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We consider multiagent consensus problems in a decentralized fashion. The interconnection
topology among the agents is switching and directed. The agent dynamics is expressed in
the form of a double-integrator model. Two different cases are considered: one is the leader-
following case and the other is the leaderless case. Based on graph theory and the common
Lyapunov function method, some sufficient conditions are established for the consensus stability
of the considered systems with the neighbor-based feedback laws in both leader-following case
and leaderless case, respectively. As special cases, the consensus conditions for balanced and
undirected interconnection topology cases can be established directly. Finally, two numerical
examples are given to illustrate the obtained results.

1. Introduction

In recent years, the coordination problem of multiple autonomous agents has drawn an
increasing attention. It is because there are many applications of multiagent systems in many
areas including cooperative control of unmanned air vehicles, flocking of birds, schooling for
underwater vehicles, distributed sensor networks, attitude alignment for cluster of satellites,
collective motion of particles, and distributed computations [1–5].

Although these practical backgrounds are different, the fundamental principles in
the coordination of multiple spacecraft, robots, and even animals are very similar, that is,
coordinating multiple agents to achieve a goal of the whole system by local information. As
a result, a critical problem for coordinated control is to design appropriate protocols and
algorithms such that the group of agents can reach consensus on the shared information
in the presence of limited and unreliable information exchange and dynamically changing
interaction topologies [6]. In [5], the author also pointed out that a key technology in
cooperative control is the problem of consensus. The investigated feedback scheme associated
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with those problems is inspired by the aggregates of individuals in nature. Reynolds first
proposed a computer animation model to simulate collective behaviors of multiple agents
in [2]. In the fields of system and control, the development of consensus theory is primarily
impelled by Vicsek’s particle swarm model mentioned in [3]. In [1], Jadbabaie et al. gave
a theoretical explanation of the consensus behavior of Vicsek’s model and proved that the
states of all the jointly connected agents converged to the same value or the value of a given
leader. Ren and Beard [6] extended the work of Jadbabaie et al. [1] to the case of directed
graphs and explored the minimum requirements to reach global consensus. Olfati-Saber
and Murray studied the average-consensus problem with strongly connected and balanced
directed topologies in [7], which is essentially the same problem as in [1, 6] for continuous-
time consensus scheme. Similar or generalized consensus problems have also been studied in
[8–12]. There are also many interesting results about the similar topic for stochastic complex
networks [13–15].

In real applications, the interacting topology between agents may change dynamically
since the communication links between agents may be unreliable due to disturbances and/or
subject to communication time delay. It is well known that switching of the communication
topology and communication time delays may lower the system performance and even
cause the network system to diverge or oscillate. Theoretically, the consensus in undirected
switching topology is much easier than that of directed switching topology. Recently, some
preliminary results have been reported to deal with the directed switching topology [16, 17].

Furthermore, with many practical applications, especially involving mechanical sys-
tems, the dynamics of agents is usually modeled as a double integrator ẍ = u. There are many
interesting agent-related works, such as in [18–20], involving double-integrator dynamics
under switching and undirected interconnection topology among the agents. Most existing
results are obtained under undirected interconnection topology. In directed topology case,
[21] discussed this topic under the simple fixed topology. In [9], the authors pointed out that
the system matrix related to this multiagent system with double-integrator dynamics does
not satisfy the properties related to stochastic matrix and the norm-based method proposed
by [1]may fail for the double-integrator form agent dynamic. Therefore, the Lyapunov-based
approach is often chosen to solve consensus problem of multi-agent systems with double
integrator model.

Motivated by the above works, we study a group of agents with the double-in-
tegrator dynamics. The main purpose of this paper is to develop a decentralized control
strategy to reach the global consensus of the multi-agent systems under directed switching
interconnection topology among the agents. Two different cases are considered: one is the
leader-following case and the other is the leaderless case. First, we establish a sufficient
consensus condition by constructing a parameter-dependent common Lyapunov function in
leader-following formulation. The established consensus condition is expressed as a reduced-
order Lyapunov matrix inequalities. As commonly known, it is not an easy task to construct
a common Lyapunov function for a switching system, let alone the parameter-dependent
common Lyapunov function. As for the leaderless case, the common Lyapunov method
cannot be used directly. By using the Schur orthogonal transformation, we decomposes
the group tracking dynamics into two subsystems: one represses the leader and the other
represses a leader-following subsystem. Then, a sufficient condition is established by
applying the obtained leader-following consensus condition to leader-following subsystem.
As special cases, we can obtain consensus conditions directly for the multi-agent system
with undirected and balanced switching interconnection topology. The jointly connected
convergence condition can guarantee that the multi-agent with linear dynamical model
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achieves consensus. But for double-integrator model, we construct a counterexample to show
that the jointly connected condition may not guarantee that the multi-agent system achieves
consensus, which implies that the proposed globally reachable convergence conditionmay be
moderatable and acceptable. By using similar analysis method, we also can probe consensus
problems of [9, 18, 19] with switching and directed interconnection topology. Finally, the
numerical examples also show that the established consensus condition is solvable.

The rest of the paper is organized as follows. In Section 2, we give a formulation of
the coordination problem with help of graph theory. Then in Section 3, some results on the
consensus stability are obtained for the multi-agent system with fixed and varying inter-
connection topologies in the leader-following case, while in Section 4, the leaderless case
is studied. In Section 5, two simulation examples are presented to illustrate our theoretical
results. Finally, concluding remarks with discussions of the future work are given in Section 6.

The notation of this paper is standard. R is the real number set. I is an identity matrix
with compatible dimension. AT denotes as transpose of a matrix A. For symmetric matrices
A and B, A > (≥)B means A − B is positive (semi-)definite. λ(A) represents an eigenvalue
ofA. For symmetric matricesA, λmin(A) and λmax(A) represent the minimum and maximum
eigenvalue of A, respectively. ‖ • ‖ denotes the Euclidean norm. ⊗ denotes the Kronecker
product, which satisfies (1) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD); (2) if A ≥ 0 and B ≥ 0, then
A ⊗ B ≥ 0.

2. Problem Formulation

Stability analysis of the group of agents is based on several results of algebraic graph theory.
In this section, we first introduce some basic concepts and notations in graph theory that will
be used throughout this paper. More details are available in [22].

We n by G = {V, ε, A} with an index set I = {1, 2, . . . , n}, where V = {v1, v2, . . . , vn}
is the set of vertices, ε ⊂ V × V is the set of edges of the digraph, and each edge is denoted by
(vi, vj) ∈ ε, i, j ∈ I, and a weighted adjacency matrix A = [aij] has nonnegative adjacency
elements aij . Throughout this paper, we assume that all the graphs have no edges from a
node to itself. A weighted graph is called undirected if for all (vi, vj) ∈ ε ⇒ (vj , vi) ∈ ε and
aij = aji. Otherwise, the graph is called a directed graph or digraph. The adjacency elements
associated with the edges of the graph are positive, that is aij > 0 ⇔ (vi, vj) ∈ ε. Obviously,
we also have aij = 0 ⇔ (vi, vj) /∈ ε. A path from vertex vi to vertex vj is a sequence of distinct
vertices starting with vi and ending with vj such that consecutive pair of vertices make an
edge of digraph. If there is a path from one node vi to another node vj , then vj is said to
be reachable from vi. If a node vi is reachable from every other node of the digraph, then it
is said to be globally reachable. Obviously, every node of an undirected connected graph is
globally reachable.

The relationships between n agents can be conveniently described by a simple digraph
G. We denote the set of all neighbor vertices of vertex vi by Ni = {j | (vi, vj) ∈ ε}.
Neighboring relations reflect physical proximity between two agents, or the existence of a
communication channel [6]. Its degree matrix D = diag{d1, . . . , dn} ∈ Rn×n is a diagonal
matrix, where diagonal elements di =

∑
j∈Ni

aij for i = 1, . . . , n. Then the Laplacian matrix of
G is defined as

L = D −A. (2.1)
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The following lemma relates the Laplacian matrix with its directed graph, as well as
supplying an algebraic characterization. It is well known that the Laplacian matrix captures
many interesting properties of the graphs. The result of Lemma 2.1 can be found in [6].

Lemma 2.1. The weighted graph Laplacian matrix L associated with graph G has at least one zero
eigenvalue, and all of the nonzero eigenvalues are located on the open right half plane. Furthermore, L
has exactly one zero eigenvalue if and only if the directed graph G has a globally reachable node.

Moreover, for a digraphwith a globally reachable node, the n-dimensional eigenvector
associated with the single zero eigenvalue is the vector of ones, 1 := (1, 1, . . . , 1)T . For
undirected weight graph G, L is symmetric, positive and semidefinite, and all eigenvalues
of L are real and nonnegative.

A weighted graph G = (V, ε, A) is said to be balanced if

n∑

j=1

aij =
n∑

j=1

aji, i = 1, 2, . . . , n, (2.2)

Any undirected weighted graph is balanced. Furthermore, a weighted graph is balanced if
and only if 1TL = 0 (see [7]).

Let ε̃ be the set of reverse edges of G obtained by reversing the order of all the pairs in
ε. The mirror of G is denoted by an undirected graph in the form Ĝ = (V, ε̂, Â) with the same
set of nodes of G, the set of edges ε̂ = ε∪ ε̃, and the symmetric adjacency matrix Â = [âij]with
elements âij = (aij + aji)/2. The Laplacian matrix for mirror graph Ĝ is L(Ĝ) = (1/2)(L(G) +
LT (G)) if and only if G is balanced graph [7].

In what follows, we mainly consider a graph G associated with the system with n
agents (labeled by vi, i = 1, 2, . . . , n) and one leader (labeled by v0). A simple and directed
graph G describing the topology relation of these n followers, and G contains graph G and v0
with the directed edges from some agents to the leader describes the topology relation among
all agents. In other words, we denote a weighted digraph of order n + 1 by G = {V, ε, A},
where V = {v0, v1, . . . , vn}, and the weighted matrix has the following form:

A =

(
0 0

b A

)

, b = (b1, b2, · · · , bn)T ∈ Rn, A =
(
aij
) ∈ Rn×n. (2.3)

The element aij > 0 represents that agent i is connected to agent j, and bi > 0 represents
that agent i is connected to leader. Meanwhile, aij = 0 and bi = 0 represents that agent i is
not connected to agent j and leader, respectively. The induced subgraph G = {V, ε, A} of G
represses the interconnection topology among n following agents.

For the multi-agent system under consideration, the relationships between neighbors
can change over time and the interconnection topology may be dynamically changing. Let
t1 = 0, t2, t3, . . . be an infinite time sequence at which the interconnection graph of the
consideredmulti-agent system switches. Usually, it is assumed that chattering does not occur;
that is, there is a constant τ0 > 0, often called dwell time, with ti+1 − ti ≥ τ0, for all i.
Moreover, we assume that only finite possible interconnection topologies can be switched.
In the leaderless case, denote S = {G1,G2, . . . ,GN} as a set of the graphs of all possible
topologies, while in the leader-following case, denote S = {G1,G2, . . . ,GN0

} as a set of the
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graphs of all possible topologies. Denote P = {1, 2, . . . ,N} and P0 = {1, 2, . . . ,N0} as index
sets, respectively.

In this paper, we intend to coordinate n mobile agents with each agent expressed in
the form of a double integrator:

ṙi = pi,

ṗi = ui,
i = 1, . . . , n, (2.4)

where ri ∈ Rm is the position of agent i, pi ∈ Rm its velocity and ui ∈ Rm its control inputs. In
the leader-following case, the dynamics of the leader is taken as

ṙ0 = p0

ṗ0 = a0(t),
(2.5)

where r0 ∈ Rm and p0 ∈ Rm are the position and velocity vectors of the leader, respectively,
and a0(t) ∈ Rm is a known input, which may be regarded as some given policy known to all
the agents. Particularly, a0(t) ≡ 0 expresses that the leader moves in constant velocity.

The nmobile agents are said to achieve global consensus if for any given initial values
ri(0) and pi(0) (i = 1, 2, . . . , n), limt→+∞ (ri(t)−rj(t)) = 0 and limt→+∞ (pi(t)−pj(t)) = 0 for any
i, j = 1, 2, . . . , n. Thus, in the leader-following case, the multi-agent system achieves global
consensus if and only if limt→+∞ (ri(t) − r0(t)) = 0 and limt→+∞ (pi(t) − p0(t)) = 0 for any
initial values.

The control law is said to beneighbor control law or local control law if all the control
inputs ui only depend on the states of agent i and its neighbors. We are interested in using
neighbor control law to solve the consensus problem. To this end, the controller ui of agent
i, regarded as node i in a graph, requires state information from a subset of the agent’s
flockmates, called the neighbor set Ni and defined as above. There are two cases considered
for multi-agent system as follows.

Leader-Following Case

For any i ∈ I, take the local control law, which is neighbor-based feedback law as follows:

ui = a0(t) − κ
(

∑

j∈Ni(t)
aij(t)

(
ri − rj

)
+ bi(t)(ri − r0)

)

−κγ
(

∑

j∈Ni(t)
aij(t)

(
pi − pj

)
+ bi(t)

(
pi − p0

)
)

,

(2.6)

where κ is considered as a “control” parameter, which is positive constant and will be
determined later, and γ is a positive weighted parameter. The set of switching interconnection
topology graph is assumed to beGl = {V, εl, Al}, l ∈ P0, where theAl has the following form:

Al =

(
0 0

bl Al

)

, bl =
(
b
(l)
1 , b

(l)
2 , . . . , b

(l)
n

)T ∈ Rn, Al =
(
a
(l)
ij

)
∈ Rn×n. (2.7)
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In time t, the interconnection topology graph is assumed to be switched to Gl, l ∈ P0, so aij(t)
and bi(t) are chosen by aij(t) = a

(l)
ij and bi(t) = b

(l)
i .

Denote sj = rj − r0 and qj = pj − p0. Take s := (sT1 , . . . , s
T
n)

T ∈ Rmn, q := (qT1 , . . . , q
T
n)

T ∈
Rmn, and u := (uT1 − aT0 , uT2 − aT0 , . . . , uTn − aT0 )

T ∈ Rmn. Then error dynamics of closed system
(2.4)–(2.6) can be rewritten as

ṡ = q,

q̇ = uσ = −κ(Hσ ⊗ Im)s − κγ(Hσ ⊗ Im)q,
(2.8)

where Hσ = Lσ + Bσ , σ : [0,+∞) → P0 = {1, 2, . . . ,N0} is a piecewise constant switching
signal with successive times when the topology of graph G switches. Lσ is the Laplacian
matrix of the switching graph G consisting of n vertices (presenting agents 1, . . . , n), and Bσ
is a diagonal matrix whose i diagonal entry is bi(t) at time t.

Leaderless Case

Because there is no leader dynamics (2.5), take the local control law for any i ∈ I as follows:

ui = −κ
∑

j∈Ni(t)

aij(t)
(
ri − rj

) − κγ
∑

j∈Ni(t)

aij(t)
(
pi − pj

)
. (2.9)

Let r := (rT1 , . . . , r
T
n )

T and p := (pT1 , . . . , p
T
n)

T . Then we can rewrite the closed-loop system (2.4)
and (2.9) as

ṙ = p,

ṗ = uσ = −κ(Lσ ⊗ Im)r − κγ(Lσ ⊗ Im)p,
(2.10)

where σ : [0,+∞) → P = {1, 2, . . . ,N} is a piecewise constant switching signal to describe
the switch of the interconnection graph G. The aij(t) is chosen by aij(t) = a

(l)
ij , l ∈ P.

The next lemma shows well-known results and will be used later, which is given in
[23].

Lemma 2.2. Suppose that a symmetric matrix is partitioned as

(
C1 C2

CT
2 C3

)

, (2.11)

where C1 and C3 are square. This matrix is positive definite if and only if C1 is positive definite and
C3 − CT

2C
−1
1 C2 is positive definite.

In what follows, we first focus on the analysis of the leader-following case and then
study the leaderless case in a similar trace.
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3. Leader-Following Case

In this section, we concentrate on the analysis of the multi-agent systems with a leader. If
the information of the input a0(t) can be used in local control design, then we can prove that
although the leader keeps changing, the agents can follow the leader that is, consensus is
achieved.

Using neighbor-based feedback law (2.6), the error dynamics system (2.8) will be
expressed in a compact form as follows:

ẋ = (Fσ ⊗ Im)x, (3.1)

where

x =

(
s

q

)

, Fσ =

(
0 I

−κHσ −κγHσ

)

. (3.2)

The interconnection topology graph is Gσ(t), and the interconnection graphs asso-
ciated with all followers are Gσ(t).

Note that Fσ is not directly related to a stochastic matrix, and therefore, the method
reported in [1] cannot be applied directly. In what follows, we will propose an approach
based on common Lyapunov function for the system (3.1) to demonstrate the convergence of
the dynamics system (3.1).

Now we give the main result in the leader-following case as follows.

Theorem 3.1. Suppose that the interconnection graph is connected for any interval [tj , tj+1). If there
exist a positive definite matrix P 1 and a positive constant μ such that

HT
l P 1 + P 1Hl ≥ μI, l ∈ P0, (3.3)

and taking a constant

κ >
2
μγ2

λmax

(
P 1

)
, (3.4)

then the local control law (2.6) can guarantee that multi-agent system (2.4), (2.5) achieves consensus
for any given initial condition r(0) and p(0).

Proof. To prove the theorem, we consider the dynamics in each interval at first. Note that, in
any interval (say [tj , tj+1)), the interconnection topology does not change. Therefore, Fσ(t) is
a constant matrix for t ∈ [tj , tj+1) for any j ≥ 0, and then the solution to (3.1) is well defined.
Thus, we can assume that σ(t) = l, l ∈ P0, t ∈ [tj , tj+1). Choose matrix P̃1 as

P̃1 =

⎛

⎝
2P 1 γP 1

γP 1 γ2P 1

⎞

⎠. (3.5)
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We can verify that P̃1 is positive definite by applying Lemma 2.2. Consider a common Lya-
punov function V (x) = xT (P̃1 ⊗ Im)x, where P̃1 is defined in (3.5). Then, for any l ∈ P0 which
corresponds to interval [tj , tj+1), we have

V̇ (x)|(3.1) = xT
[(
FTl ⊗ Im

)(
P̃1 ⊗ Im

)
+
(
P̃1 ⊗ Im

)
(Fl ⊗ Im)

]
x

= xT
[(
FTl P̃1 + P̃1Fl

)
⊗ Im

]
x := −xT (Ql ⊗ Im)x,

(3.6)

where

Ql =

⎛

⎝
κγ
(
HT

l
P 1 + P 1Hl

)
κγ2

(
HT

l
P 1 + P 1Hl

)
− 2P 1

κγ2
(
HT

l
P 1 + P 1Hl

)
− 2P 1 κγ3

(
HT

l
P 1 + P 1Hl

)
− 2γP 1

⎞

⎠. (3.7)

Note that

(
κγ κγ2

κγ2 κγ3

)

⊗
(
HT

l P 1 + P 1Hl − μI
)
≥ 0. (3.8)

Then we have

Ql ≥ Q :=

⎛

⎝
κγμI κγ2μI − 2P 1

κγ2μI − 2P 1 κγ3μI − 2γP 1

⎞

⎠. (3.9)

By using Lemma 2.2, (3.4) guarantees that matrix Q is positive definite.
In addition, the maximum eigenvalue of P̃1 is

λmax

(
P̃1
)
=

2 + γ2 + 2
√
1 + γ4

2
λmax

(
P 1

)
,

min
xT (Ql ⊗ I)x
xT
(
P̃1 ⊗ I

)
x
≥ λmin(Q)

λmax

(
P̃1
) .

(3.10)

Let β := λmin(Q)/2λmax(P̃2). Then, we have V̇ (x) ≤ −2βV (x), which implies V (x) ≤
V (x(0))e−2βt. Moreover, we have

‖x(t)‖ ≤
√
V (x)

√

λmin

(
P̃1
) ≤

√
V (0)

√

λmin

(
P̃1
)e

−βt ≤

√

λmax

(
P̃1
)

√

λmin

(
P̃1
) ‖x(0)‖e−βt. (3.11)

Thus we have limt→+∞ x(t) = 0 with at least an exponent rate β. The proof is now completed.
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Remark 3.2. Obviously, the consensus problem of closed-loop multi-agent system (2.4), (2.5)
and (2.6) is equivalent to stability problem of error system (3.1). The closed-loop multi-
agent system and the error system are both 2n-order systems, and the consensus condition
(3.3) given in Theorem 3.1 is n-order Lyapunov matrix inequalities. Thus, the established
consensus condition is a reduced order condition. In many applications, the system normally
switches in finite model. The assumption that the system switches only in finite model is
often used. Because the interconnection topology is modeled by weighted digraph, different
weight will lead different interconnection topology. Although the set of nodes and the set of
possible edges are finite, the set of possible interconnection topologymay be infinite, but from
the point of mathematics, the assumption that the index set P is finite in Theorem 3.1 may be
not necessary. From the proof of Theorem 3.1, we can also obtain the result of Theorem 3.1 by
the assumption that condition (3.3) is satisfied for any element of an infinite index set P.

Note that the matrixH = L + B plays a key role in the convergence analysis of system
(3.1). A matrix is said to be a positive stable matrix if all its eigenvalues have positive real
parts. The matrixH = L + B is positive stable if and only if node v0 is globally reachable in G
(see [18]).

Of course, the result of Theorem 3.1 can be applied to fixed topology case directly.
BecauseH is positive stable, there exists a positive definite matrix P 2 ∈ Rn×n such that

HTP 2 + P 2H = I. (3.12)

Therefore, we can obtain the following corollary for fixed topology case.

Corollary 3.3. Suppose the interconnection topology G is fixed. If node v0 is globally reachable in G
and the constant κ satisfies

κ >
2
γ2
λmax

(
P 2

)
, (3.13)

then the local control law (2.6) can guarantee that system (2.4), (2.5) achieves consensus for any given
initial condition r(0) and p(0).

Moreover, let λi(H) = αi + jβi (i = 1, 2, . . . , n) be ith eigenvalue ofH. A necessary and
sufficient condition for fixed topology case obtained by [21] is given as follows. The local
control law (2.6) can guarantee that the multi-agent system in leader-following case achieves
consensus for any given initial condition r(0) and p(0) if and only if node v0 is globally
reachable in G and the constants κ and γ satisfy

κ >
1
γ2

max
i

β2i
αi
[
α2i + β

2
i

] . (3.14)

The assumption that node v0 is globally reachable in G can guarantee that αi > 0. For
any given γ > 0, αi > 0, and βi, it is not difficult to see (3.14) can be satisfied for larger enough
κ. Obviously, (3.14) always holds for any γ > 0, κ > 0 if all βi = 0. When the interconnection
graphs G associated with all followers are undirected and node v0 is globally reachable in G,
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all eigenvalues ofH are real and positive (see [9]). Thus, in this fixed undirected case, multi-
agent system (2.4)–(2.6) achieves consensus for any given initial condition r(0) and p(0) if
and only if node v0 is globally reachable in G.

Consider the special case that the graph Gσ associated with all followers is balanced.
The matrix Lσ + LTσ is positive semidefinite. Moreover, we have (see [18]).

Lemma 3.4. Suppose Gl is balanced. ThenHT
l
+Hl is positive definite if and only if node v0 is globally

reachable in Gl.

Based on Lemma 3.4 and the fact that the set P0 is finite, define

λ1 : =
1
2
min
l∈P0

{
λmin

(
HT

l
+Hl

) | node 0 is globally reachable of Gl and Gl is balanced
}
> 0

(3.15)

which is fixed and depends directly on the constants a(l)ij and β
(l)
i for i, j = 1, . . . , n and

l = 1, 2, . . . ,N. Obviously, if all the interconnection graphs Gσ associated with followers
are undirected and node v0 is globally reachable in Gσ , λ1 can be expressed as λ1 =
minp∈P0{λmin(Hl)}. Now we propose following the corollary for the balanced graph case.

Corollary 3.5. In any interval [tj , tj+1), suppose that node v0 is globally reachable in the inter-
connection graph Gl, and Gl associated with all followers is balanced. Taking a constant

κ >
1

γ2λ1
, (3.16)

then multi-agent system (2.4)–(2.6) achieves consensus for any given initial condition r(0) and p(0).

Proof. According to Lemma 3.4 and the definition of λ1, we have

HT
l I + IHl ≥ 2λ1I. (3.17)

Then we can obtain the corollary directly by using the result of Theorem 3.1.

Because the interconnection graph considered in this paper is weighted graph,
two graphs with same edge set and different weighted adjacency matrices are different
interconnection graphs. Although the node set and edge are finite, the set of possible
interconnection graphmay be infinite. For the case that all the graphs Gl, l ∈ P0 are associated
with all followers are balanced and the switching index set P0 is infinite, we also can prove
that multi-agent system achieves consensus by only assumption that there exists a positive
constant amin such that all nonzero weighted factors a(l)ij , b

(l)
i are equal or greater than amin.

To probe the consensus stability condition in this case, let Γ0 = {Gp, p ∈ P0}
denote the class of all possible interconnection graphs with the following properties: (1)
v0 is globally reachable node; (2) the interconnection graph Gp related to all followers is
balanced; (3) all constant weighted factors aij , bi are equal or greater than a positive constant
amin. P0 is index set of Γ0, which is infinite set. Let Γ̃0 denote the class of all possible
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nonweighted interconnection graphs with the properties: (1) v0 is globally reachable node;
(2) the interconnection graph G related to all followers is undirected; (3) all nonzero weights
are 1.

For any graph G ∈ Γ0, we construct a related graph G̃ by replacing all directed edges
between all follower agents with undirected edges and all nonzero weights with 1. Because v0
is globally reachable node in the interconnection graph G, v0 is also globally reachable node
in G̃. Thus, we have G̃ ∈ Γ̃0. Moreover,H(G̃) = B(G̃)+L(G̃) is symmetric and positive definite
by Lemma 3.4. Because of the finiteness of node set and edge set, Γ̃0 is a finite set. Define

λ̃1 := min
G̃∈Γ̃0

{
λmin

(
H̃
(
G̃
))}

, (3.18)

which is fixed, and λ̃1 > 0.
On the other hand, consider a weighted graph Ĝ with same node set and edge set as

G̃l. In addition, its weight of edge (i, j) is taken as (aij + aji)/2 − amin ≥ 0 and weight of edge
(0, i) is taken as 2bi − amin ≥ 0. It is not difficult to see that

H
(
Ĝ
)
= B

(
Ĝ
)
+ L
(
Ĝ
)

= 2B
(
G
)
+ L
(
G
)
+ LT

(
G
)
− amin

[
B
(
G̃
)
+ L
(
G̃
)]

= H
(
G
)
+HT

(
G
)
− aminH

(
G̃
)
.

(3.19)

Noticing thatH(Ĝ) is symmetric and positive semidefinite matrix, we have

H
(
G
)
+HT

(
G
)
≥ aminH

(
G̃
)
≥ aminλ̃1I. (3.20)

Similarly, we can get the following result.

Corollary 3.6. Suppose that the interconnection graph Gσ(t) of any interval [tj , tj+1) belongs in Γ0.
Take a constant

κ >
2

aminγ2λ̃1
. (3.21)

Then the local control law (2.6) can guarantee that the multi-agent system in leader-following case
achieves consensus for any given initial condition r(0) and p(0).
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4. Leaderless Case

In this section, similar to the analysis given in the last section, we probe the consensus
problem for leaderless case. The involved interconnection graph isG instead of G. The closed-
loop system (2.10) will be expressed in a compact form as follows:

ẋ = (Fσ ⊗ Im)x (4.1)

with

x =

(
r

p

)

, Fσ =

(
0 I

−κLσ −κγLσ

)

. (4.2)

Noticing that vector 1 is the eigenvector of the Laplacian matrix Lσ corresponding to
its zero eigenvalue by Lemma 2.1, we choose an orthogonal matrix with form

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
n

∗ · · · ∗
1√
n

∗ · · · ∗
...

...
...

...

1√
n

∗ · · · ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.3)

where ∗ denotes the other entries in this matrix. We have

UTLσU =

⎛

⎝
0 Bσ

0 Lσ

⎞

⎠, (4.4)

where Bσ ∈ R1×(n−1), Lσ ∈ R(n−1)×(n−1). Taking s = UTr and q = UTp, system (4.1) is equivalent
to be described by

ṡ = q

q̇ =

⎡

⎣

⎛

⎝
0 −κBσ
0 −κLσ

⎞

⎠ ⊗ Im
⎤

⎦s +

⎡

⎣

⎛

⎝
0 −κγBσ
0 −κγLσ

⎞

⎠ ⊗ Im
⎤

⎦q.
(4.5)

For convenience, set

ξ0 = s1,

ξ1 =
(
sT2 , s

T
3 , . . . , s

T
n

)T
,
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ψ0 = q1,

ψ1 =
(
qT2 , q

T
3 , . . . , q

T
n

)T
.

(4.6)

Then the whole system decomposes into two subsystems as follows: one is

ξ̇1 = ψ1,

ψ̇1 = −κ
(
Lσ ⊗ Im

)
ξ1 − κγ

(
Lσ ⊗ Im

)
ψ1,

(4.7)

and the other one is

ξ̇0 = ψ0,

ψ̇0 = −κ
(
Bσ ⊗ Im

)
ξ1 − κγ

(
Bσ ⊗ Im

)
ψ1.

(4.8)

Notice that all eigenvalues of the matrix Lσ are eigenvalues of Lσ from (4.4), which means all
of the nonzero eigenvalues of Lσ are located on the open right half plane by Lemma 2.1. If the
graph has a globally reachable node, the rank of Lσ is n − 1, and therefore all the eigenvalues
of matrix Lσ are located on the open right half plane, which implies matrix Lσ is positive
stable matrix. Now we give the main result in leaderless case as follows.

Theorem 4.1. Suppose that the interconnection graph has a globally reachable node for any interval
[tj , tj+1). If there exist a matrix U1 ∈ Rn×(n−1), a positive definite P 3 ∈ R(n−1)×(n−1), and a positive
constant μ such that

UT
1 1 = 0,

UT
1U1 = In−1,

(
UT

1LlU1

)T
P 3 + P 3

(
UT

1LlU1

)
≥ μI, l ∈ P,

(4.9)

and taking a constant

κ >
2
μγ2

λmax

(
P 3

)
, (4.10)

then the local control law (2.9) can guarantee that the multi-agent system in leaderless case achieves
consensus for any given initial condition r(0) and p(0).

Proof. Take U = ((1/
√
n)1, U1). Due to UT

1 1 = 0 and UT
1U1 = In−1, it is easy to know that U is

an orthogonal matrix and satisfies (4.4). Because the interconnection graph Gl has a globally
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reachable node, Ll = UT
1LlU1 is positive stable matrix. Applying the result of Theorem 3.1 to

system (4.7), we have

lim
t→∞

(
ξ1

ψ1

)

= 0. (4.11)

Noticing thatUT1 = (
√
n, 0, . . . , 0)T , we have

r(t) − 1√
n
ξ0(t)1 = U

(

s − 1√
n
ξ0(t)UT1

)

= U

(
0

ξ1(t)

)

−→ 0 (t −→ +∞),

p(t) − 1√
n
ψ0(t)1 = U

(

q − 1√
n
ψ0(t)UT1

)

= U

(
0

ψ1(t)

)

−→ 0 (t −→ +∞),

(4.12)

which imply limt→+∞ (ri(t) − rj(t)) = 0 and limt→+∞ (pi(t) − pj(t)) = 0 for any i, j = 1, 2, . . . , n.
This completes the proof.

Similarly, consider the special case that all the interconnection graphs Gσ are balanced.
Due to 1TLσ = Lσ1 = 0 for balanced graph Gσ , we have

UTLσU =

(
0 0

0 Lσ

)

, Lσ ∈ R(n−1)×(n−1), (4.13)

whereU is orthogonal matrix having form (4.3). The next lemma is given for L
T

σ + Lσ .

Lemma 4.2. If Gσ is balanced and has a globally reachable node, then L
T

σ + Lσ is positive definite.

Proof. 1/2(LTσ +Lσ) is the Laplacian matrix of the mirror graph of Gσ . Because Gσ is balanced
and has a globally reachable node, the mirror graph is undirected and connected. Therefor,

1/2(LTσ + Lσ) is positive semidefinite and its rank is n − 1. From (4.13), we have L
T

σ + Lσ is
positive definite.

Based on Lemma 4.2 and the fact that the set P is finite, define

λ2 := min
l∈P

{
1
2
λmin

(
L
T

l + Ll
)
| Gl is balanced and has a globally reachable node

}

> 0.

(4.14)

λ2 is also well defined. From (4.13), λ2 is equivalent to be expressed as

λ2 = min
l∈P

{
1
2
λ2
(
LTl + Ll

) | Gl is balanced and has a globally reachable node
}

> 0,
(4.15)
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where λ2(LTl +Ll) is the second small eigenvalue of LTl +Ll. Moreover, if all the interconnection
graphs Gσ associated with any time interval are undirected and connected, then we have
λ2 = minl∈P {λ2(Ll)}. For balanced graph case, the following corollary is similarly obtained
as in Corollary 3.5.

Corollary 4.3. In any interval [tj , tj+1), suppose that the interconnection graph Gσ(t) is balanced and
has a globally reachable node. Taking a constant

κ >
1

γ2λ2
, (4.16)

then the local control law (2.9) can guarantee the multi-agent system in leaderless case achieves
consensus for any given initial condition r(0) and p(0).

Similarly, denote by Γ = {Gp, p ∈ P} the class of all possible interconnection graphs
with the following properties: (1) the interconnection graph Gp is balanced and has a globally
reachable node; (2) all constant weighted factors aij are equal or greater than a positive
constant amin. P is index set of Γ, which is infinite set. Let Γ̃ denote the class of all possible
nonweighted interconnection graphs with the properties that the graph is balanced and
connected. Thus Γ̃ is a finite set. Define

λ̃2 := min
G̃∈Γ̃

{
λ2
[
LT
(
G̃
)
+ L
(
G̃
)]}

, (4.17)

which is fixed, and λ̃2 > 0. By applying similar analysis of leader-following case, we propose
the following result directly.

Corollary 4.4. Suppose that any interconnection graph Gσ(t) associated with interval [tj , tj+1)
belongs in Γ. Take a constant

κ >
2

aminγ2λ̃2
. (4.18)

Then the local control law (2.6) can guarantee that the multi-agent system in leader-following case
achieves consensus for any given initial condition r(0) and p(0).

Remark 4.5. We define the center of the multi-agent system as r = (1/n)
∑n

i=1ri. The velocity
of the center is expressed as p = (1/n)

∑n
i=1pi. If all the interconnection graphs Gσ associated

with any time interval are balanced, the dynamics of center is given by
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ṙ =
1
n

n∑

i=1

ẋi =
1
n

n∑

i=1

vi = p,

ṗ =
1
n

n∑

i=1

ṗi =
1
n

n∑

i=1

ui,

=
1
n

n∑

i=1

⎡

⎣−κ
∑

j∈Ni

aij
(
ri − rj

) − κ
∑

j∈Ni

aij
(
pi − pj

)
⎤

⎦ = 0.

(4.19)

Then, we can get that

p(t) = p(0) =
1
n

n∑

i=1

pi(0) =
1√
n
ψ0(t),

r(t) = r0(0) + p(0)t =
1√
n
ξ0(t).

(4.20)

The center r of the closed-loop system (2.10) will move at a constant speed (1/n)
∑n

i=1pi(0),
which is the average initial velocity of all agents. The position and velocity of every agent
will tend to the position and velocity of center, respectively, which means that the multi-agent
network achieves consensus.

Remark 4.6. If the dynamics of the agent is linear, that is, ṙ = ui, and the interconnection
graph is jointly connected, as pointed out in the local control law can guarantee the multi-
agent system achieves consensus [1, 8]. But for double-integratormodel, the jointly connected
condition may not guarantee that the multi-agent system achieves consensus. We propose
a counterexample as follows. Thus the assumption that the interconnection graph has a
globally reachable node in many references and also in this paper may be moderatable and
acceptable.

Counterexample 1

The multi-agent system contains two agents, labeled by agent 1 and agent 2. Without loss of
generality, we assume m = 1. For any positive constant α, let t0 = 0, t1, t2, . . . be an infinite
time sequence, which satisfies t2k+1 = t2k + 1 and t2k+2 = t2k+1 + (1/2α2) + (1/4α2) (e2α + e−2α),
k = 0, 1, 2, . . .. Suppose that the two agents are connected in time interval [t2k, t2k+1) and not
connected in time interval [t2k+1, t2k+2). The dynamics of the two agents can be expressed as

ṙi = pi,

ṗi = ui,
i = 1, 2. (4.21)
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Take κ = 2α, γ = α. All nonzero weighted elements of graph are taken as 1. Applying the local
law (2.9) to the multi-agent system, the control input ui has the following form:

u1(t) =

⎧
⎨

⎩

−2α(r1 − r2) − 2α2
(
p1 − p2

)
, t ∈ [t2k, t2k+1),

0, t ∈ [t2k+1, t2k+2),

u2(t) =

⎧
⎨

⎩

−2α(r2 − r1) − 2α2
(
p2 − p1

)
, t ∈ [t2k, t2k+1),

0, t ∈ [t2k+1, t2k+2).

(4.22)

The initial position and velocity of agents are taken as r1(0) = −r2(0) = (e2α − 2α + 1)/4α2

and p1(0) = −p2(0) = 1. From the symmetry of the input and initial values, we can know that
r1 = −r2 and p1 = −p2. Then, we can obtain

r1(t) = −r2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
e2α − 2α + 1

4α2
+
e2α + 1
2α

(t − t4k)
]

e−2α(t−t4k), t ∈ [t4k, t4k+1),

1 + 2α
4α2

+
1
4α2

e−2α
2 − (t − t4k+1), t ∈ [t4k+1, t4k+2),

−
[
e2α − 2α + 1

4α2
+
e2α + 1
2α

(t − t4k)
]

e−2α(t−t4k), t ∈ [t4k+2, t4k+3),

−1 + 2α
4α2

− 1
4α2

e−2α
2
+ (t − t4k+3), t ∈ [t4k+3, t4k+4),

p1(t) = −p2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e−2α(t−t4k) − (e2α + 1
)
(t − t4k)e−2α(t−t4k), t ∈ [t4k, t4k+1),

−1, t ∈ [t4k+1, t4k+2),

−e−2α(t−t4k) + (e2α + 1
)
(t − t4k+2)e−2α(t−t4k+2), t ∈ [t4k+2, t4k+3),

1, t ∈ [t4k+3, t4k+4),

(4.23)

for k = 0, 1, 2, . . .. Although the interconnection graph related with any time interval
[t2k+1, t2k+2) is not connected, the jointed graph related to the multi-agent system is jointly
connected in any interval [t2k, t2(k+1)). Thus, the interconnection topology of the multi-agent
system satisfies jointly connected condition proposed by [1]. On the other hand, it is easy to
see that the multi-agent system cannot achieve consensus for any positive constant α in this
case.

5. Simulation Examples

In this section, to illustrate our theoretical results derived in the above sections, we will
provide two numerical simulations. Without loss of generality, we take m = 1 in numerical
simulation. In leader-follower case, consider a multi-agent system with one leader and six
followers. The interconnection topology is arbitrarily switched with switching period 1
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among four graphs Gi(i = 1, 2, 3, 4). The Laplacian matrices Li(i = 1, 2, 3, 4) for the four
subgraphs Gi(i = 1, 2, 3, 4) are

L1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3.5 −1.5 0 0 0 −2
−1 5.5 −2.5 0 −2 0

0 −1 2 −1 0 0

0 0 −2 5 −1 −2
0 −2 0 −1 5 −2
−1 0 0 −1 −2 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, L2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5 −1 −2 0 −2 0

−1.5 4.5 −1 0 0 −2
−2 −1 4 0 −1 0

0 0 0 2 0 −2
−1 0 −1 0 2 0

0 −2 0 −2 0 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

L3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 0 0 −2 0 −1
0 2 0 −1 −1 0

0 0 2 0 0 −2
−2 −1 0 5 −2 0

0 −1 0 −2 3 0

−2 0 −2 0 0 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, L4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 0 −1 −1 0

0 4 −2 0 −2 0

0 −2 5 −2 0 −1
−2 0 −2 4 0 0

−1 −2 0 0 5 −2
0 0 −1 0 −2 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(5.1)

and the diagonal matrices for the interconnection relationship between the leader and the
followers are

B1 = diag(1, 0, 0, 1, 0, 0), B2 = diag(0, 1, 0, 1, 0, 0),

B3 = diag(1, 0, 0, 0, 1, 1), B4 = diag(0, 0, 1, 1, 0, 0).
(5.2)

The positive definite

P 2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4.60 0.58 0.18 0.65 0.78 0.67

0.58 4.01 0.95 0.41 0.92 0.85

0.18 0.95 6.12 0.74 0.80 1.38

0.65 0.41 0.74 3.51 0.59 0.61

0.78 0.92 0.80 0.59 5.08 1.05

0.67 0.85 1.38 0.61 1.05 4.92

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.3)

and μ = 1 satisfy condition (3.3). Take γ = 2.5 and κ = 3 > (2/μγ2)λmax(P 2), where λmax(P 2) =
8.81.

The initial positions and velocities of the all agents are randomly produced. The
position and velocity errors in Figure 1 are defined as ri − r0 and pi − p0, respectively. Figure 1
shows that the follower agents can track the leader.

In leaderless case, consider a multi-agent system with six agents. The interconnection
topology is also arbitrarily switched with switching period 1 among four graphs Gi(i =



Mathematical Problems in Engineering 19

0 5 10 15 20 25 30 35 40

r i
−r

0

−10

−5

0

5

10

15

20

t

(a)

0 5 10 15 20 25 30 35 40

t

p
i
−p

0

−8

−6

−4

−2

0

2

4

6

(b)

Figure 1: Position and velocity tracking errors of six followers.

1, 2, 3, 4). The Laplacian matrices Li(i = 1, 2, 3, 4) of graphs Gi are also defined as above.
The matrix

U1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.4695 0.4926 0.3434 0.3596 −0.3507
−0.5804 −0.5372 −0.0859 −0.4456 −0.0433
0.3598 0.3469 −0.5239 −0.3718 −0.4133
0.5426 −0.2934 0.6559 −0.0941 −0.1174
0.0109 0.3577 0.0222 −0.1558 0.8249

0.1366 −0.3666 −0.4118 0.7077 0.0998

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.4)

the positive definite

P 3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.7577 −0.0131 −0.0377 0.0021 −0.0559
−0.0131 0.6863 0.0262 0.0109 −0.0595
−0.0377 0.0262 0.8184 0.0813 0.0027

0.0021 0.0109 0.0813 0.8299 0.0194

−0.0559 −0.0595 0.0027 0.0194 0.8698

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.5)

and μ = 1 such that they satisfy condition (4.9). Take γ = 2.5 and κ = 1 > (2/μγ2)λmax(P 3),
where λmax(P 3) = 0.93. The position and velocity errors in Figure 2 are defined as ri − r and
pi − p, respectively. Figure 2 shows the multi-agent system in leaderless case can achieve
consensus.
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Figure 2: Position and velocity tracking errors of six followers.

6. Conclusion

In this paper, we have investigated the control of multi-agent systems with varying directed
interconnection topologies using graph theory and stability theory. The proposed consensus
strategy is neighbor-based law that is, each agent regulated its position and velocity based
on its neighbor agents. There are two different cases considered in this study. One is the
leader-following case and the other the leaderless case. To make this less conservative, a
parameter-dependent common Lyapunov function (CLF)was constructed to analyze the sta-
bility of the closed system. Some sufficient conditions are given to achieve consensus of
these mobile agents with the proposed local control strategies in both leader-following
and leaderless cases, respectively. Of course, we can obtain consensus condition directly
for the multi-agent system with the switching and undirected interconnection topology
or directed balanced interconnection topology. Due to conservativeness of the common
Lyapunov function method, we will probe less conservative method in our future work. We
also will probe multi-agentH∞ consensus control problems with external disturbance under
time delay directed switching topologies in our future work. Moreover, several numerical
simulations were shown to verify the theoretical analysis.
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