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As the “first service station” for ships in the whole port logistics system, the tugboat operation
system is one of the most important systems in port logistics. This paper formulated the
tugboat scheduling problem as a multiprocessor task scheduling problem (MTSP) after analyzing
the characteristics of tugboat operation. The model considers factors of multianchorage bases,
different operation modes, and three stages of operations (berthing/shifting-berth/unberthing).
The objective is to minimize the total operation times for all tugboats in a port. A hybrid
simulated annealing-based ant colony algorithm is proposed to solve the addressed problem. By
the numerical experiments without the shifting-berth operation, the effectiveness was verified,
and the fact that more effective sailing may be possible if tugboats return to the anchorage base
timely was pointed out; by the experiments with the shifting-berth operation, one can see that the
objective is most sensitive to the proportion of the shifting-berth operation, influenced slightly by
the tugboat deployment scheme, and not sensitive to the handling operation times.

1. Introduction

Container terminal is an important part in international logistics and plays a significant role
in world trade. Recently, more and more people become to recognize the importance of
global logistic business via container terminals. As the throughput of containers in container
terminal increases and competition between ports becomes fierce, how to improve the
efficiency in container terminal has become an important and immediate challenge for port
managers. One of the most important performance measures in container terminals is to
schedule all kinds of equipment at an optimum level and to reduce the turnaround time
of vessels. Tugboat is one such kind of vital equipments in container terminal.

The performance of the tugboat operation scheduling has a direct influence on time
when a ship can start its handling operation and when a ship can leave the port. Scheduling
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Figure 1: Illustration of a typical tugboat operation process.

on tugboats with good performance may lower the turnaround of ships in a port. Thus the
tugboat scheduling problem is an important one to be solved in the field of the port logistics.

When ships arrive at a port, if their target berths are not available immediately,
they cannot enter into the berths directly and have to wait in the anchorage ground. Then
they have to be tugged by certain amount of tugboats according to some rules. Moreover,
the moving between two berths and the department of vessels also need to be tugged
by tugboats. To improve the ship operation efficiency, tugboats should be scheduled at an
optimum level.

According to the analysis mentioned above, the three types of service that a tugboat
can provide are (a) tugging coming ships to the berth (viz., berthing); (b) tugging ships
from one berth to another (namely, shifting-berth); (c) tugging ships leaving the berth (viz.,
unberthing). Not every ship will experience all the three types of services. That is, the shifting
berth operation is not necessary, while the berthing and unberthing operations are necessary
for all ships.

A typical tugboat operation process is illustrated in Figure 1. As Figure 1 shows, the
duration from the time when a tugboat starts tugging a ship to the finishing time of the
berthing operation is treated as stage 1, the duration when a tugboat starts tugging the exact
ship leaving the first berth to the finishing time when that ship enter into the second target
berth is treated as stage 2, and the duration from the starting time of the unberthing operation
to the time when the ship leaves the port is looked upon as stage 3.

Practically, tugboat scheduling managers allocate suitable tugboats to ships according
to their length. Each ship can have one or more tugboats serving for it simultaneously by the
scheduling rules.

Themain idea of the scheduling rules is that big ships should be served by big tugboats
(as with the horsepower), and small ships should be served by small tugboats; if more than
one tugboat with the same horsepower are available, the allocation among the available
tugboats is made by some heuristic rules.

For example, there are six types of tugboats in a port according to the horsepower
unit, such as 1200PS, 2600PS, 3200PS, 3400PS, 4000PS, and 5000PS. The scheduling rules for
allocating are as follows:

(a) S1 (less than 100 meter): 1200PS (or bigger)∗1,
(b) S2 (100–200 meter): 2600PS (or bigger)∗2,
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(c) S3 (200–250 meter): 3200PS (or bigger)∗2,
(d) S4 (250–300 meter): 3400PS (or bigger)∗2,
(e) S5 (greater than 300 meter): 4000PS (or bigger)∗2.
And the heuristics rules concluded from real-world practice include

(a) TSD rule: choosing the tugboat with the shortest distance from the scheduled ship
to serve for it;

(b) FAT rule: choosing the tugboat which is the first available one for the scheduled
ship;

(c) UWAT rule: from the perspective of balancing all tugboats’ working amount,
choosing the tugboat with the minimum working amount up till now to serve for
the scheduled ship.

According to the hybrid flow shop theory, the tugboat scheduling can be considered
as a multiprocessor task scheduling problem (MTSP)with 3 stages. In the scheduling system,
tugboats are taken as movable “machines,” and ships have to experience the berthing,
shift-berth (if there exists this operation), and unberthing operations operated by tugboats
sequentially.

On the other hand, comparedwith a typicalMTSP, the tugboat scheduling problem has
its own characteristics. Firstly, the exact same tugboat can provide all the three types of service
(berthing, shifting berth, and unberthing), which means that the machine set for all the three
stages is the same. This is different from a typical MTSP in which the available machine set in
each stage is not the same. Besides, not all ships have to experience the shift-berth operation,
which makes the problem different from a typical MTSP with the characteristics that all jobs
have to experience all the stages.

Anyway, the tugboat scheduling problem is a kind of unconventional scheduling
problem, an NP-hard problemwhich cannot be solved by exact methods. Some scholars have
begun to make research on the topic.

Ying and Lin [1] proposed the ant colony approach to solve the MTSP. Xuan and
Tang [2] explored the complexity of the MTSP and designed a Lagrange relaxation algorithm
combined with heuristic rules to solve the MTSP. Liu [3] established a mathematical model
on the tugboat scheduling problem combined with the MTSP theory and adopted the hybrid
evolutionary strategy to solve the model. Liu [4] established an tugboat scheduling model
considering the minimum operation distance of the tugboats, and compared the performance
of hybrid evolutionary strategy with the particle swarm optimization algorithm for solving
the addressed problem. Wang and Meng [5] used a hybrid method that combined ant colony
optimization and genetic algorithm to resolve the tugboat allocation problem. Wang et al.
[6] formulated a mix-integer model for the tugboat assignment problem combined with the
existing scheduling rules and analyzed the effects of the number and service capacity of
tugboats on the turnaround time of ships. Liu andWang [7] considered the tugboat operation
scheduling problem as a parallel machine scheduling problemwith special process constraint
and employed a hybrid algorithm based on the evolutionary strategy to solve the problem.
Dong et al. [8] adopted the improved particle swarm optimization combined with dynamic
genetic operators to solve the formulated tugboat dispatch model. Liu andWang [9] used the
particle swarm optimization algorithm combined with the local search approach to solve the
tugboat scheduling model they proposed.

As we can see from the previous research, scholars have begun to use many
approaches to solve the tugboat scheduling problem, including the genetic algorithm, ant
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colony optimization, and particle swarm optimization. However, most literature only
considers the situation of single operation stage and single anchorage base and neglects
the influence of the tugboats’ and ships’ location information on the problem difficulty. That
makes the model formulated far from reality. Thus, this paper will make research on tugboat
scheduling problem considering multi-anchorage bases, different operation modes, and three
operation stages.

The rest of paper is organized as follows. Section 2 formulates a tugboat scheduling
model combined with the MTSP theory. Section 3 proposes a simulated annealing-based
ant colony algorithm to solve the formulated model, and Section 4 discusses the simulation
experiments using ACO in container terminals. Finally, we make conclusions and introduce
the future work in Section 5.

2. Model Formulation

2.1. Assumptions

The following assumptions are introduced for the formulation of the problem.

(a) The planning horizon is one day.

(b) Three operation stages (i.e., berthing, shifting-berth, and unberthing) are taken into
consideration, but not all ships have to experience the shifting-berth operation. For
ship which does not have to experience the second operation, assume there is a
virtual shifting-berth operation and the operation time for that is zero.

(c) The ready times for all the tugboats are 0, and all the tugboats are at the anchorage
bases at time 0; all the ships to be served have arrived at the anchorage ground at
time 0.

(d) There are three types of locations in a port: berths for ships to load/unload cargoes,
meeting locations where ships meet tugboats at the entrance of port, and the
anchorage bases.

(e) Two operation modes (restricted cross-operation mode RCOM and unrestricted
cross operation mode UCOM)may be adopted to schedule the tugboats in a port.

(f) All the ships enjoy the same precedence.

(g) The scheduling rules for allocating tugboats to ships are what we mentioned in
Section 1.

(h) The sailing speeds of all tugboats whenever sailing are the same.

(i) The tugboats may return to the anchorage base during the planning horizon
according to the scheduling plans.

In assumption (e), the RCOM means that all anchorage bases have their fixed service
area in the port, which means that each tugboat in every base can only operate in its
corresponding service area, while the UCOMmeans that all tugboats can operate in thewhole
area of a port.
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Figure 2: Illustration of the tugboat scheduling rounds.

2.2. Definition of the Scheduling Round

Before the tugboat scheduling model is formulated, a concept named scheduling round
should be introduced first.

In practice, a scheduling round is used to define the duration from the time when a
tugboat leaves for its target place from the anchorage base to the time when it returns to
the base after finishing a certain amount of tasks (may be one task, maybe more than one).
As Figure 2 illustrates, tugboat m has to operate on three tasks (i.e., a, b, c) in the planning
horizon: after finishing the task a, the tugboat sails directly to the starting place of task b and
sails back to the anchorage after finishing the task b. That duration can be defined as the first
scheduling round of tugboat which lasts for 3.5 hours. On arriving at the anchorage base,
the tugboat stands by until it sails to the starting place of task c. After finishing the task c, m
sails back to the base again. And that duration from the time whenm leaves the base again to
the time when it arrives at the base is the second scheduling round which lasts for 1.8 hours.
According to the definition, two scheduling rounds occur as to tugboat m in the planning
horizon, and the total duration for the two scheduling rounds for tugboat m is 3.5 h + 1.8 h =
5.3 h.

2.3. Notations

(a) Parameters

j, l: Stage index, j, l ∈ J = {1, 2, 3}, in which 1–3 represent berthing, shifting-berth, and
unberthing operations

i, k: Ship index

cyi: The descriptive binary parameter that illustrates whether ship iwill experience
the shifting-berth operation (if cyi = 1, it means that ships i will experience the
shifting-berth operation, otherwise will not experience the operation)

m: Tugboat index

M: The set of all the tugboats

tam: Style of tugboat m (which may be 1–6, representing 1200PS, 2600PS, 3200PS,
3400PS, 4000PS, and 5000PS, resp.)

N: The set of all ships, N = {1, 2, . . . , n}
Si: Style of ship i
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seti: Set of tugboat style which can provide the related service for ship i

Oij : Operation of ship i at stage j

CMb: Set of tugboats in the anchorage base b (b ∈ B, B is the set of all the anchorage
bases); thus we can get

⋃
b∈B CMb = M

Mijb: Set of tugboats in base b that can serve for operation Oij based on the
scheduling rules; thus the set of tugboats in all the bases that can serve for operation
Oij can be expressed asMij =

⋃
b∈B Mijb = {m | tam = seti, ∀m ∈ CMb}

Ejm: The set of ships that might be served by tugboat m at stage j

LOSij : Locationwhere operationOij starts (if j = 1, LOSij is themeeting place where
ship i meets tugboat at the entrance of the port; else if j = 2, LOSij is the first berth
where ship i loads/unloads its cargo; else if j = 3, LOSij is the second berth where
ship i loads/unloads its cargo, while LOSi3 = LOSi2 if cyi = 0)

LOFij : Location where operation Oij finishes (if j = 1, LOFij is the first berth where
shipi loads/unloads its cargo; else if j = 2, LOFij is the second berth where ship i
loads/unloads its cargo, while LOFi2 = LOFi1; else if j = 3, LOFij is the meeting
place where ship imeets tugboat at the entrance of the port)

ST(a, b): Duration for sailing between locations a and b

pij : Processing time of operation Oij

tbi: Sailing time of ship i from the waiting place to the berthing place, and tbi =
ST(LOSi1,LOFi2)

tei: Berthing time of ship i at berth

toai: Duration of ship i for loading and unloading cargoes at the first target berth

tobi: Duration of ship i for loading and unloading cargoes at the second target berth
(if there exists a shifting-berth operation)

tui: Unberthing time of ship i at berth

tli: Sailing time of ship i from the unberthing place to the place where ship i leaves
the port

smijkl: Set-up time between task Oij and Okl by tugboat m

bpm: The anchorage base where tugboat m belongs

H: A sufficiently large constant.
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(b) Decision Variables

xijm =

{
1, if Oij is assigned to tugboat m
0, otherwise,

ym
ijkl =

{
1, if Oij and Okl are assigned to the same tugboat m
0, otherwise,

um
ijkl =

{
1, if Oij precedes Okl

(
not necessarily immediately

)
on tugboat m

0, otherwise,

zmijkl =

{
1, if Oij immediately precedes Okl on tugboat m
0, otherwise,

wijm =

{
1, if tugboat m goes back to the anchorage base after completing operation Oij

0, otherwise.
(2.1)

(c) State Variables Decided by Decision Variables

TSij : The starting time of Oij

TFij : The finishing time of Oij

BTm: The setting-out time of tugboat m from its anchorage base in the planning
horizon

FTm: The returning time of tugboat m after finishing its last task in the planning
horizon

shmh: The duration of the hth scheduling round for tugboat m in the planning
horizon

gm: Number of the scheduling rounds for tugboat m in the planning horizon.

2.4. Model

(a) Objective

In this paper, the objective is to minimize the total operation times of tugboats, which can
be equal to the total duration for all the scheduling rounds of all tugboats. Thus we have to
derive the calculation method for scheduling rounds.

From the definition of the scheduling round, the relation between the decision variable
(wijm) and the quantity of scheduling rounds in the planning horizon (gm) can be concluded
as follow:

gm =
∣
∣
{
wijm | wijm = 1, ∀i ∈ N, ∀j ∈ J

}∣
∣. (2.2)

Equation (2.2)means that the value of gm equals the times for which tugboatm returns
to the anchorage base.
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Define the set of tasks right before which tugboatm returns to the base as OSm, and all
the tasks in OSm are ordered by the operation sequence. By that definition, we come to know
the calculation method for duration of each scheduling round of tugboat m as follows:

shm1 = TFOSm{1} + ST
(
LOFOSm{1}, bp

) − BTm

shm2 = TFOSm{2} + ST
(
LOFOSm{2}, bp

) − (TSij − ST
(
bp,LOSij

))

{(
i, j
) | zmijkl = 1, (k, l) = OSm{1}

}

...

shmh = TFOSm{h} + ST
(
LOFOSm{h}, bp

) − (TSij − ST
(
bp,LOSij

))

{(
i, j
) | zmijkl = 1, (k, l) = OSm{h − 1}

}

...

shmgm = TFOSm{gm} + ST
(
LOFOSm{gm}, bp

) − (TSij − ST
(
bp,LOSij

))

{(
i, j
) | zmijkl = 1, (k, l) = OSm

{
gm − 1

}}
.

(2.3)

Equation (2.3) reveals the duration of each scheduling round equals the finishing time
when tugboat completes its last task in the scheduling round plus the sailing time from the
location where the last task of tugboat is completed to the tugboat’s anchorage base minus
the time when tugboat begins its first task in the scheduling round minus the sailing time
from the base to the location where the first task starts.

As it has been discussed before, the total operation times of tugboats are equal to the
total duration for all the scheduling rounds of all tugboats. Thus the objective function can be
expressed as follows:

Minimize F =
∑

m∈M

∑

h∈gm
shmh. (2.4)

(b) Constraints

The constraints in the proposed model include the following equations:

TSij ≥ 0, ∀i ∈ N, ∀j ∈ J, (2.5)

TSi1 + pi1 + toai · cyi ≤ TSi2, ∀i ∈ N,

TSi2 + pi2 + tobi · cyi + toai ·
(
1 − cyi

) ≤ TSi3, ∀i ∈ N,
(2.6)

∑

m∈M
xijm = 1, Si = S1,

∑

m∈M
xijm = 2, otherwise,

∀i ∈ N, ∀j ∈ J, (2.7)
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seti = {1, 2, 3, 4, 5, 6} Si = S1,

seti = {2, 3, 4, 5, 6} Si = S2,

seti = {3, 4, 5, 6} Si = S3,

seti = {4, 5, 6} Si = S4,

seti = {5, 6} Si = S5,

(2.8)

ym
ijkl ≤ 0.5

(
xijm + xklm

) ≤ ym
ijkl + 0.5, ∀i, k ∈ Ejm, ∀m ∈

⋃

b∈B
Mijb, ∀j, l ∈ J,

ym
ijkl = ym

klij , ∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

(2.9)

um
ijkl + um

klij = ym
ijkl, ∀i, k ∈ Ejm, ∀m ∈

⋃

b∈B
Mijb, ∀j, l ∈ J, (2.10)

um
ijkl − zmklij ≥ 0, ∀i, k ∈ Ejm, ∀m ∈

⋃

b∈B
Mijb, ∀j, l ∈ J, (2.11)

∑

k∈Elm

zmijkl ≤ 1, ∀i ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

∑

k∈Elm

zmklij ≤ 1, ∀i ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

(2.12)

TSij + pij + smijkl ≤ TSkl +H
(
1 − zmijkl

)
, ∀i, k ∈ N, ∀m ∈

⋃

b∈B
Mijb, ∀j ∈ J,

TSkl + pkl + smklij ≤ TSij +H
(
1 − zmklij

)
, ∀i, k ∈ N, ∀m ∈

⋃

b∈B
Mijb, ∀j ∈ J,

(2.13)

pij = tbi + tei, j = 1,

pij = (tui + ST(LOSi2,LOFi2) + tei) · cyi, j = 2 ∀i ∈ N,

pij = tui + tli, j = 3,

(2.14)

smijkl = ST
(
LOFij ,LOSkl

) · zmijkl ∀i, k ∈ N, ∀j, l ∈ J, ∀m ∈
⋃

b∈B
Mijb, (2.15)

wijm ·H ≥ zmijkl ·
[(
TSkl − TFij

) − (ST(LOFij , bpm
)
+ ST

(
bpm,LOSkl

))]
,

∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

wijm <

(

zmijkl ·
TSkl − TFij

2 × (ST(LOFij , bpm
)
+ ST

(
bpm,LOSkl

)) + 0.5

)

,

∀i, k ∈ Ejm, ∀m ∈
⋃

b∈B
Mijb, ∀j, l ∈ J,

(2.16)

xijm, y
m
ijkl, u

m
ijkl, z

m
ijkl, wijm = 0 or 1, ∀i, k ∈ N, ∀m ∈

⋃

b∈B
Mijb, ∀j, l ∈ J. (2.17)
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Constraint (2.5) guarantees that each operation begins after time zero. Constraint
(2.6) ensures that for every ship, the shifting-berth operation begins only after the berthing
and handling operations are completed, and the unberthing operation begins only after the
shifting-berth and handling operations are completed. Constraint (2.7)means that if the style
of the ship is 1, only one tugboat is needed; otherwise, two tugboats are needed. Constraint
(2.8) defines the available set of tugboat style which can serve for ship i according to the
scheduling rules. Constraint (2.9) defines ym

ijkl = ym
klij = 1 when xijm = xklm = 1. Constraint

(2.10) guarantees that every tugboat can only serve for one operation at any time. Constraint
(2.11) is set to make sure that um

ijkl
= 1 when zm

ijkl
= 1. Constraint (2.12) guarantees that there

are at most one predecessor and successor for operation Oij on tugbo at m. Constraint (2.13)
simultaneously determines that the starting time of any operation has to be after the time
when its immediately preceding task finishes. Constraint (2.14) defines the processing time
for each task. Constraint (2.15) defines the set-up time for each operation Oij . Constraint
(2.16) simultaneously determines when tugboatm should return to the anchorage base: if the
sum of the sailing time from the finishing place of Oij to the base and the sailing time from
the base to the starting place of Oij ’s successor task on tugboat m (i.e., Okl) is less than the
time cost if m directly sails to Okl’s starting place and waits there until the task begins, then
tugboat m should return to the base; otherwise, m should sail directly to Okl’s starting place.
Constraint (2.17) specifies the binary property of the decision variables.

3. Proposed Hybrid Algorithm (PHA)

3.1. The Basic Idea of the Ant Colony Algorithm

Ant colony metaheuristic is a concurrent algorithm in which a colony of artificial ants coop-
erates to find optimized solutions of a given problem (see Boveiri [10]). The ant algorithm
was first proposed by Dorigo et al. [11] as a multiagent approach to the traveling salesman
problem (TSP), and it has been utilized successfully to many difficult discrete optimization n
problems such as job shop scheduling, vehicle routing, graph coloring, sequential ordering,
and network routing.

The inspiring natural process of ACS is the foraging behavior of ants. A colony of ants
can identify the shortest pathway from a food source to their anthill without using visual
cues; they communicate through an aromatic substance, called pheromone. While walking,
ants secrete pheromone on the ground and follow, in probability, the pheromone previously
laid by other ants. Ants are more likely to follow pathways marked by a larger accumulation
of pheromone from other ants that have previously walked that route. Since ant searching
a food source by shorter pathways will come back to the anthill sooner than ants traveling
via longer pathways, the shorter pathways will have a higher traffic density than those of
the longer ones. Hence, the pheromone accumulation will build up more rapidly on shorter
pathways than on longer ones. Consequently, the fast accumulation of pheromone on the
shorter pathwayswill cause ants to quickly choose the shortest routes. The described foraging
behavior of ants can be used to solve scheduling problems by simulation: the objective value
(e.g., flow time) corresponds to the quality of the food source (e.g., distance), artificial ants
searching for the solution space simulate real ants searching for their environment, and an
adaptive memory corresponds to the pheromone trail. In addition, the artificial ants are
equipped with a local heuristic function to guide their search through the set of feasible
solutions [1].



Mathematical Problems in Engineering 11

Start

Create ants

Put ants on an entry state

Select next state

Is it a final No

Deposit pheromone

Daemon activities

Evaporate pheromone

Is exit 
criterion 

End

Yes Yes

No

state? satisfied?

Figure 3: Flowchart of ant colony optimization.

The main procedure of the ant colony algorithm is as follows.

(a) Generate ant (or ants).

(b) Loop for each ant (until complete scheduling of tasks).

(i) Select the next task with respect to pheromone variables of ready tasks.

(c) Deposit pheromone on visited states.

(d) Daemon activities.

(e) Evaporate pheromone.

The flowchart of ant colony algorithm is illustrated as Figure 3.
However, the solutions were generated by each ant in the basic ant colony algorithm

by random, and those solutions may not be the optimal solutions or satisfactory solutions.
That makes the updating of the pheromone be done by random too, which may cause a lot
of time costs to get the optimal value, and that value may also be the local optima. To avoid
that phenomenon, the diversity of the population should be considered.

By that thought, we introduce the simulated annealing into the ant colony algorithm,
which can guarantee the quality of the search and avoid the phenomenon of the local optima.
Thus, the simulated annealing-based ant colony algorithm is proposed.

3.2. Procedure of the Proposed Algorithm

According to the analysis above, we introduce a simulated annealing-based ant colony algo-
rithm to solve the formulated tugboat scheduling problem. The basic procedure of the
algorithm is as Figure 4. In the algorithm, the ACO performs the role of simulation, while
the simulated annealing algorithm performs the role of searching for global optimization.

Step 1. Generate the initial tugboat scheduling plans (individuals) which act as representing
codes for the simulated annealing algorithm.
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Step 2. Generate new scheduling nodes used to apply for the ant colony algorithm.

Step 3. Apply the ant colony algorithm for the scheduling process.

Step 4. Compute the total operation time for all tugboats in the planning horizon as the key
indicator for the system.

Step 5. If the current temperature is less than the final temperature, then go to Step 9; else go
to Step 6.

Step 6. Reduce the temperature according to the predetermined rule.

Step 7. Let the individuals having better fitness be new parents.

Step 8. Based on the new parents, perform a new neighborhood search to get the new indi-
viduals.

Step 9. Output the best solution.
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3.3. Key Operations of the Algorithm

3.3.1. Ant Colony Optimization (ACO)

In the ant colony algorithm for solving the proposed problem, jobs are defined as ants and
resources are defined as nodes. The main procedure of ant colony optimization has been
discussed in Section 3.1, and in this section, two key operations of the ACO (i.e., initialization
of ants and updating of the pheromone) will be introduced.

(a) Initialization of Ants

According to the algorithm, a certain amount of ants have to be generated. In order to make
the schedules by which ants travel satisfy the requirements of the scheduling system, three
arrays were set in the algorithm: tourwhich represents tasks not yet operated; tournextwhich
represents the tasks to be operated in the next step; visitedwhich represents tasks having been
operated. All the ants can only choose the tasks for the next operation from the tournext array,
so that the feasibility of the schedule traveled by ants can be guaranteed. Then, we just need
to judge whether all the tasks have been traveled. Then the schedule generated by ants in the
visited is the schedule we want.

The selection of nodes during the algorithm is referenced by the roulette wheel. Thus
the state transit rule can be concluded as.

pij =

⎧
⎪⎪⎨

⎪⎪⎩

[
τij(t)

]α[1/Tij
]β

∑
s∈allowed

[
τij(t)

]α[1/Tij
]β

0.

(3.1)

In (3.1), Tij means the processing time of ship i by tugboat j, allowed = tournext.

(b) Updating of the Pheromone

After all ants of a generation have traveled all the tasks, compute the total operation times o
the tugboats and update the pheromone according to those values. In our research, we choose
the five ants with the minimal operation times to update the pheromone, and the updating
rules are as follows:

τij =
(
1 − ρ

)
τij + Vτij , (3.2)

Vτij =
Q

Tmin
. (3.3)

In (3.2), ρmeans the evaporation coefficient, Tmin in (3.3)means the minimal operation
times of all ants in the current generation, andQ is the quantity of pheromone in the unit path.

3.3.2. Simulated Annealing (SA)

The key operations in the simulated annealing include individual coding, initial individuals’
generation, and the neighborhood search scheme.
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Figure 5: Illustration of coding for an individual.

(a) Individual Coding

In this paper, the real integer method is adopted to code for an individual. As every ship may
experience at most 3 stages of operation, we set the number of columns as three times of the
number of ships. Assume that there are 4 ships to be served (ship 1, 2 do not have to shift
a berth, while ship 3, 4 will experience a shifting-berth operation) and 3 available tugboats,
then the coding expression of the individuals should be a 5 × (3 × 6) matrix, which can be
illustrated as Figure 5.

The first row of the coding representation means the service order for ships, and the
next two rows are the indexes of tugboats serving for ships in the first row. Note that each
index appears three times in the first row: if it is the first time an index appears, it means that
the ship is berthing; for the second time it appears, it may be a virtual or real shifting-berth
operation; otherwise, the unberthing operation. The fourth and fifth rows are descriptive
parts which tell us whether tugboat 1 and 2 return to the base after finishing the task.

As ship 1 and 2 do not have to shift a berth, the virtual shifting-berth operations are
proposed to keep the total operations three times of the number of ships. That can be
illustrated as the shadow parts with diagonal lines in Figure 5. Besides, if the ship style is 1,
then an index of tugboat is generated from the available tugboat set to fill in the cor-
responding second row, and the third row is zero (as shown in the shadow parts with
grids); otherwise, two indexes of tugboats are generated to fill in the two rows. Thirdly, as all
tugboats have to return to the base after finishing their last tasks, the corresponding symbols
in the fourth or fifth rows should be 1 (as the shadow parts with dots).

According to that individual coding, the service order for ships in Figure 5 is as
follows: ship 2 (berthing)—ship 2 (virtual shifting-berth)—ship 3 (berthing)—ship 2 (unber-
thing)—ship 1 (berthing)—ship 3 (shifting-berth)—ship 4 (berthing)—ship 3 (unberthing)—
ship 1 (virtual shifting-berth)—ship 4 (shifting-berth)—ship 1 (unberthing)—ship 4 (unber-
thing). The tugboat providing the berthing service for ship 2 is tugboat 1, and after finishing
the berthing service for ship 2, tugboat 1 returns to the anchorage base, and so on.

(b) Initial Individuals’ Generation

The procedure for generating the initial schedule can be described as Figure 6.
As we can see from Figure 6, the procedure for the initial individuals’ generation

mainly include three parts: randomly generating the service order for ships; allocating
the tugboat serving for ships; deciding whether tugboats should return to the base after
completing the operation.
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Figure 6: The generation procedure of the initial individuals.
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Figure 7: The neighborhood search scheme.

(c) Neighborhood Search Scheme

The procedure for the neighborhood search scheme can be concluded as Figure 7.
Given a solution p, a neighbor of p can be obtained by using the three-point interchang-

ing scheme proposed in this section. The main idea is as follows: randomly generate three
positions in the original solution, so that the original solution is divided into five parts; let a,
b, c, d, s be the four partial solutions of p; a temporary solution is obtained by interchanging a
and b, c and d; based on the three rows of the temporary solution, calculate part s′ according
to the rules expressed by (2.16).
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Figure 8: The infeasible solution generated by the three-point interchange.

However, during the neighborhood search process, the temporary solution may be an
infeasible solution. For example, the virtual shifting-berth operation (the shadow parts in
Figure 8) is after the unberthing operation, which is infeasible.

Thus it is necessary to modify the temporary solution. Steps for modifying the tem-
porary solution are as follows.

Step 1. Initialize p = 1.

Step 2. Judge if the second and third rows of the pth column are both zero.

(a) If both the values are zero, which means that the task in the pth column is a virtual
shifting-berth operation,

(i) search for two columns: one for the berthing operation for ship served in the
pth column; one for the unberthing operation for the same ship. Define the
places of the two columns as p1 and p2,

(ii) if p is less than p1, interchange values of the first three rows in the two col-
umns, then go to Step 3,

(iii) if p is larger than p2, interchange values of the first three rows in the two
columns, then go to Step 3.

(b) If the two values are not both zero, then go to Step 3.
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Table 1: Sailing times between each location.

P1 P2 P3 P4 P5 P6 P7 P8 M1 M2 B1 B2
P1 0 18 14 20 32 34 35 30 19 29 15 32
P2 18 0 23 15 31 33 27 35 21 33 12 35
P3 14 23 0 12 39 34 30 32 15 38 16 31
P4 20 15 12 0 35 38 31 39 12 31 18 34
P5 32 31 39 35 0 18 12 19 31 12 29 11
P6 34 33 34 38 18 0 13 15 34 11 36 15
P7 35 27 30 31 12 13 0 12 29 18 25 19
P8 30 35 32 39 19 15 12 0 33 15 39 12
M1 19 21 15 12 31 34 29 33 0 30 15 25
M2 29 33 38 31 12 11 18 15 30 0 28 16
B1 15 12 16 18 29 36 25 39 15 28 0 26
B2 32 35 31 34 11 15 19 12 25 16 26 0

Step 3. Judge if p is equal to 3 ∗ n:

(a) if p is equal to 3 ∗ n, then the modification is completed;

(b) else, set p = p + 1, and go to Step 2.

After being modified according to the steps introduced above, the temporary solution
can be changed to a new solution by deciding whether tugboats should return to the base
according to (2.16).

4. Computational Experiments

4.1. Experimental Data

To implement a comparison of the findings from the proposed algorithm, some experimental
data were randomly generated, details of which are as follows.

(a) Location data: the sailing times between each location (P1–P8, M1-M2, B1-B2) are
as Table 1. Therein, P1–P8 are locations of 8 berths; M1 is the location where ships
whose target berths P1–P4 meet tugboats at the entrance of port; M2 is the location
where ships whose target berths P5-P5meet tugboats at the entrance of port; B1 and
B2 are two anchorage bases of tugboats whose service area are P1–P4 and P5–P8,
respectively.

(b) Ship data: styles of ships are generated to S1, S2, S3, S4, and S5 which take up about
10%, 20%, 40%, 20%, and 10% of the total ships, berthing/unberthing times, loading
and unloading times of ships are normally distributed in N(35,25), N(300,1600),
and the berthing locations of ships are uniformly distributed to P1–P8.

(c) Tugboat data: quantities of the six kinds of tugboats in the two anchorage bases are
all one.
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Table 2: Results of the PHA versus existing scheduling rules.

Number of ships RCOM UCOM
PHA TSD FAT UWAT PHA TSD FAT UWAT

10 3743 4222 4181 4280 3743 4200 4156 4245
15 4983 5551 5504 5609 4951 5485 5456 5575
20 6800 7436 7357 7483 6705 7353 7242 7451
25 8481 9132 9030 9220 8405 8900 8858 9100
30 10012 11185 10993 11530 9988 11031 10920 11235

Table 3: Results from the proposed algorithm under two different operation modes.

Number of ships Total operation times of all tugboats Average operation times of all tugboats
RCOM UCOM GAP1 RCOM UCOM GAP2

10 3743 3743 0 312 312 0
15 4983 4951 32 415 413 3
20 6800 6705 95 567 559 8
25 8481 8405 76 707 700 6
30 10012 9988 24 834 832 2
1Operation times of all tugboats under the RCOM—values under the UCOM; 2average operation times of all tugboats under
the RCOM—values under the UCOM.

4.2. Experiments without the Shifting-Berth Operation

Suppose the basic data are as shown in Section 4.1, no shifting-berth operation exists and all
tugboats do not return to the anchorage base during the planning horizon, use the proposed
hybrid algorithm to solve the established tugboat scheduling problem, and then we can get
the performance comparisons of the hybrid algorithm with three existing scheduling rules
with different number of ships, which are shown in Table 2.

As we can see from Table 2, the PHA’s solved results are all far less than those from the
three existing scheduling rules. All those can fully describe the efficiency of the PHA. Besides,
the performance of the three scheduling rules reveals the same rules: FAT is superior to TSD,
and TSD is better than UWAT. That is because the FAT rule considers both the TSD andUWAT
rules, while the UWAT rule only considers the uniform scheduling of every tugboat but might
cause the postponement of the waiting time of ships for tugboats.

Besides, we can see from Table 3 that the difference between the two operation modes
increases from zero and then decreases to near zero. The reason for that phenomenon can
be concluded as follows: when the number of ships is small and the available tugboats are
abundant, the optimal solution is the scheduling scheme under the RCOM (as the solutions
under the UCOM include those under the RCOM, so the optimal solution and optimal value
of the modes are the same), which means there is no need to transfer tugboats from another
anchorage base; as the number of the ships increases and the tugboat resource becomes scarce,
the cost for ships to wait for unoccupied tugboats in another anchorage base is less than that
of waiting for busy tugboats in its own anchorage base, so the UCOM is better than RCOM;
while the number of ships is great and all tugboats in both anchorage bases are busy, there
is no point of transferring tugboats from another anchorage base, which means the RCOM is
better.

After the basic analysis above, we compare the operation times on whether tugboats
return to the anchorage base during the planning horizon, the results of which can be shown
as Table 4.
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Table 4: Comparisons between the total operation times on whether tugboats return to the base.

Number of ships

RCOM UCOM
Results if

tugboats do
not return to
the base (f1)

Results if
tugboats return
to the base (f2)

GAP∗
Results if

tugboats do
not return to
the base (f1)

Results if
tugboats return
to the base (f2)

GAP∗

10 3743 2675 39.93% 3743 2675 39.93%
15 4983 4005 24.42% 4951 3952 25.28%
20 6800 5285 28.67% 6705 5206 28.79%
25 8481 6575 28.99% 8405 6503 29.25%
30 10012 8007 25.04% 9988 7951 25.62%
∗Percentage that f1 is larger than that of f2, which can be calculated by (f1 − f2)/f2 × 100%.

Table 5: Results with different proportion of the shifting berth operation.

Number of ships Results with different proportion of the shifting-berth operation
0%1 5%2 GAP1a 10%3 GAP2b 15%4 GAP3c 20%5 GAP4d

10 2675 2845 6.36% 3076 13.04% 3224 20.52% 3415 27.66%
15 3952 4205 6.40% 4518 12.53% 4703 19.00% 4961 25.53%
20 5206 5485 5.36% 5824 10.61% 6121 17.58% 6452 23.93%
25 6503 6857 5.44% 7331 11.29% 7715 18.64% 8035 23.56%
30 7951 8381 5.41% 9122 12.84% 9423 18.51% 9731 22.39%
Average / / 5.79% / 12.06% / 18.85% / 24.61%
a(value of 2 − value of 1)/value of 1 × 100%; b(value of 3 − value of 1)/value of 1 × 100%; c(value of 4 − value of 1)/value of
1 × 100%; d(value of 5 − value of 1)/value of 1 × 100%.

Based on Table 4, we can see that the operation times if tugboats do not return to the
base are 30% larger than those if tugboats return to the base during the planning horizon.
That means if tugboats do not return to the base during the horizon, there exists at least 30%
of the total sailing routes which are ineffective sailing routes, which is infeasible and does not
coincide with the modern concept of green transportation.

4.3. Experiments with the Shifting-Berth Operation

In this section, sensitivity analysis of the three elements to the objective is to be made, and all
the experiments done are under the UCOMmode and based on the assumption that tugboats
can return to the anchorage base during the planning horizon.

(a) Sensitivity Analysis of the Proportion of the Shifting-Berth Operation

Assume that there are 0%, 5%, 10%, 15%, 20% of the total ships which have to experience the
shifting-berth operation, the minimal total operation times of all tugboats when the number
of ships is 10, 15, 20, 25, 30 are summarized in Table 5.

As we can see from Table 5, the GAPs (a, b, c, d) are all larger than the proportion
of the shifting-berth operation. That is because a single shifting-berth operation contains
an unberthing operation, a shift between the berths, and a berthing operation, thus needs
more tugboats’ resource than normal berthing and unberthing operations. So it is necessary
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Table 6: Results with different distribution characteristics of the handling operation times.

Number of ships
Results with different distribution characteristics of the handling
operation times
N(300, 1600)1 N(350, 2500)2 GAP1a N(400, 3600)3 GAP2b

10 2845 2815 −1.05% 2862 0.60%
15 4205 4240 0.83% 4200 −0.12%
20 5485 5522 0.67% 5488 0.05%
25 6857 6870 0.19% 6840 −0.25%
30 8381 8387 0.07% 8428 0.56%
Average / / 0.14% / 0.17%
a(value of 2 − value of 1)/value of 1 × 100%; b(value of 3 − value of 1)/value of 1 × 100%.

to reduce the number of shifting-berth operation in practice, so that the full utilization of
limited tugboat resources.

(b) Sensitivity Analysis of the Distribution Characteristics of the Handling Operation Times

Assume that the distribution characteristics of handling operation times of ships at berth are
N(300, 1600), N(350,2500), and N(400, 3600), the proportion of the shifting-berth operation is
5%. The results by the PHA are concluded in Table 6.

As we can see from Table 6, there is no obvious trend about the total operation times
according to the changing of the handling times of ships at berth. That is to say, the objective
function is not sensitive to the change of the handling times. The reason for that phenomenon
can be concluded as follows.

Compared with the operation times of tugboats, the handling times are much larger.
After completing a certain task, a tugboat can return to the base to have a rest and then sail
to its next target location. With the increase of the handling operation times, the wait times in
the base may also increase, which are not parts of the total operation times of tugboats. Thus,
the objective does not reveal obvious reaction to the change of the handling times.

(c) Sensitivity Analysis of the Tugboat Deployment Scheme

We then assume different deployment schemes of the available tugboats in the port (i.e.,
Scheme 1: the number of all types are 1; Scheme 2: the number of type 6 are 2, others are 1;
Scheme 3: the number of type 5 and 6 are 2, others are 1). The results solved by the PHA are
summarized in Table 7. Therein, the proportion of the shifting-berth operation is still 5%.

As Table 7 shows, the total operation times of all tugboats reveal a mild trend of
decrease as the number of tugboats deployed increases. That is to say, the total operation
times of tugboats can only be slightly reduced by simply increasing the number of tugboats
deployed, and the cost of increasing tugboats may well be larger than the time cost saved by
that. Under that circumstance, adding extra tugboats is not advised.

By the analysis, we can say that the objective is most sensitive to the proportion of
the shifting-berth operation, influenced slightly by the tugboat deployment scheme, and not
sensitive to the handling operation times.
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Table 7: Results with different tugboat deployment schemes.

Number of ships Results with different tugboat deployment schemes
Scheme 11 Scheme 22 GAP1a Scheme 33 GAP2b

10 2845 2833 −0.42% 2808 −1.30%
15 4205 4186 −0.45% 4159 −1.09%
20 5485 5421 −1.17% 5394 −1.66%
25 6857 6807 −0.73% 6785 −1.05%
30 8381 8325 −0.67% 8299 −0.98%
Average / / −0.69% / −1.22%
a(value of 2 − value of 1)/value of 1 × 100%; b(value of 3 − value of 1)/value of 1 × 100%.

5. Concluding Remarks

This paper formulated the tugboat scheduling problem as a multiprocessor task scheduling
problem (MTSP). The model considers factors of multi-anchorage bases, different operation
modes, and three stages of operations (berthing/shifting-berth/unberthing). A hybrid
simulated annealing-based ant colony algorithm is proposed to solve the addressed problem.
By the numerical experiments without the shifting-berth operation, the effectiveness were
verified, and the fact that more effective sailing may be possible if tugboats return to the
anchorage base timely was pointed out; by the experiments with the shifting-berth operation,
the paper proved that the objective is most sensitive to the proportion of the shifting-berth
operation, influenced slightly by the tugboat deployment scheme, and not sensitive to the
handling operation times.

Future work about the topic should be to extend the problem from the static situation
to a dynamic one, although it may be much more difficult but more meaningful.
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