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This study presents an improvedmodel and controller for nonlinear plants using polynomial fuzzy
model-based (FMB) systems. To minimize mismatch between the polynomial fuzzy model and
nonlinear plant, the suitable parameters of membership functions are determined in a systematic
way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic
algorithm (GA) is used to form the shape of membership functions in polynomial forms, which
are afterwards used in fuzzy modeling. To validate the model, a controller based on proposed
polynomial fuzzy systems is designed and then applied to both original nonlinear plant and
fuzzy model for comparison. Additionally, stability analysis for the proposed polynomial FMB
control system is investigated employing Lyapunov theory and a sum of squares (SOS) approach.
Moreover, the form of the membership functions is considered in stability analysis. The SOS-based
stability conditions are attained using SOSTOOLS. Simulation results are also given to demonstrate
the effectiveness of the proposed method.

1. Introduction

Due to general and systematic platforms to deal with nonlinear control problems and various
applications, research on Fuzzy Model-Based (FMB) control methodology has received
significant attention in the last decade [1–3]. The fuzzy logic strategy is one of the most
popular tools for modeling and control of ill-defined and complex nonlinear plants. This
line of research is motivated by the attractive properties of fuzzy logic control including
robustness to disturbances, model parameter uncertainties, and sensor noise. Preliminary



2 Mathematical Problems in Engineering

works were done based on expert knowledge and data-driven rule/knowledge extraction
approaches, where the system dynamics is identified using data [4–11]. Numerous FMB
techniques have been applied to modeling, control, and stability analysis of nonlinear
dynamical plants. The Lyapunov stability theory is the most common approach which is used
to derive stability conditions for nonlinear plants under the FMB control systems [12–17].
However, involving fuzzy models instead of original plant makes some mismatch concerns,
which should be considered in fuzzy control. Hence, achieving sound results acquired in the
FMB control framework is the fundamental objective of this study.

Nowadays, increasing trend in theoretical developments of the control system stability
has encouraged the improvement of FMB systems [18–20]. The Takagi-Sugeno (T-S) fuzzy
model is the most commonly considered architecture used for nonlinear control systems
modeling and their stability analysis via linear matrix inequalities (LMIs) [21]. A plethora of
researches exist in literatures investigating on various strategies to develop and facilitate the
performance design and stability analysis of the generic T-S approach. The initial attempts
with this regard were proposed in [22, 23]. Then, the well-known parallel distributed
compensation (PDC) procedure was presented in [24]. In this method, the fuzzy controller
shares the same membership functions as those of the T-S fuzzy model. Based on the
PDC technique, various relaxed LMI-based stability conditions were derived in [25–28].
The advantage of these proposed researches is that the obtained stability conditions are
independent of membership functions parameters and consequently stability analysis is
facilitated. Although sharing the same premise variables in both fuzzy plant model and
controller make stability analysis easier, and the robustness property of FMB controller is
scarified. This arises from the fact that the parameters of membership functions must be
known entails and known fuzzy plant model. On the other hand, fuzzy models are generally
employed in the case, where the model structure and parameters are unknown [29–31]. It
was revealed in [32–35] that the role of membership functions in FMB control system is
obviously effective, and obtained stability conditions without their consideration are very
conservative. Thus, the FMB controller under such design constraint is not applicable for
dealing with nonlinear systems under parameter uncertainties. A method of online modeling
and control via an adaptive T-S fuzzy-neural model for a class of uncertain nonlinear systems
was developed in [36]. In [37], a robust adaptive fuzzy modeling and control approach
were proposed for a class of multi-input-multioutput (MIMO) nonlinear systems using
the approximation property of the fuzzy logic systems and the back-stepping technique.
A robust static output controller for discrete time T-S fuzzy models with uncertainties was
also proposed in [38]. In this work, descriptor procedure employed to solve stabilization
problem based on strict LMIs structure. The works in [39–42] involved different fuzzy
model reference methods for modeling and control problem of nonlinear systems based
on T-S fuzzy models. Indirect/direct model reference fuzzy controllers were introduced
in these studies. Most of the aforementioned efforts on adaptive T-S fuzzy models were
considered for only a certain class of nonlinear plants. For instance, the proposed procedures
are for a first-order nonlinear dynamical plant. Furthermore, it is not possible to consider
every desirable reference model. Due to linear subsystems in T-S fuzzy model and the
limited number of fuzzy rules, there is an unavoidable mismatch between the original
nonlinear plant and the fuzzy model. Besides, because of nonsuitable platform, these works
lacked comprehensive stability analysis on the resultant closed-loop system. In fact, the full
information of membership functions are not taken into stability conditions due to limitation
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of existing LMI toolbox which can only find solution for a finite setup of LMIs. Therefore,
formulation of continuous membership functions in LMI terms is not practically possible.
To overcome the aforementioned drawbacks of LMI-based techniques, a new framework
has been recently introduced based on a sum of squares (SOS) decomposition for modeling
and control of nonlinear systems [43]. As the polynomial subsystems are allowed in the
consequent part of fuzzy rules, a wide range of nonlinear plants could be represented more
precisely than traditional T-S technique, and the number of fuzzy rules can be reduced, as
well. In this paper, a proposal is made to achieve an improved polynomial fuzzy modeling
and design a polynomial fuzzy controller using PDC strategy for nonlinear systems. Also,
the proposed modeling provides a suitable platform for a comprehensive stability analysis of
obtained closed-loop FMB control system.

More specifically, the main contribution of this paper is thorough investigations
of accurate fuzzy model for nonlinear dynamical plants based on PDC technique and
polynomial fuzzy systems via tuning the membership functions. Employing Taylor series
expansion, the grades of membership functions are extracted in the form of polynomials
in corresponding sub-regions which establishe a platform for a comprehensive stability
analysis. As the SOS technique will be subsequently employed for stability analysis, it is
worthwhile to represent the membership functions in the form of polynomials. Defining an
appropriate fitness function, genetic algorithm (GA) is used to determine the coefficients
of polynomial membership grades to minimize the mismatch error between the original
nonlinear plant and the polynomial fuzzy model. In purpose of illustration, the nonlinear
plant dynamics are assumed to be known in this paper. To form the FMB control system,
a controller is designed based on the fuzzy PDC concept to close the feedback loop.
The proposed fuzzy modeling and controller provide a structure to utilize information
about membership functions into the stability analysis and derive the SOS-based stability
conditions for the polynomial FMB control system. The SOS-based stability conditions can be
numerically attained by SOSTOOLS (a third-party Matlab toolbox).

The remainder of the paper is organized as follows. Section 2 details the improved
FMB control system divided to four subsections. Section 2.1 reviews the polynomial fuzzy
modeling for nonlinear systems. Model improvement based on Taylor series expansion
is presented in Section 2.2 using GA. Based on the PDC technique, a polynomial fuzzy
controller is constructed for the improved polynomial fuzzy model in Section 2.3. Finally,
Section 2.4 proposes the SOS-based stability conditions of designed FMB control system
considering the Lyapunov stability theory. In Section 3, two simulation examples are given
to demonstrate the feasibility of the developed technique. A comparing example at the end
of this section is presented in order to show the improvements of the proposed methodology
in this paper in comparison with previous fuzzy PDC controllers. We make a discussion in
Section 4 about the priority of our proposed approach compared with the basic polynomial
fuzzy method. Conclusions are summarized in Section 5.

2. Improved FMB Control System

In what follows, we present a methodology, which leads to the improved FMB control system
including stability analysis. The computational approach used in this paper relies on the
Taylor series expansion, GA, and SOS decomposition of multivariable polynomials.
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2.1. Polynomial Fuzzy Modeling

In order to introduce polynomial fuzzy modeling, consider the following nonlinear model
expressed in state space:

ẋ(t) = f(x(t),u), (2.1)

where f is a known nonlinear function, x(t) = [x1(t), . . . , xn(t)]
T and u(t) = [u1(t), . . . ,

um(t)]
T are the state and input vectors, respectively, and t denotes time. Based on the

sector nonlinearity concept, the following polynomial fuzzy model describes the dynamics
of nonlinear model in (2.1) [43, 44].

Model Rule i:

if z1(x(t)) is Mi
1 and . . . and zτ(x(t)) is Mi

l,

then ẋ(t) = Ai(x(t))χ(x(t)) + Bi(x(t))u(t), i = 1, 2, . . . , r,
(2.2)

where i = 1, . . . , r. Here, zγ(x(t)) (h = 1, . . . , l) represents the premise variables. Mi
h
denotes

the membership function associated with the ith rule of the model and hth premise variable.
The number of fuzzy rules is denoted by r. Each zh(x(t)) is a measurable time-varying
quantity that may be states, measurable external variables, and/or time. Ai and Bi are the
polynomial matrices in x(t). χ(x(t)) ∈ RN is a N × 1 column vector whose elements are all
monomials in x(t).

Definition 2.1 (see [44]). A monomial in x(t) is a function of the form xα1
1 xα2

2 · · ·xαn
n , where

α1, α2, . . . , αn are nonnegative integers. The degree of monomial is given by α1 + α2 + · · · + αn.

Hence,Ai(x(t)χ(x(t))+Bi(x(t))u(t) is a polynomial vector. Therefore, each consequent
part of the polynomial fuzzy model (2.2) is a polynomial.

The overall system dynamics is computed by combining the fuzzy rules in (2.2)
(subsystems) as follows:

˙̂x(t) =
r
∑

i=1

pi(x(t)){Ai(x(t))χ(x(t)) + Bi(x(t))u(t)}, (2.3)

where ˙̂x(t) is the estimated dynamics of the original nonlinear plant in (2.1) represented by
the polynomial fuzzy model. The expressions

pi(x(t)) =

∏l
h=1M

i
h(zh(x(t)))

∑r
k=1
∏l

h=1M
k
h(zh(x(t)))

, (2.4)

are the normalized grades of membership being nonlinear functions of x(t). Note that due to
Definition (2.4), we have 0 ≤ pi(x(t)) ≤ 1 for all i and

∑r
i=1 pi(x(t)) = 1 that implies the overall

fuzzy model is achieved by aggregating the polynomial system models.
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2.2. Model Improvement

Our aim is to find the nonlinear functions pi(x(t)) in (2.4) treated as themembership functions
of polynomial fuzzy model presented in Section 2.1 in such a way that the mismatch between
the nonlinear plant and the fuzzy model is minimized. As membership function information
will be subsequently considered in SOS-based stability analysis, they must be in the form
of polynomials. To achieve this, we use a Taylor series expansion in several variables to
formulate the membership function pi(x(t)) in different sub-regions for x. Defining a proper
fitness function quantifying mismatch between the nonlinear plant and the fuzzy model, a
GA is used to optimize the coefficients of Taylor series for each pi(x(t)) in the corresponding
sub-region.

We consider the Taylor series of nonlinear function pi(x(t)) in sub-region Sk as follows:

pi(x(t)) = pi(a) + (x − a)T∇(pi(a)
)

+
1
2!
(x − a)T

{

∇2(pi(a)
)

}

(x − a) + · · · ,

i = 1, 2, . . . , r, for x ∈ Sk, k = 1, 2, . . . , D,

(2.5)

where ∇(pi(a)) is the gradient of pi(x(t)) evaluated at x = a, and the ∇2(pi(a)) is the
Hessian matrix. Also D indicates the number of sub-regions Sk (k = 1, . . . , D) of x in which
corresponded pi(x(t)) are determined. Applying the multi-index notation and considering a
finite number of terms (T) in the Taylor series expansion, (2.5) can be rewritten as follows:

pi(x(t)) =
T
∑

q=0

(x − a)q

q!
∇q(pi(a)

)

=
T
∑

q=0

ωq(x − a)q, (2.6)

where

ωq =
∇q
(

pi(a)
)

q!
, q = 0, 1, 2, . . . , T. (2.7)

Note that the sub-regions and their number are predefined depending upon the
operating range of state variables x(t) shown in (2.1). On the other hand, themore sub-regions
we choose, the more accurate polynomial membership functions pi(x(t)) can be achieved.
Choosing a sufficiently large number of sub-regions, the size of each sub-region will be
reduced thus leading to higher computational burden. The number of sub-regions should
be carefully selected.

In order to form the grades of polynomial membership functions, the coefficients ωq

have to be specified. Due to the large search area ωq (q = 1, . . . , T), a GA is employed to
find the Taylor series coefficients ωq for all of the membership functions pi(x(t)) such that
the mismatch between the original nonlinear plant and the corresponding fuzzy model is
minimized. As the state variables show exact behavior of the system for all time [t0,∞], the
following fitness function is considered to describe a mismatch error to be minimized by the
GA:

Min
ωq

(Mismatch Error) = Min
ωq

(

∫∞

t0

‖x(t) − x̂(t)‖2dt
)

, (2.8)
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where ‖ · ‖2 is the Euclidean norm (L2-norm); x(t) and x̂(t) are the state variable vectors of
the original system and fuzzy model in (2.1) and (2.3), respectively. In fact, the GA finds the
polynomial membership functions such that the response of the original nonlinear plant and
the polynomial fuzzy model exhibit the highest similarity of the state trajectories over a given
time period.

In order to proceed with the GA optimization, a finite number of terms (T) in Taylor
series must be predefined. To extract the simplest form of the membership functions, the
number of terms for each polynomial in (2.6) is initially set to zero. Afterward, the GA
seeks the feasible solutions for the predefined values T until the state trajectories of original
nonlinear system and polynomial fuzzy model become matched. If the obtained polynomial
grades of membership functions do not satisfy the mismatch error criterion between the
original model and polynomial fuzzy model, the number of terms (T) of polynomials is
increased incrementally, and the searching process is resumed. To specify the search area,
reduce the computational burden, and arrive at the simplest polynomials, the coefficients
ωq assume values in [−1, 1]. Moreover, the operating range of state variables x(t) is divided
into D sub-regions to form the sub-regions Sk (k = 1, . . . , D). Choosing the Taylor series
evaluation point a in (2.6) as the center of each sub-region, the searching process can be
started by GA after specification of its parameters such as population size, crossover type,
and mutation rate which will be explained in details when applied to simulation examples.

2.3. PDC Polynomial Fuzzy Controller

Now based on the PDC technique [10], a polynomial fuzzy controller is constructed given
the polynomial fuzzy model in (2.2). In this way, we complete the overall feedback loop as
follows.

Rule i of the controller:

if z1(x(t)) is Mi
1 and . . . and zτ(x(t)) is Mi

τ ,

then u(t) = −Fi(x(t))χ(x(t)), i = 1, 2, . . . , r.
(2.9)

The overall FMB control is expressed as follows:

u(t) = −
r
∑

i=1

pi(x(t))Fi(x(t))χ(x(t)). (2.10)

From (2.3) and (2.10), the closed-loop system reads as follows:

ẋ(t) =
r
∑

i=1

r
∑

j=1

pi(x(t))pj(x(t))
{

Ai(x(t)) − Bi(x(t))Fj(x(t))
}

χ(x(t)). (2.11)

Note that if χ(x(t)) = x(t) and Ai, Bi, and Fj are constant matrices for all i and j, then the
polynomial system reduces to the canonical T-S FMB control system [10]. In this sense, the
polynomial FMB control system forms a general representation of the model.

For the sake of brevity, in the remainder of the paper, x(t),χ(x(t)), and pi(x(t)) are
denoted as x,χ(x), and pi(x), respectively.
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2.4. Stability Analysis

So far, the nonlinear plant was represented by the polynomial fuzzy modeling in (2.3), which
was improved by tuning the membership functions. Besides, the polynomial fuzzy controller
of (2.10) was designed to form the feedback loop, and the closed-loop FMB control system
was obtained as given in (2.11). Considering the Lyapunov stability theory, the SOS-based
stability conditions of designed FMB control system are proposed in this section. As we
have already expressed the membership functions in the form of polynomials, the proposed
stability conditions take these functions into consideration. The approach presented here
relies on the SOS decomposition of multivariable polynomials [43, 44]. Let us start with some
prerequisites.

Definition 2.2 (see [45]). A multivariate polynomial P(x), x ∈ R
n is a SOS if there exist

polynomials Γ1(x), . . . ,Γκ(x) such that P(x) =
∑κ

i=1 Γ
2
i (x).

It can be shown that such a polynomial is equivalent with a special quadratic form as
stated in the following proposition.

Proposition 2.3 (see [43]). Let P(x) be a polynomial in x ∈ R
n of degree 2l. In addition, let ς(x) be a

column vector whose elements are all monomials in x of degree no greater than l. Then, P(x) is a SOS
if and only if there exists a positive semidefinite matrix ̂P(x) such that.

P(x) = ςT (x)P(x)ς(x). (2.12)

To investigate the stability of the polynomial fuzzy control system in (2.11), a
polynomial Lyapunov function given in [34, 35] is employed as follows:

V (x(t)) = χT (x(t))G−1(x̃(t))χ(x(t)), (2.13)

where G(x̃(t)) ∈ RN×N is a symmetric positive-definite polynomial matrix, and x̃ = [xe1 ,
xe2 , . . . , xes] is a vector to be selected such that E = [e1, e2, . . . , es] includes the row indices of
Bi(x(t))whose corresponding row is equal to zero for all i. Moreover, letAe

i (x(t)) and Be
i (x(t))

denote the eth row in Ai(x(t)) and Bi(x(t)), respectively. Subsequently, we have

Be
i (x(t)) = 0, for e ∈ E. (2.14)

It should be noted that this assumption is made to avoid occurrence of a nonconvex condition
[43]. The goal is to find a state feedback controller u(x) = −F(x)χ(x) which renders the
equilibrium of the nonlinear system stable. Based on the Lyapunov stability theory, if the
G(x̃) andG−1(x̃) are positive-definite matrices in x̃ and ∂V (x(t))/∂t ≤ 0 (equality holds when
x = 0), then the equilibrium of polynomial FMB control system in (2.11) is asymptotically
stable [43]. We have

V̇ (t) =
r
∑

i=1

r
∑

j=1

pi(x)pj(x)wT (x)Hij(x)w(x), (2.15)
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where w(x) = G−1(x̃)χ(x) and

Hij(x) =
(

Ai(x)G(x) + Bi(x)Rj(x)
)TQT (x)

+Q(x)
(

Ai(x)G(x) + Bi(x)Rj(x)
)

−
∑

e∈E

∂G(x̃)
∂xe

Ae
i (x)χ(x),

(2.16)

in which

Rj(x) = Fj(x)G(x), (2.17)

and Q(x(t)) is aN × n polynomial matrix:

Q(x) =
∂χ(x)
∂x

. (2.18)

As the SOS procedure is employed to derive the stability conditions, the membership
functions shown in (2.15) are brought into the stability analysis. To deal with the continuous
membership functions, they must be expressed in the polynomial forms. As the grades of
membership functions of fuzzy model and controller pi(x) have been earlier formulated as
multivariable polynomials, each product term pi(x)pj(x) in (2.15) is a polynomial as follows:

ΩSk

ij (x) = pi(x)pj(x) (2.19)

in the sub-region Sk, for i = 1, . . . , r, j = 1, . . . , r, k = 1, . . . , D, and (2.20) can be rewritten as

V̇ (t) =
D
∑

k=1

r
∑

i=1

r
∑

j=1

Θk(x)wT (x)ΩSk

ij (x)Hij(x)w(x), (2.20)

in which Θk is a scalar function in the form

Θk(x) =

{

1, x ∈ Sk,

0, x /∈ Sk,
k = 1, 2, . . . , D. (2.21)

Based on the Lyapunov stability theory and considering (2.20), the equilibrium of polynomial
FMB control system (2.11) is asymptotically stable if the following inequalities are satisfied

r
∑

i=1

r
∑

j=1

Θk(x)wT (x)Ωsk
ij (x)Hij(x)w(x) < 0, (2.22)

which hold for all sub-regions Sk, k = 1, . . . , D, i = 1, . . . , r, and j = 1, . . . , r.
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Note that each inequality in (2.22) should be satisfied only in the corresponding
sub-region. On the other hand, SOSTOOLS solve SOS problems without considering sub-
regions. Hence, the polynomials are considered with global operating range during searching
numerical solutions. Thus, this may lead to conservative results.

To eliminate the conservative nature of the method, we apply the S-procedure
approach [46] to define some slack expressions LSk(x) such that they satisfy the following
requirements:

LSk(x) ≤ 0, x ∈ Sk,

LSk(x) > 0, x /∈ Sk,
k = 1, 2, . . . , D. (2.23)

The stability analysis of the polynomial fuzzy systems with the use of polynomial Lyapunov
functions reduces to SOS problems [43]. The SOS problems can be solved via the SOSTOOLS
and the SeDuMi [47]. Referring to Proposition 2.3, the results of stability analysis can be
stated in the following theorem.

Theorem 2.4. The equilibrium of polynomial FMB control system in (2.11) is asymptotically stable
if there exist symmetric polynomial matrix G(x̃) ∈ R

N×N , polynomial matrices Rj(x) ∈ R
m×N , and

polynomial scalar ϕ(x) such that the following expressions are SOS for i = 1, . . . , r, j = 1, . . . , r, and
k = 1, . . . , D:

(1) νT(G(x̃) − ξ1(x)I)ν

(2) − νT

⎛

⎝

r
∑

i=1

r
∑

j=1

(

Ωsk
ij (x)Hij(x)

)

+ ξsk2 (x)I

⎞

⎠ν + ϕ(x)νTLsk(x)ν, ∀sk, k = 1, . . . ,D,

(3) ϕ(x),

(2.24)

where I is an identity matrix, ν(t) ∈ R
n is an arbitrary vector independent of x, ξ1(x) > 0, ξsk2 (x) > 0

for x/= 0 are predefined polynomial scalars, and the state feedback vector gains can be computed by
(2.17). As the SOS conditions given in (2.24) express, the information of membership function has
been taken into stability analysis.

3. Simulation Studies

The purpose of this section is to demonstrate effectiveness of proposed improved polynomial
FMB control system through two examples. Also, another example is included at the end
of this section in order to compare the proposed method in this paper with previous
polynomial fuzzy systems. The obtained results obviously illustrate the priority of the
proposed improved polynomial FMB control methodology. The simulations were carried out
with the use of SOSTOOLS [47].
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3.1. Example 1

Consider a nonlinear system with stable equilibrium at x = 0 for x(t) ∈ (−3, 3):

ẋ1(t) =
(

−29
2

+
23
2

sin(x2(t))
)

x2(t) − 7x1(t),

ẋ2(t) =
(

−5
2
+
1
2
sin(x2(t))

)

x2(t) + x1(t).

(3.1)

Based on the sector nonlinearity [10], setting γ = 1, r = 2, z1 = x1, and χ(x(t)) = [1, x2]
T in

polynomial fuzzy model in (2.2), the dynamics of nonlinear system in (3.1) is represented by
the two-rule fuzzy model as follows.

Rule 1: If z1(t) is p1(x1(t)), then ẋ(t) = A1(x)χ(x(t)).

Rule 2: If z1(t) is p2(x1(t)), then ẋ(t) = A2(x)χ(x(t)).

Note that the membership functions pi(x(t)) are assumed to be functions of state
variable x1 as the premise variable z1 depends of x1. Let us set the following state matrices:

A1(x) =
[−7x1 −3

x1 −2
]

, A2(x) =
[−7x1 −26

x1 −3
]

. (3.2)

Choosing A1 and A2 as the state-dependent polynomial matrices, the overall system
dynamics are computed by (2.3). The goal is to find the membership functions p1(x) and
p2(x) in polynomial forms in such a way that the mismatch error in (2.8) between the original
nonlinear plant and the corresponding fuzzy model is minimized. Considering the form of
the membership functions according to (2.5), the GA is utilized to find the coefficients of the
Taylor series ωq ∈ (−1, 1) for functions p1(x) and p2(x). In this example, x(t) ∈ (−3, 3) and
D = 5 for the number of sub-regions as shown in Table 1. The evaluated points (x = a) in
(2.5) are predefined as the center value in each sub-region. Note that we consider the same
sub-regions and evaluated points for p1(x) and p2(x). Also, Table 1 shows the proper slack
expressions Lsk(x) introduced in (2.23), defined on each sub-region, and needed for stability
analysis.

The GA parameters, used to minimize the fitness function in (2.8), are given in Table 2.
Two types of crossover, namely, single point and two point, are applied. In each case with 150
generations, two crossover rates of 50 percent and 60 percent, two population sizes of 100 and
200, with two mutation rates of 3 percent and 6 percent are employed. Each generation takes
about 9 seconds, and the GA optimization process with 150 generations was completed in
about 20 minutes on a PC with 2.6 GHz Pentium IV processor and 256MB of RAM. Applying
GA for some initial conditions [x1(0), x2(0)], the optimal polynomial grades p1(x) and p2(x)
of membership functions are obtained as shown in Table 1.

Figure 1 shows the membership functions for sub-regions S1 and S3.
Figure 2 depicts the state trajectories of the original nonlinear system (3.1) compared

with the obtained polynomial fuzzy model for initial conditions [x1(0), x2(0)] = [0.1, 0.1]
and [x1(0), x2(0)] = [2,−1]. As the results show, the improved polynomial fuzzy model can
properly capture the dynamics of original plant.
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Table 1: Slack expressions defined on subregions and obtained polynomial membership functions for
Example 1.

Subregion
(Sk)

Slack expression
LSk (x)

Membership function
p1(x1)

Membership function
p2(x1)

S1: −3 < x1 < −1 (x1 + 3)(x1 + 1) 0.2454 − 0.2081(x1 + 2) +
0.2273(x1 + 2)2

0.7546 + 0.2081(x1 + 2) −
0.2273(x1 + 2)2

S2: −2 < x1 < 0 (x1 + 2)x1
0.1793 + 0.2702(x1 + 1) +

0.2104(x1 + 1)2
0.8207 − 0.2702(x1 + 1) −

0.2104(x1 + 1)2

S3: −1 < x1 < 1 (x1 + 1)(x1 − 1) 0.4895 + 0.2003x1 − 0.0833(x1)2 0.5105 − 0.2003x1 + 0.0833(x1)2

S4: 0 < x1 < 2 x1(x1 − 2) 0.8201 + 0.2708(x1 − 1) −
0.211(x1 − 1)2

0.1799 − 0.2708(x1 − 1) +
0.211(x1 − 1)2

S5: 1 < x1 < 3 (x1 − 1)(x1 − 3) 0.7539 − 0.2085(x1 − 2) −
0.2277(x1 − 2)2

0.2461 + 0.2085(x1 − 2) +
0.2277(x1 − 2)2

Table 2: GA parameters.

Crossover type Population size Crossover rate (%) Mutation rate (%)

Single-point 100 50 3
200 60 6

Two-point 100 50 3
200 60 6

The SOS-based stability conditions, proposed in Theorem 2.4, are satisfied, and a 6th
order polynomial Lyapunov function was found as follows:

V (x(t)) = 1.6218x6
1 + 0.5845x5

1x2 + 0.8741x4
1x

2
2 + 0.3189x3

1x
3
2 + 0.3614x2

1x
4
2

− 0.03698x1x
5
2 + 0.0617x6

2.
(3.3)

3.2. Example 2

Consider a nonlinear system with unstable equilibrium at x = 0 for x(t) ∈ (−10, 10):

ẋ1(t) = −x1 + x2
1 + x3

1 + x2
1x2 − x1x

2
2 + x2 + x1u,

ẋ2(t) = −(1 + 0.2763) sin(x1) − 2x2 + u.
(3.4)

Similarly to the previous example, the dynamics of the nonlinear system in (3.4) is
represented by three rules in the form of the polynomial fuzzy model in (2.2), where γ = 1,
r = 3, z1 = x1, and χ(x(t)) = [x1, x2]

T as follows.

Rule 1: If z1(t) is p1(x1(t)), then ẋ(t) = A1(x)χ(x(t)) + B1(x)u(t).

Rule 2: If z1(t) is p2(x1(t)), then ẋ(t) = A2(x)χ(x(t)) + B2(x)u(t).

Rule 3: If z1(t) is p3(x1(t)), then ẋ(t) = A3(x)χ(x(t)) + B3(x)u(t).
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Figure 1: Plots of membership functions, Example 1.

It should be noted that as the premise variable z1 depends on the state variable x1,
then the membership functions pi(x) are considered as the functions of x1. Let us assign the
following matrices:

A1(x) =

[

−1 + x1 + x2
1 + x1x2 − x2

2 1

−1 −2

]

, B1(x) =

[

x1

1

]

,

A2(x) =

[

−1 + x1 + x2
1 + x1x2 − x2

2 1

0 −2

]

, B2(x) =

[

x1

1

]

,

A3(x) =

[

−1 + x1 + x2
1 + x1x2 − x2

2 1

0.2763 −2

]

, B3(x) =

[

x1

1

]

.

(3.5)

As before, the membership functions are considered in the form of (2.5), and the GA is
employed to find Taylor series coefficients ωq ∈ (−1, 1) for functions pi(x) (i = 1, 2, 3).
Furthermore, x(t) ∈ (−10, 10), and we choose D = 19 to be the number of sub-regions as
shown in Table 3. The position of the evaluated points (x = a) in (2.5) is the same as in
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Figure 2: State trajectories of original nonlinear plant and improved polynomial fuzzy model, Example 1.

Example 1. The same sub-regions and evaluated points are considered for all pi(x). Also,
Table 3 shows the suitable slack expressions Lsk(x) in (2.23) defined on each sub-region
required for stability analysis.

Applying GA with the parameters given in Table 2, the optimal polynomials pi(x) (i =
1, 2, 3) for different sub-regions are obtained as shown in Table 3. In this example, the GA
optimization process that run for 650 generations was completed in about 90 minutes.

For instance, the plots of membership functions for sub-regions S7 and S15 are shown
in Figure 3.
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Figure 3: Plots of membership functions, Example 2.

Based on the proposed stability conditions (Theorem 2.4) and considering slack
expressions in Table 3, the feedback gains Fi (i = 1, 2, 3) are calculated to close the feedback
loop as follows:

F1(x) =
[

1.7705 + 1.2357x1 + 0.0199x2 −0.6998 − 0.3161 × 10−4x1
]

,

F2(x) =
[

2.6563 + 1.7418x1 + 0.0179x2 −0.6998 − 0.0155 × 10−4x1
]

,

F3(x) =
[

2.1214 + 1.7285x1 + 0.0168x2 −0.7504 + 0.3539 × 10−4x1
]

.

(3.6)

The SOS-based stability conditions are satisfied, and a quadratic polynomial Lyapunov
function was found as follows:

V (x(t)) = 2.0960x2
1 − 0.1091 × 10−5x1x2 + 0.1078x2

2. (3.7)
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Figure 4 displays the state trajectories of the original nonlinear system (3.4) when
compared with the obtained polynomial fuzzy model for initial conditions [x1(0), x2(0)] =
[−6, 4] and [x1(0), x2(0)] = [3.5,−5]. Note that state trajectories indicate that the proposed
fuzzy PDC controller in (2.10) can stabilize both nonlinear plant (3.4) and the closed-loop
FMB control system in (2.11).

It should be noted that the information of attained polynomial membership functions
have been fully included in the stability analysis. In both examples, we choose ξ1(x) = ξSk

2 (x) =
0.001 for all i, j, and k. Moreover, in simulation Example 2, there are no zero rows in the input
matrices Bi(x). Thus, G(x̃(t)) has been selected as a constant matrix.

3.3. Comparison Example

Consider a nonlinear system modeled by a three-rule polynomial fuzzy approach with
χ(x(t)) = [x1, x2]

T as follows:

A1(x) =

[

1.5 − 0.1x2
1 −7.5 − 0.25x1

0.05 −0.1

]

, B1(x) =

[

1 − 0.25x1 + x2
1

0

]

,

A2(x) =

[

0.01 − 0.5x2
1 −5 + x1

0.5 −0.2

]

, B2(x) =

[

8 + 0.5x1

0

]

,

A3(x) =

[

−a + 0.5x1 − x2
1 −5

0 0.05

]

, B3(x) =

[

−b + 5 + x2
1

−1

]

,

(3.8)

where a and b are constant system parameters. The chosen membership functions for the
fuzzy model are as the following:

f1(x1) = 1 − 1
1 + e−(x1+4)

,

f2(x1) = 1 − f1(x1) − f3(x1),

f3(x1) =
1

1 + e−(x1−4) .

(3.9)

Also a two-rule polynomial fuzzy controller is designed with membership function chosen
as

g1(x1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, for x1 < −10,
−x1 + 10

20
, for − 10 < x1 < 10,

0, for x1 > 10,

(3.10)

and g2(x1) = 1 − g1(x1).
We applied our strategy proposed in this paper to find the polynomial membership

functions for the nonlinear system for various parameters a and b as 1.5 ≤ a ≤ 10.5 and
5 ≤ b ≤ 48. Based on the proposed stability conditions in (Theorem 2.4) and considering
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Figure 4: State trajectories of original nonlinear plant and improved polynomial fuzzymodel for open-loop
and closed-loop systems, Example 2.

obtained slack expressions, the feedback gains were computed to close the feedback loop. The
SOS-based stability conditions were satisfied, and a 4th order polynomial Lyapunov function
was found.

Now, the stability conditions obtained in this paper are compared with those resulted
in [15, 43] to check the stability region for the aforementioned intervals of a and b. the
stability regions given by [15, 43] and the proposed method are demonstrated in Figure 5.
As this figure shows, the proposed stability conditions in (2.24) offer a larger stability region.
Also, the stability conditions based on the LMI approach in [33] are used to check the system
stability. But no stability region can be found.

4. Discussion

This paper has proposed a method based on Taylor-series to model nonlinear plants using
polynomial fuzzy systems. By employing GA in an appropriate manner, the parameters of
fuzzy model and controller including membership functions, rules, and relaxed stability
conditions have been designed. It is noteworthy that the stability conditions derived in
(2.24) are more relaxed than those resulted in previous works on polynomial fuzzy systems.
On the other hand, our strategy to acquire these stability conditions is novel considering
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Figure 5: Stability regions obtained by conditions given in [15, 43] and Theorem 2.4 indicated by “�”, “×”,
and “o”, respectively.

polynomial membership functions instead of conventional functions obtained by trial and
error method depends on expert’s knowledge. It is important to note that the effects of
membership functions on stability are considered in analysis as shown in (2.15). As we use
the polynomial Lyapunov function in (2.15) in stability analysis, expressing the membership
functions in the form of polynomials is a worthwhile as well as essential task to achieve
Theorem 2.4. Finally, in order to make it possible to use SOS approach to solve the obtained
stability conditions, some slack expressions are defined in (2.23) based on the S-procedure
method given in [46].

5. Conclusion

In this study, an improved polynomial fuzzy modeling for nonlinear dynamical systems
is proposed via tuning the membership functions. Employing the Taylor series expansion,
the membership functions in the corresponding sub-regions are constructed in the form
of polynomials. Defining an appropriate fitness function, a GA is used to determine the
coefficients of polynomials to minimize the mismatch error between the original nonlinear
plant and polynomial fuzzy model. Furthermore, the proposed fuzzy modeling incorporates
membership functions into the stability analysis and helps deriving SOS-based stability
conditions for polynomial FMB control system. To form the FMB control system, a controller
is designed based on the fuzzy PDC concept to close the feedback loop. To obtain
more relaxed stability results, some slack expressions according to various sub-regions are
considered in the SOS-based stability conditions. The solution to the SOS-based stability
conditions can be numerically obtained by SOSTOOLS. The performance of proposed model,
controller, and stability analysis is illustrated with the use of simulation examples.
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