agreed with
observations very well. The majority of DBN outputs are nearer to the real SPI values than
those of BP neural network. The results show that the DBN model is appropriate for short
term of drought index and can obtain higher precision.

4. Conclusion

In this paper, we proposed a deep belief network (DBN) for short-time drought index
prediction. The forecasting model based on DBN is used to forecast different time-scale SPI
series of four stations in Huaihe River Basin, China. Compared with the BP neural network,
the DBN-based model is more reliable and efficient for short-term prediction of drought
index. The errors results show that the DBN model outperforms the BP neural network.
This study shows that the DBN model is a useful tool for drought prediction. Due to the
complexity of the formation mechanism of the drought disasters and the long memory of
hydrological data, some new method which can deal with long-range dependence will be
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Figure 4: Results comparison between observations and predicted data using DBN for different time-scale
SPI series of Bengbu station.
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Figure 5: A comparison of DBN and BP neural network for SPI6 series of Fuyang station.
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Figure 6: A comparison of DBN and BP neural network for SPI6 series of Xuchang station.

DBN

Zhumadian SPI6

3
2
1
0

−1
−2
−3

20
01

20
00

20
00

20
00

20
00

20
01

20
01

20
01

20
02

20
02

20
02

20
02

20
03

20
03

20
03

20
03

20
04

20
04

20
04

20
04

20
05

20
05

20
05

20
05

20
06

20
06

20
06

20
06

Observations

BP neural network

Figure 7: A Comparison of DBN and BP neural network for SPI6 series of Zhumadian station.

thought about, and further studies are needed to deal with more complex situations for
drought prediction.

Acknowledgments

This workwas supported partially by theNational Society Science Fund of China (09CJY020),
the National Nature Science Foundation of China (90924027), the Special Fund of State Key
Laboratory of Hydrology-Water Resources and Hydraulic Engineering, China (2011585312),
Public-Interest Industry Project of Chinese Ministry of Water Resources (200801027),
the Science and Technology Projects of Yunnan Province (2010CA013), the Fundamental
Research Funds for the Central Universities of Hohai University, and 2010 Jiangsu Province
Qing Lan Project.

References

[1] D. A. Wilhite, “Drought as a natural hazard: concepts and definitions,” in Drought: A Global
Assessment, D. A. Wilhite, Ed., Routledge Hazards and Disasters Series, Routledge, New York, NY,
USA, 2000.

[2] G.Hagman, Prevention Better than Cure: Report on Human and Environmental Disasters in the ThirdWorld,
Swedish Red Cross, Stockholm, Sweden, 1984.

[3] L. C. Song, Z. Y. Deng, and A. X. Dong, Drought Disaster, China Meteorological Press, Beijing, China,
2003.

[4] R. H. Huang, C. Y. Li, and S. W. Wang, Climatic Disasters, China Meteorological Press, Beijing, China,
2003.



Mathematical Problems in Engineering 15

[5] V. K. Lohani and G. V. Loganathan, “An early warning system for drought management using the
Palmer Drought Index,” Journal of the American Water Resources Association, vol. 33, no. 6, pp. 1375–
1386, 1997.

[6] H. F. Jia, Y. Q. Zheng, Y. Y. Ding, and B. Cao, “Grey-time series combined forecasting model and its
application in annual precipitation,” Systems Engineering-Theory & Practice, vol. 8, pp. 122–126, 1998.

[7] X. H. Yang, D. X. She, Z. F. Yang, Q. H. Tang, and J. Q. Li, “Chaotic bayesianmethod based onmultiple
criteria decision making (MCDM) for forecasting nonlinear hydrological time series,” International
Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 11-12, pp. 1595–1610, 2009.

[8] A. P. Barros and G. J. Bowden, “Toward long-lead operational forecasts of drought: an experimental
study in the Murray-Darling River Basin,” Journal of Hydrology, vol. 357, no. 3-4, pp. 349–367, 2008.

[9] T. B. McKee, N. J. Doeskin,, and J. Kleist, “The relationship of drought frequency and duration
to time scales,” in Proceedings of the 8th Conference on Applied Climatology, pp. 179–184, American
Meteorological Society, Boston, Mass, USA, 1993.

[10] A. A. Paulo, E. Ferreira, C. Coelho, and L. S. Pereira, “Drought class transition analysis through
Markov and Loglinear models, an approach to early warning,” Agricultural Water Management, vol.
77, no. 1–3, pp. 59–81, 2005.

[11] S. Z. Peng, Z. Wei, C. Y. Dou, and J. Z. Xu, “Model for evaluating the regional drought index with
the weightedMarkov chain and its application,” Xitong Gongcheng Lilun yu Shijian/System Engineering
Theory and Practice, vol. 29, no. 9, pp. 173–178, 2009.

[12] Y. J. Wang, J. M. Liu, P. X. Wang et al., “Prediction of drought occurrence based on the standardized
precipitation index and theMarkov chain model with weights,”Agricultural Research in the Arid Areas,
vol. 5, pp. 198–203, 2007.

[13] P. Han, P. X. Wang, S. Y. Zhang, and D. H. Zhu, “Drought forecasting based on the remote sensing
data using ARIMA models,” Mathematical and Computer Modelling, vol. 51, no. 11-12, pp. 1398–1403,
2010.

[14] E. E. Moreira, C. A. Coelho, A. A. Paulo, L. S. Pereira, and J. T. Mexia, “SPI-based drought category
prediction using loglinear models,” Journal of Hydrology, vol. 354, no. 1–4, pp. 116–130, 2008.

[15] A. K. Mishra and V. R. Desai, “Drought forecasting using feed-forward recursive neural network,”
Ecological Modelling, vol. 198, no. 1-2, pp. 127–138, 2006.

[16] H. E. Hurst, “Long term storage capacity of reservoirs,” Transactions of the American Society of Civil
Engineers, vol. 116, pp. 770–799, 1951.

[17] B. B. Mandelbrot and J. R. Wallis, “Noah, Joseph and operational hydrology,”Water Resource Research,
vol. 4, pp. 908–918, 1968.

[18] B. B. Mandelbrot and J. R. Wallis, “Computer experiments with fractional Gaussian noises,” Water
Resource Research, vol. 5, pp. 228–267, 1969.

[19] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian motions, fractional noises and
applications,” SIAM Review, vol. 10, pp. 422–437, 1968.

[20] J. Beran, “ Statistical method for data with long-range dependence,” Statistical Science, vol. 7, no. 4,
pp. 404–416, 1992.

[21] M. Li and J. Y. Li, “On the predictability of long-range dependent series,” Mathematical Problems in
Engineering, vol. 2010, Article ID 397454, 2010.

[22] M. Li, “Fractal time series—a tutorial review,”Mathematical Problems in Engineering, Article ID 157264,
26 pages, 2010.

[23] M. Li and S. C. Lim, “Modeling network traffic using generalized Cauchy process,” Physica A, vol.
387, no. 11, pp. 2584–2594, 2008.

[24] M. Li and W. Zhao, “Visiting power laws in cyber-physical networking systems,” Mathematical
Problems in Engineering, vol. 2012, Article ID 302786, 13 pages, 2012.

[25] J. D. Pelletier and D. L. Turcotte, “Long-range persistence in climatological and hydrological time
series: analysis, modeling and application to drought hazard assessment,” Journal of Hydrology, vol.
203, no. 1–4, pp. 198–208, 1997.

[26] M. Radziejewski and Z. W. Kundzewicz, “Fractal analysis of flow of the river Warta,” Journal of
Hydrology, vol. 200, no. 1–4, pp. 280–294, 1997.

[27] M. Li, C. Cattani, and S. Y. Chen, “Viewing sea level by a one-dimensional random function with long
memory,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 2011.

[28] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief nets,” Neural
Computation, vol. 18, no. 7, pp. 1527–1554, 2006.



16 Mathematical Problems in Engineering

[29] Y. Kang and S. Choi, “Restricted deep belief networks for multi-view learning,” in Proceedings of the
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD ’11), vol. 6912 of Lecture Notes in Computer Science, pp. 130–145, 2011.

[30] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”
Science, vol. 313, no. 5786, pp. 504–507, 2006.

[31] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations,” in Proceedings of the 26th International
Conference On Machine Learning (ICML ’09), pp. 609–616, June 2009.

[32] T. Liu, “A novel text classification approach based on deep belief network,” in Proceedings of the 17th
International Conference on Neural Information Processing (ICONIP ’10), vol. 6443 of Lecture Notes in
Computer Science, pp. 314–321, 2010.

[33] S. Zhou, Q. Chen, and X. Wang, “Discriminative Deep Belief networks for image classification,” in
Proceedings of the 17th IEEE International Conference on Image Processing (ICIP ’10), pp. 1561–1564, Hong
Kong, 2010.

[34] J. Chao, F. Shen, and J. Zhao, “Forecasting exchange rate with deep belief networks,” in Proceedings of
the International Joint Conference on Neural Networks (IJCNN ’11), pp. 1259–1266, San Jose, Calif, USA,
2011.

[35] L. Zhai and Q. Feng, “Spatial and temporal pattern of precipitation and drought in Gansu Province,
Northwest China,” Natural Hazards, vol. 49, no. 1, pp. 1–24, 2009.

[36] H. Wu, M. D. Svoboda, M. J. Hayes, D. A. Wilhite, and F. Wen, “Appropriate application of
the Standardized Precipitation Index in arid locations and dry seasons,” International Journal of
Climatology, vol. 27, no. 1, pp. 65–79, 2007.

[37] Y. P. Xu, S. J. Lin, Y. Huang, Q. Q. Zhang, and Q. H. Ran, “Drought analysis using multi-scale
standardized precipitation index in the Han River Basin, China,” Journal of Zhejiang University, vol.
12, no. 6, pp. 483–494, 2011.

[38] N. B. Guttman, “Accepting the standardized precipitation index: a calculation algorithm,” Journal of
the American Water Resources Association, vol. 35, no. 2, pp. 311–322, 1999.

[39] S. M. Vicente-Serrano, “Differences in spatial patterns of drought on different time scales: an analysis
of the Iberian Peninsula,”Water Resources Management, vol. 20, no. 1, pp. 37–60, 2006.

[40] D. C. Edwards and T. B. McKee, “Characteristics of 20th Century drought in the United States at
multiple time scales,” Climatology Report 97-2, Colorado State University, Fort Collins, Colo, USA,
1997.

[41] B. Lloyd-Hughes and M. A. Saunders, “A drought climatology for Europe,” International Journal of
Climatology, vol. 22, no. 13, pp. 1571–1592, 2002.

[42] L. Zhang and G. Subbarayan, “An evaluation of back-propagation neural networks for the optimal
design of structural systems: part I. Training procedures,” Computer Methods in Applied Mechanics and
Engineering, vol. 191, no. 25-26, pp. 2873–2886, 2002.

[43] L. H. Jiang, A. G. Wang, N. Y. Tian, W. C. Zhang, and Q. L. Fan, “BP neural network of continuous
casting technological parameters and secondary dendrite arm spacing of spring steel,” Journal of Iron
and Steel Research International, vol. 18, no. 8, pp. 25–29, 2011.

[44] Q. Y. Tang and M. G. Feng, DPS Data Processing System for Trial Design, Statistical Analysis and Data
Mining, Chinese Science Press, 2007.

[45] M. C. Wang, Y. H. Yan, Y. L. Han et al., “Application of neural network in the surface quality testing
of cool rolled strip,”Machinery, vol. 12, p. 71, 2006 (Chinese).

[46] Z. X. Ge and Z. Q. Sun, Neural Network Theory and MATLAB R2007 Realization, Electronic Industry
Press, Beijing, China, 2007.

[47] V. Nair and G. E. Hinton, “Rectified linear units improve Restricted Boltzmann machines,” in
Proceedings of the 27th International Conference on Machine Learning (ICML ’10), pp. 807–814, June 2010.

[48] H. Chen and A. F. Murray, “A continuous restricted Boltzmann machine with hardware-amenable
learning algorithm,” in Proceedings of the 12th International Conference on Artificial Neural Networks
(ICANN ’02), pp. 358–363, Madrid, Spain, 2002.

[49] B. J. Frey, “Continuous sigmoidal belief networks trained using slice sampling,” Advance in Neural
Information processing Systems, vol. 9, pp. 452–458, 1997.

[50] G. E. Hinton, “Learning multiple layers of representation,” Trends in Cognitive Sciences, vol. 11, no. 10,
pp. 428–434, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


