
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 240476, 14 pages
doi:10.1155/2012/240476

Research Article
Robot Navigation Control Based on Monocular
Images: An Image Processing
Algorithm for Obstacle Avoidance Decisions

William Benn and Stanislao Lauria

Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, UK

Correspondence should be addressed to Stanislao Lauria, stasha.lauria@brunel.ac.uk

Received 21 June 2012; Accepted 10 August 2012

Academic Editor: Zidong Wang

Copyright q 2012 W. Benn and S. Lauria. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper covers the use of monocular vision to control autonomous navigation for a robot
in a dynamically changing environment. The solution focused on using colour segmentation
against a selected floor plane to distinctly separate obstacles from traversable space: this is then
supplemented with canny edge detection to separate similarly coloured boundaries to the floor
plane. The resulting binary map (where white identifies an obstacle-free area and black identifies
an obstacle) could then be processed by fuzzy logic or neural networks to control the robot’s
next movements. Findings show that the algorithm performed strongly on solid coloured carpets,
wooden, and concrete floors but had difficulty in separating colours in multicoloured floor types
such as patterned carpets.

1. Introduction

Autonomous mobile robots need the capability to navigate along the hallway avoiding
walls in indoor environments. A number of methods have been proposed to solve the
navigation problems, based on different sensor technologies such as odometry, laser scanners,
inertial sensors, sonar, and vision. Missing information due to sensor temporal failure or
communication delay is one of the critical aspects when dealing with sensory data for robot
navigation. In [1, 2] some solutions to tackle the missing information and filtering problems
have been proposed. Also a multisensor architecture could be used to design robots. While
combining different sensor types, such as ultrasound, vision, and infrared, may collectively
result in a more accurate decision, it could also pose increasing costs and complexity [3].

This paper will be focusing on how effective vision alone can be used as a tool
for navigation and collision avoidance. One notable challenge is providing autonomous



2 Mathematical Problems in Engineering

navigation in a dynamic environment, which Saffiotti [4] describes as real world environments
that have not been specifically engineered for the robot.

Vision is one of the most important senses to a human being and in the past decade
there has been an increased interest to use images in robotics. Machines may lack the
vast knowledge of object recognition that a human brain can provide but the amount of
computational power available in modern times make such machine vision a viable choice
of input, and unlike a human eye, machine vision does not degrade over time providing
consistent image capture. Images from a coloured web camera are used here as the source
of information for this task. Visual sensors can provide plenty of information, however the
environment they capture is often very dynamic and elements and features to be detected
can change with the environment (i.e., the floor, door colour). Still to navigate successfully,
a robot needs to distinguish between what is and is not navigable. By analysing each image
frame, the system should be able to identify (if any) the available navigable areas.

Broadly speaking, there are two navigation strategies: map-based navigation and map-
less navigation. In this paper, we focus on the latter. In indoor environments, the robot has
often to navigate along the hallway while avoiding obstacles. Then, the navigation strategies
are determined by capturing and extracting relevant information about the elements in the
environment. These elements can be the walls, edges, doorways, and so forth and it is not
necessary to calculate the absolute positions of these elements of the environment. The
navigation problem is well studied (see, e.g., [5]). Whereas, [6, 7] are some examples of
strategies developed for the detection of obstacles or edge detection using vision systems.
However, often these methods are dependent on the environment around a robot. For
example, in [7] it is not clear how the system would react to changes in the floor patterns,
whereas in [6] Neural Networks strategies are considered during the camera calibration
phase to tackle this issue. References [8, 9] have investigated the use of optical flow to identify
a dominant ground plane. However, their assumption is that the floor is the dominant plane.

In our paper, we extend these ideas on using the floor to calculate the correct values
for the parameters necessary to extract the required information from each image. Then, to
identify the obstacles, the sequential use of colour iImage segmentation and then edge detection
strategies has been investigated. That is, a two steps strategy has been used.

Step 1: Image Segmentation

Step 2: Edge Detection

Each of the steps above is based on one of two basic properties of intensity values:
discontinuity and similarity. Once the image has been processed in this way, fuzzy logic,
neural networks, and so forth could then be considered to optimise decisions and control the
robot navigation strategies.

Colour segmentation will determine obstacles from the floor while canny edge
detection supplements the colour segmentation by finding sharp changes in colour gradients.
Colour image Segmentation is based on partitioning an image into regions that are similar
according to a predefined criteria. Whereas the aim of the edge detection stage is to partition
an image based on abrupt changes in intensity. In similar research, these two steps are not
always applied independently or only one of the two is applied (see, e.g., [10, 11]). In our
paper both steps are applied as a consecutive sequence to the image. A measure on the effect
on the success rate of each step is also investigated. Each of the steps mentioned above is
discussed in detail below. Then, results are presented and discussed.



Mathematical Problems in Engineering 3

1.1. Image Colour Segmentation

For robot navigation, image segmentation is the process of decomposing an image into parts
which should be meaningful to identify obstacle-free areas.

A more formal definition of segmentation can be given in the following way [12]. Let
I denote an image and let H define a certain homogeneity predicate. Then the segmentation
of I is a partition P of I into a set ofN regions Rn, n = 1, . . . ,N, such that

(1)
⋃N

n=1 Rn = I with Rn
⋃
Rm /= 0;n/=m,

(2) H(Rn) = true for all n,

(3) H(Rn ∪ Rm) = false if Rn and Rm adjacent.

Condition (1) states that the partition has to cover the whole image, condition (2)
states that each region has to be homogeneous with respect to the predicateH, and condition
(3) states that the two adjacent region cannot be merged into a single regions that satisfies
the predicateH. The desirable characteristics that a good image segmentation should exhibit
have been defined in [13].

Several colour representations are currently in use in colour image processing. The
most common is the RGB space where colors are represented by their red, green, and blue
components in an orthogonal Cartesian space. Most cameras will capture an image using the
RGB colour space.

However, colour is better represented in terms of hue, saturation, and intensity. An
example of such a kind of representation is the HSV space. HSV rearranges the geometry of
RGB in an attempt to be more intuitive and perceptually relevant (see e.g., [14]).

Themain approaches in image colour segmentation are based on partitioning an image
into regions that are similar according to a set of predefined criteria. These segmentation
methods are based on sets of features that can be extracted from the images such as pixel
intensities. Thresholding, clustering, and region growing are examples of such approaches.
Extensive work has been done in this area (see e.g., [10]).

Thresholding is one of the simplest and most popular techniques for image
segmentation. The threshold can be specified using a heuristic technique based on visual
inspection of the histogram but this approach is operator-dependent. If the image is noisy,
the selection of the threshold is not trivial. Thus, more sophisticated methods have been
proposed. The BalancedHistogram Thresholding (BHT), see for example [15], is a histogram-
based thresholding method. The BHT approach assumes that the image is divided in two
main classes: the background and the foreground. The BHTmethod tries to find the optimum
threshold level that divides the histogram in two classes. In general, thresholding creates
binary images from grey-level ones by turning all pixels below some threshold to 0 and all
pixels about that threshold to 1.

In this paper, a pre-defined area of the image (red area in Figure 5) has been used to
calculate the threshold values. The selected rectangular area used is located at the bottom of
the image because this area is likely to contain the floor. Within this area of selection colour
thresholds are calculated to define the criteria to process in a meaningful way each pixel of
the image during the successive phases of the segmentation process discussed below. Further
details of the thresholding step are discussed in Section 3.

There is extensive work investigating different algorithms to segment regions by
identifying common properties in order to separate an image into regions corresponding to
objects. (see e.g., [16]).



4 Mathematical Problems in Engineering

In [17] a multiphase image segmentation model for color images is discussed. It
mainly focuses on homogeneous multiphase images. It only considers the global information
of the given image, thus it cannot deal with images with inhomogeneity.

Refernce [18] applies relative values for R, G, and B components on each pixel for
image segmentation. He observed traffic signs in an open environment and segmented the
red color in such a way that if green and blue colors in a pixel are summed up and compared
with red color, it gives relatively 1.5 times higher values for the red component in pixel. If
the pixel has relatively higher red component, it determines as the featured pixel. A binary
segmented image is then created using the known coordinates of the featured pixels.

Refernce [19] proposed a detection and recognition algorithm for certain road signs.
Signs have the red border for warning signs and a blue background for information signs.
A car has a mounted camera that gets images. Colour information can be changed due
to poor lighting and weather conditions such as dark illumination and rainy and foggy
weather. To overcome these problems they proposed two algorithms by using RGB color
image segmentation.

Refernce [20] focused on identifying similar colour domains from human skin and
vegetables. The advantage of this solution is that it does not require converting from the RGB
colour space (allowing the source of the captured image to be worked on directly) and was
robust against various illumination. To avoid converting RGB to other colour spaces such as
HSV, [20] devised a method which uses 5 constant threshold variables (α, β1, β2, γ1, and γ2)
to determine whether an RGB pixel is within a specific colour zone. Assuming the following
variable values:

r = Red value of the pixel
g = Green value of the pixel
b = Blue value of the pixel
α =Minimum red threshold value (0–255)
β1 =Minimum red-green component value (0–255)
β2 =Maximum red-green component value (0–255)
γ1 =Minimum red-blue component value (0–255)
γ2 =Maximum red-blue component value (0–255).
The algorithm considers a pixel to be within a certain colour range if

(1) r > α,

(2) β1 < r − g < β2,

(3) γ1 < r − b < γ2.

Some initial evaluations of the [20] technique applied to indoor navigation domains
have shown that it captured a too broader amount of the threshold from the target floor
surface. Therefore, in the present paper a modification of the above algorithm has been
investigated. In particular, an additional constant (αmax) has been added to hold the
maximum red thresholdwhile the existing red constant (αmin)was used to hold theminimum
red threshold. The first rule was then modified as follows:

(1) αmin < r < αmax.

After a few tests, the optimal settings found for the α parameters were the following.
In higher illuminated conditions and pastel coloured environments αmax is most efficient
at being set to higher values such as a range between 170 and 200. αmin is best set to a
midrange value between the 75 to 90 range. In low illumination conditions αmax is most



Mathematical Problems in Engineering 5

Figure 1: Comparison of original colour segmentation technique against modified rule set. Left image
modified rule set, middle image original rule set, and right image raw capture.

efficient between low midrange values such as 60 to 80. αmin should be set to a low range
between 20 to 40. A higher broader range is needed under high illumination as it is most
likely that obstacles will reside in the lower colour ranges. This broad range can be a downfall
when obstacles are of a similar colour to the surrounding environment, which is where the
edge supplementation is expected be of a great aid.

Figure 1 shows that the modified rule set investigated in the present paper picks up
less noise from the image. It is also better at picking up colours that are similar to the floor
plane, although the effect of this varies depending on the difference of change. From some
initial tests, there is evidence that the modified algorithm keeps the floor threshold values
correct when there are some small illumination changes caused by the robot’s movement.

1.2. Edge Detection

Colour segmentation alone is not enough to fully segment an image, gaps were left by noise
and areas of a similar colour to the floor plane were misinterpreted as traversable space. To
eliminate this issue a separate edge map was produced from the captured image which was
then processed by a probabilistic Hough algorithm to identify strong lines in an image.

It was decided that the best edge detection method for the project was the canny
edge implementation. It excels in identifying strong edges with a lower number of line
disconnections, it also picks out major details from an object [21, 22], while it is weaker at
identifying minor details, we are only interested in the silhouette of an obstacle.

Once the canny edge map has been generated the probabilistic Hough transform can
be applied to the image. The principle of this procedure is to scan through each pixel in a
binary image finding all lines that could fit through this point. If a line fits through enough
points then it is considered significant enough to keep [23]. Each point is picked randomly
and once enough points have been passed through by a line, then they are removed from
any subsequent scanning. This is then repeated until all points are eliminated or there are not
enough points left to identify a significant line. The implementations used for this solution are



6 Mathematical Problems in Engineering

Figure 2:Comparison of Hough line parameters. Left image largemaximumpixel gap value, middle image
low line votes, and segment length value, right image optimal found settings.

from the OpenCv library, there are various parameters that can be passed to the probabilistic
Hough transform.

Line votes number: of points a line must pass through to be considered significant
Minimum segment: length Minimum length a line must be to be selected
Maximum pixel gap: The biggest gap between points on a line that there can be.
After a few tests, the optimal settings found for the above parameters were the

following:

Line votes = 80 lines

Minimum segment length = 20 pixels

Maximum pixel gap: Minimum pixel gap value.

In Figure 2 it is possible to note that when a large pixel gap is allowed lines will often
extend across multiple disjointed edges from the canny map. This is not desirable for our
purposes as it could fill legitimate gaps that a robot would be able to pass through. However,
when a small segment length value and a low line vote count is set we end up with many
short lines that could easily be combined into a single long line, this again is not desirable
as the more lines there are, the larger the processing time that is required to apply the line
information to the colour segmentation map. See Figure 3 for a list of images with the optimal
found probabilistic Hough line parameters (with blue lines indicating the Hough lines).

Output of the probabilistic Hough transform was an array of lines. To apply this
information to the colour segmentation map, a polygon was drawn from the start and end
points of each line to the top of the image. Figure 4 shows a comparison between edge
supplemented and nonedge supplemented segmentation maps.

2. Implementation

The algorithms have been implemented in C++ because of the high-performance libraries
available for this language. Additional processing was completed using the OpenCV library.

To calculate thresholds for the rules defined in Section 1.1, a rectangular area is selected
from the image (Figure 5). Within this mask, thresholds are calculated as shown in Listing 1.
In particular, each pixel is iterated, updating a colour threshold only when it is less than or
bigger than the current threshold (depending on if it is a minimum or maximum threshold).
Once the minimum and maximum thresholds have been calculated they can be compared
against all the pixels in the captured image. If a pixel’s RGB value is between the desired
threshold, then the pixel can be marked as white otherwise as black as shown in Listing 2. To
apply the Hough line information from the line array is simply a matter of drawing a black
area onto the existing binary map, this is achieved by plotting a 4 sided polygon. Care must
be taken to determine the correct winding order to avoid a twisted hourglass like shape; this



Mathematical Problems in Engineering 7

Figure 3: Optimal Hough line parameters applied to canny edge map.

is easily rectified by checking whether the first point of the line is to left or right of the end
point and changing the point drawing order as shown in Listing 3.

3. Results

The algorithm discussed above has been tested using images from an indoor environment.
The same set of images has been used to test different settings. For each setting, every image
has been processed by a different combination of algorithms. The following four different
settings have been tested:

Original. The image segmentation algorithm [20].

Original and edge. The original and the edge detection algrithms.

Modified. The modified image segmentation algorithm presented in this paper.

Modified and edge. The modified and the edge detection algorithms.

Once the image has been processed following one of the settings listed above, a
decision algorithm has been applied to the produced binary map (produced result). The same
decision algorithm (based on a fuzzy logic algorithm) has been applied irrespective of the
setting used to obtain the binary image. Then, the produced result has been compared with the
decision that humans would produce in those situations (expected result).

Amatch between the produced result and the expected result has been considered correct,
whereas a discrepancy between the produced result and the expected result has been counted
as an error. Six different possible outputs have been defined as the range of the possible



8 Mathematical Problems in Engineering

(1) for (int i = start Y; i < height; ++i)
(2) {
(3) for (int j = start X; j <width; ++j)
(4) {
(5) unsigned char blue = pixel Data [i ∗ step + j ∗ channels];
(6) unsigned char green = pixel Data [i ∗ step + j ∗ channels + 1];
(7) unsigned char red = pixel Data [i ∗ step + j ∗ channels + 2];
(8)
(9) if (red == 0 && green == 0 && blue == 0)
(10) {
(11) continue;
(12) }
(13)
(14) //Find thersholds
(15) if (red <mMinimumRed)
(16) {
(17) mMinimumRed = Red;
(18) }
(19)
(20) if (red >mMaximumRed)
(21) {
(22) mMaximumRed = Red;
(23) }
(24)
(25) int redGreenRange = red – green;
(26) int redBlueRange = red – blue;
(27)
(28) if (redGreenRange <mRedGreenRangeMin)
(29) {
(30) mRedGreenRangeMin = redGreenRange;
(31) }
(32)
(33) if (redGreenRange >mRedGreenRangeMax)
(34) {
(35) mRedGreenRangeMax = redGreenRange;
(36) }
(37)
(38) if (redBlueRange <mRedBlueRangeMin)
(39) {
(40) mRedBlueRangeMin = redBlueRange;
(41) }
(42)
(43) if (redBlueRange >mRedBlueRangeMax)
(44) {
(45) mRedBlueRangeMax = redBlueRange;
(46) }
(47) }
(48) }

LISTING 1: Threshold. The code calculating the thresholds for the Image Segmentatation step.



Mathematical Problems in Engineering 9

(1) for (int i = 0; i < inImage − > height; ++i)
(2) {
(3) for (int j = 0; j < inImage − >width; ++j)
(4) {
(5) int bluePos = i ∗ step + j ∗ channels;
(6) int greenPos = i ∗ step + j ∗ channels + 1;
(7) int redPos = i ∗ step + j ∗ channels + 2;
(8)
(9) unsigned char red = inPixel Data [redPos];
(10) unsigned char green = inPixel Data [greenPos];
(11) unsigned char blue = inPixel Data [bluePos];
(12) int redGreen = red – green;
(13) int redBlue = red – blue;
(14)
(15) if ((red >mMinimumRed && red <mMaximumRed)
(16) && (redGreen >=mRedGreenRangeMin
(17) && redGreen <=mRedGreenRangeMax)
(18) &&(redBlue >=mRedBlueRangeMin
(19) && redBlue <=mRedBlueRangeMax))
(20) {
(21) //pixel is within floor range set to white
(22) outPixelData [redPos] = 255;
(23) outPixelData [greenPos] = 255;
(24) outPixelData [bluePos] = 255;
(25) ++total Pixels;
(26) }
(27) else
(28) {
(29) outPixelData [redPos] = 0;
(30) outPixelData [greenPos] = 0;
(31) outPixelData [bluePos] = 0;
(32) }
(33) }
(34)}

LISTING 2: Image Segmentation. The code applying the thresholds.

decisions. move forward or turn left are examples of some of the six produced, expected
results output.

Results in Table 1 show that both the use of the modified algorithm and the two steps
strategy are very significant (χ2(3, N = 21) = 12.4, p = 0.006). That is, when the performance
of the modified red threshold rule is compared with the original rule in both settings (original
versus modified and original and edge versus modified and edge) a higher correct success rate is
obtained for the modified algorithm. Moreover, the discrepancy between produced result and
expected result is reduced with the introduction of the edge stepwhen the image is processed.

Different floor patterns have also been tested to investigate the modified algorithm
under different conditions. Figure 6 shows the outcome of using, respectively, the modified
in (a) and the original in (b) for a given floor pattern raw image in (c). From Figure 6 it is
possible to conclude that the modified rule set seems to perform specifically strongly with
white colours compared to the original rule set. Moreover, the modified rule set handles the
nonuniform floor patterns better. That is, with the introduction of the αmax value it is possible



10 Mathematical Problems in Engineering

(1) for (auto it = Filtered Lines. Begin (); it != Filtered Lines. end (); ++it)
(2) {
(3) CvPoint poly Points [4];
(4)
(5) //First point is to the left of the right point
(6) if ((∗ it) [0] <= (∗ it) [2])
(7) {
(8) polyPoints [0] = cvPoint ((∗ it) [0], 0);
(9) polyPoints [1] = cvPoint ((∗ it) [2], 0);
(10) polyPoints [2] = cvPoint ((∗ it) [2], (∗ it) [3]);
(11) polyPoints [3] = cvPoint ((∗ it) [0], (∗ it) [1]);
(12) }
(13) else //First point is to the right of the right point
(14) {
(15) polyPoints [0] = cvPoint ((∗ it) [2], 0);
(16) polyPoints [1] = cvPoint ((∗ it) [0], 0);
(17) polyPoints [2] = cvPoint ((∗ it) [0], (∗ it) [1]);
(18) polyPoints [3] = cvPoint ((∗ it) [2], (∗ it) [3]);
(19) }
(20)
(21) cv Fill ConvexPoly (inImage, &polyPoints [0], 4, cvScalar (0, 0, 0));
(22) }

LISTING 3: Edge Segmentation. The code implementing the Edge Segmentation algorithm.

(a) (b)

Figure 4: Comparison of applied edge supplementation to colour segmentation map. In both (a) and (b),
left image applied edge supplementation, right image nonapplied.

X-column index

Y
-r

ow
 in

d
ex

Iterate pixels

The red area represents the selected area from the image which
should be scanned

Red min, red max
Red-green min, red-green max
Red-blue min, red-blue max

B G R

· · ·

Figure 5: Selecting area for colour thresholds.



Mathematical Problems in Engineering 11

Table 1: Algorithm testing. Correct matching results between the produced result and the expected result for
the different settings.

Setting Success rate (%)
Original 42
Original and Edge 76
Modified 57
Modified and Edge 90

Table 2: Algorithm processing time. Processing time values (in ms) for the image segmentation and edge
detection settings.

Setting Processing time (ms)
Modified 25.6
Modified and Edge 27.6

to notice that the algorithm performs particularly strongly against white colours compared to
the original algorithm (see, e.g., Figure 6). The original algorithm would have a much larger
threshold, based on our tests the original algorithm has a threshold range 38.75% greater than
that of the modified algorithm under highly illuminated environments.

Table 2 shows the processing time for the different settings described at the beginning
of the section. The time difference between the image segmentation algorithm [20] (i.e.,
original) and the modified version presented in this paper (modified) is too negligible to show
in the results, therefore only results for the Modified configuration have been shown.

The CPU used for all tests was a Phenom II X4 955 and CPU clock was set to
3.6GHz. The time without edge detection step and the time with the edge detection step
has been measured, respectively, in row 1 and 2. The values in the table indicate the time in
milliseconds it took to apply the algorithms indicated in the Setting column to the image and
then to generate the binary collision map. In all cases the mean was taken from a sample of
10 measurements.

Results in Table 2 show that the modified algorithm does not increase the processing
time (since as stated above modified and original settings produce similar processing time).
Further, it shows a percentage increase of 7.8% over the no edge configuration. That is,
as expected, the time to extract the required information increases by including the edge
detection step in the algorithm. However, from Table 2 it is possible to observe that a
percentage increase of 7.8% in processing time has produced a percentage increase of 57.9%
in the success rate for the algorithm.

4. Discussions and Conclusions

The sequential use of colour image segmentation and then edge detection strategies has been
investigated. A novel color image segmentation algorithm and a probabilistic Hough
algorithm have been implemented and tested. The novelty introduced here has been
demonstrated to improve an existing algorithm for image processing.

In particular, the modified red threshold rule considered for the image segmentation
algorithm helped in keeping the learnt thresholds stable. Moreover, the use of both
colour segmentation and edge detection techniques complemented each other by removing
the weaknesses that each method separately presented. In particular, with the colour



12 Mathematical Problems in Engineering

(a ) (b) (c)

Figure 6: Comparisons between the 2 different image segmentation algorithms under different floor
patterns. Columns (a) and (b) show the outcome of the processing for the raw image in (c).

segmentation technique identifying the main obstacle-free area and the edge detection filling
any remaining gaps in the detected segments in the output binary map.

Although the approach discussed in this paper has been demonstrated to be
independent of floor changes, further development is needed to cope with patterned floor
surfaces. This is because the edges detected from the patterns and the wider colour thresholds
that are learnt from such floorsmake it difficult to produce an accurate binarymap. A possible
solution could be to make use of the canny edge map to identify the patterned areas in the
floor surface and combine that with the information from the threshold learning algorithm so
that it would ignore colours within that area of the image. As a consequence the learnt colour
thresholds would be narrower and would not erroneously detect obstacles as obstacle free
areas.

The scalability of this algorithm for a distributed architecture (with several robots
involved) is another aspect that could be investigate further. Each robot will produce a
(slight) different image of the same environment to extract the required features. Therefore
each robot can receive not only its own information but also the information from its
neighboring robot according to the topology of the given robot network. Then to deal with
the complicated coupling between one sensor and its neighbors, a filtering approach such as
the ones in [24, 25] could be considered. However, some further investigation is required to
analyse how these paradigms would perform with these types of data.



Mathematical Problems in Engineering 13

References

[1] H. Dong, Z. Wang, and H. Gao, “Distributed filtering for a class of time-varying systems over sensor
networks with quantization errors and successive packet dropouts,” IEEE Transactions on Signal
Processing, vol. 60, no. 6, Article ID Article number6168290, pp. 3164–3173, 2012.

[2] Z. Wang, B. Shen, H. Shu, and G. Wei, “Quantized H∞ control for nonlinear stochastic time-delay
systems with missing measurements,” IEEE Transactions on Automatic Control, vol. 57, no. 6, Article ID
Article number6082385, pp. 1431–1444, 2012.

[3] J. Esteban, A. Starr, R. Willetts, P. Hannah, and P. Bryanston-Cross, “A review of data fusion models
and architectures: towards engineering guidelines,” Neural Computing and Applications, vol. 14, no. 4,
pp. 273–281, 2005.

[4] A. Saffiotti, “The uses of fuzzy logic in autonomous robot navigation,” Soft Computing, vol. 1, no. 4,
pp. 180–197, 1997, http://aass.oru.se/∼asaffio/.

[5] G. N. DeSouza and A. C. Kak, “Vision for mobile robot navigation: a survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 237–267, 2002.

[6] A. M. Zou, Z. G. Hou, M. Tan, and D. Liu, “Vision-guided mobile robot navigation,” in Proceedings
of the IEEE International Conference on Networking, Sensing and Control (ICNSC ’06), pp. 209–213, April
2006.

[7] W. Shi and J. Samarabandu, “Corridor line detection for vision based indoor robot navigation,” in
Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE ’06), pp. 1988–
1991, May 2006.

[8] N. Ohnishi and A. Imiya, “Dominant plane detection from optical flow for robot navigation,” Pattern
Recognition Letters, vol. 27, no. 9, pp. 1009–1021, 2006.

[9] K. Van Workum and R. Green, “Smart wheelchair guidance using optical flow,” in Proceedings of the
24th International Conference Image and Vision Computing New Zealand (IVCNZ ’09), pp. 7–11, November
2009.

[10] N. Senthilkumaran and R. Rajesh, “Edge detection techniques for image segmentation a survey of soft
computing approaches,” International Journal of Recent Trends in Engineering, vol. 1, no. 2, pp. 844–846,
2009.

[11] S. Al-amri, N. V. Kalyankar, and S. D. Khamitkar, “Image segmentation by using edge detection,”
International Journal on Computer Science and Engineering, vol. 2, no. 3, pp. 804–807, 2010.

[12] L. Lucchese and S. K. Mitra, “Color image segmentation : a state-of-the-art survey,” Citeseer, vol. 67,
no. 2, pp. 207–221, 2001.

[13] R. M. Haralick and L. G. Shapiro, “Image segmentation techniques,” Computer Vision, Graphics, &
Image Processing, vol. 29, no. 1, pp. 100–132, 1985.

[14] R. C. Gonzales and R. Woods, Digital Image Processing, Addison-Wesley, Reading, Mass, USA, 1992.
[15] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems,

Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
[16] H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, “Color image segmentation: advances and prospects,”

Pattern Recognition, vol. 34, no. 12, pp. 2259–2281, 2001.
[17] Y. Yang and B. Wu, “A new and fast multiphase image segmentation model for color images,”

Mathematical Problems in Engineering, vol. 2012, Article ID 494761, 20 pages, 2012.
[18] S. Varun, S. Singh, R. Sanjeev Kunte, R. D. Sudhaker Samuel, and B. Philip, “A road traffic signal

recognition system based on template matching employing tree classifier,” in Proceedings of the
International Conference on Computational Intelligence andMultimedia Applications (ICCIMA ’07), pp. 360–
365, December 2007.

[19] V. Andrey and K. H. Jo, “Automatic detection and recognition of traffic signs using geometric
structure analysis,” in Proceedings of the International Joint Conference (SICE-ICASE ’06), pp. 1451–1456,
October 2006.

[20] C. Lin, C. H. Su, H. S. Huang, and K. C. Fan, “Colour image segmentation in various illumination
circumstances,” in Proceedings of the 9thWSEAS International Conference on Circuits, Systems, Electronics,
Control and Signal Processing (CSECS ’10), pp. 179–184, Stevens Point, Wis, USA, December 2010.

[21] E. Nadernejad, S. Sharifzadeh, and H. Hassanpour, “Edge detection techniques: evaluations and
comparisons,” Applied Mathematical Sciences, vol. 2, no. 29–32, pp. 1507–1520, 2008.

[22] D. Ziou and S. Tabbone, “Edge detection techniques - an overview,” International Journal of Pattern
Recognition and Image Analysis, vol. 8, pp. 537–559, 1998.



14 Mathematical Problems in Engineering

[23] R. Laganiére, OpenCV 2 Computer Vision Application Programming Cookbook, Packt, 2001.
[24] Z. Wang, B. Shen, and X. Liu, “H∞ filtering with randomly occurring sensor saturations and missing

measurements,” Automatica, vol. 48, no. 3, pp. 556–562, 2012.
[25] B. Shen, Z. Wang, and X. Liu, “A stochastic sampled-data approach to distributed H∞ filtering in

sensor networks,” IEEE Transactions on Circuits and Systems. I. Regular Papers, vol. 58, no. 9, pp. 2237–
2246, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


