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Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR).
In this paper, an optimal control model of distributed parameter systems (DPSs) for polymer
injection strategies is established, which involves the performance index as maximum of the profit,
the governing equations as the fluid flow equations of polymer flooding, and some inequality
constraints as polymer concentration and injection amount limitation. The optimal control model
is discretized by full implicit finite-difference method. To cope with the discrete optimal control
problem (OCP), the necessary conditions for optimality are obtained through application of the
calculus of variations and Pontryagin’s discrete maximum principle. A modified gradient method
with new adjoint construction is proposed for the computation of optimal injection strategies. The
numerical results of an example illustrate the effectiveness of the proposed method.

1. Introduction

It is of increasing necessity to produce oil fields more efficiently and economically because of
the ever-increasing demand for petroleum worldwide. Since most of the significant oil fields
are mature fields and the number of new discoveries per year is decreasing, the use of EOR
processes is becoming more and more imperative. At present, polymer flooding technology
is the best method for chemically EOR [1]. It could reduce the water-oil mobility ratio and
improve sweep efficiency [2–5].
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Due to the high cost of chemicals, it is essential to optimize polymer injection strategies
to provide the greatest oil recovery at the lowest cost. The optimization procedure involves
maximizing the objective function (cumulative oil production or profit) from a polymer
flooding reservoir by adjusting the injection concentration. One way of solving this problem
is direct optimization with the reservoir simulator. Numerical models are used to evaluate
the complex interactions of variables affecting development decisions, such as reservoir and
fluid properties and economic factors. Even with these models, the current practice is still
the conventional trial and error approach. In each trial, the polymer concentration of an
injection well is selected based on the intuition of the reservoir engineer. This one-well-at-a-
time approach may lead to suboptimal decisions because engineering and geologic variables
affecting reservoir performance are often nonlinearly correlated. And the problem definitely
compounds when multiple producers and injectors are involved in a field development case.
The use of the optimal control method offers a way out.

The optimal control method has been researched in EOR techniques in recent years.
Ramirez et al. [6] firstly applied the theory of optimal control to determine the best possible
injection strategies for EOR processes. Their study was motivated by the high operation costs
associated with EOR projects. The objective of their study was to develop an optimization
method to minimize injection costs while maximizing the amount of oil recovered. The
performance of their algorithm was subsequently examined for surfactant injection as an
EOR process in a one-dimensional core flooding problem [7]. The control for the process was
the surfactant concentration of the injected fluid. They observed a significant improvement
in the ratio of the value of the oil recovered to the cost of the surfactant injected from 1.5
to about 3.4. Optimal control was also applied to steam flooding by Liu et al. [8]. They
developed an approach using optimal control theory to determine operating strategies to
maximize the economic attractiveness of steam flooding process. Their objective was to
maximize a performance index which is defined as the difference between oil revenue and
the cost of injected steam. Their optimization method also obtained significant improvement
under optimal operation. Ye et al. [9] were involved in the study of optimal control of gas-
cycling in condensate reservoirs. It was shown that both the oil recovery and the total profit
of a condensate reservoir can be enhanced obviously through optimization of gas production
rate, gas injection rate, and the mole fractions of each component in injection gas. Brouwer
and Jansen [10], Sarma et al. [11], Zhang et al. [12], and Jansen [13] used the optimal control
theory as an optimization algorithm for adjusting the valve setting in smart wells of water
flooding. The water flooding scheme that maximized the profit was numerically obtained by
combining reservoir simulation with control theory practices of implicit differentiation. They
were able to achieve improved sweep efficiency and delayedwater breakthrough by dynamic
control of the valve setting.

For the previous work on optimal control of polymer flooding, Guo et al. [14] and Lei
et al. [15] applied the iterative dynamic programming algorithm to solve the OCP of polymer
flooding. However, the optimal control model used in their study is so simple that it is not
adapt for practical oilfield development. As a result of the complicated nature of reservoir
models with nonlinear constraints, it is very tedious and troublesome to cope with a large
number of grid points for the state variables and control variables. To avoid these difficulties,
Li et al. [16] and Lei et al. [17, 18] used the genetic algorithms to determine the optimal
injection strategies of polymer flooding and the reservoir model equations were treated as a
“black box.” The genetic algorithms are capable of finding the global optimum on theoretical
sense, but as Sarma et al. [11] point out, they require a tens or hundreds of thousand reservoir
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simulation runs of very large model and are not able to guarantee monotonic maximization
of the objective function.

In this paper, an optimal control model of DPS for polymer flooding is established
which maximizes the profit by adjusting the injection concentration. Then, the determination
of polymer injection strategies turns to solve this OCP of DPS. The model is discretized by
the full implicit finite difference method. Necessary conditions for optimality are obtained by
Pontryagin’s discrete maximum principle. A new gradient-based numerical algorithm which
makes it relatively easy to create adjoint equations is presented for solving theOCP. Finally, an
example of polymer flooding project involving a heterogeneous reservoir case is investigated
and the results show the efficiency of the proposed method.

2. Mathematical Formulation of Optimal Control

2.1. Performance Index

Let Ω ∈ R2 denote the domain of reservoir with boundary ∂Ω, let n be the unit outward
normal on ∂Ω, and let (x, y) ∈ Ω be the coordinate of a point in the reservoir. Given a fixed
final time tf , we setΨ = Ω× [0, tf], Γ = ∂Ω× [0, tf], and suppose that there existNw injection
wells and No production wells in the oilfield. The injection and production wells are located
at Lw = {(xwi, ywi) | i = 1, 2, . . . ,Nw} and Lo = {(xoj , yoj) | j = 1, 2, . . . ,No}, respectively. This
descriptive statement of the cost functional must be translated into a mathematical form to
use quantitative optimization techniques. The oil value can be formulated as

∫ tf

0

∫∫
Ω
ξo
(
1 − fw

)
qoutdσ dt, (2.1)

where ξo is the cost of oil per unit mass (104$/m3), fw(x, y, t) is the fractional flow of water,
and qout(x, y, t) is the flow velocity of production fluid (m/day). We define qout(x, y, t) ≥ 0 at
(x, y) ∈ Lo and qout(x, y, t) ≡ 0 at (x, y) /∈ Lo.

The polymer cost is expressed mathematically as

∫ tf

0

∫∫
Ω
ξpqincpindσ dt, (2.2)

where ξp is the cost of oil per unit volume (104$/m3), cpin(x, y, t) is the polymer concentration
of the injection fluid (g/L), and qin(x, y, t) is the flow velocity of injection fluid (m/day). We
define qin(x, y, t) ≥ 0 at (x, y) ∈ Lw and qin(x, y, t) ≡ 0 at (x, y) /∈ Lw.

The objective functional is, therefore,

max J =
∫ tf

0

∫∫
Ω

[
ξo
(
1 − fw

)
qout − ξpqincpin

]
dσ dt. (2.3)

2.2. Governing Equations

The maximization of the cost functional J given by (2.3) is not totally free but is constrained
by the system process dynamics. The governing equations of the polymer flooding process
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must, therefore, be developed to describe the flow of both the aqueous and oil phases through
the porous media of a reservoir formation. The equations used in this paper allow for the
adsorption of polymer onto the solid matrix in addition to the convective and dispersive
mechanisms of mass transfer. Let p(x, y, t), Sw(x, y, t), and cp(x, y, t) denote the pressure,
water saturation, and polymer concentration of the oil reservoir, respectively, at a point
(x, y) ∈ Ω and a time t ∈ [0, tf], then p(x, y, t), Sw(x, y, t), and cp(x, y, t) satisfy the following
partial differential equations (PDEs).

(1) The flow equation for oil phase:

∂

∂x

(
kpro

∂p

∂x

)
+

∂

∂y

(
kpro

∂p

∂y

)
− (1 − fw

)
qout = h

∂

∂t

[
φ(1 − Sw)

Bo

]
,
(
x, y, t

) ∈ Ψ. (2.4)

(2) The flow equation for water phase:

∂

∂x

(
kprw

∂p

∂x

)
+

∂

∂y

(
kprw

∂p

∂y

)
+ qin − fwqout = h

∂

∂t

(
φSw

Bw

)
,
(
x, y, t

) ∈ Ψ. (2.5)

(3) The flow equation for polymer component:

∂

∂x

(
kdrd

∂cp

∂x

)
+

∂

∂x

(
kprc

∂p

∂x

)
+

∂

∂y

(
kdrd

∂cp

∂y

)
+

∂

∂y

(
kprc

∂p

∂y

)
+ qincpin − fwqoutcp

= h
∂

∂t

[
φpSwcp

Bw
+ ρr
(
1 − φ

)
Crp

]
,
(
x, y, t

) ∈ Ψ.

(2.6)

(4) The boundary conditions and initial conditions:

∂p

∂n

∣∣∣∣
∂Ω

= 0,
∂Sw

∂n

∣∣∣∣
∂Ω

= 0,
∂cp

∂n

∣∣∣∣∣
∂Ω

= 0,
(
x, y, t

) ∈ Γ, (2.7)

p
(
x, y, 0

)
= p0

(
x, y
)
, Sw

(
x, y, 0

)
= S0

w

(
x, y
)
, cp

(
x, y, 0

)
= c0p
(
x, y
)
,
(
x, y
) ∈ Ω. (2.8)

where the corresponding parameters are defined as

kp = Kh, kd = Dh,

ro =
kro
Boμo

, rw =
krw

BwRkμw
, rc =

krwcp

BwRkμp
, rd =

φpSw

Bw
.

(2.9)

The constant coefficient K(x, y) is the absolute permeability (μm2), D(x, y) is the diffusion
coefficient of polymer (m2/s), h(x, y) is the thickness of the reservoir bed (m), ρr is the rock
density (kg/m3), and μo is the oil viscosity (mPa · s).
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The oil volume factor Bo, the water volume factor Bw, the rock porosity φ, and the
effective porosity to polymer φp are expressed as functions of the reservoir pressure p:

Bo =
Bor[

1 + Co

(
p − pr

)] ,

Bw =
Bwr[

1 + Cw

(
p − pr

)] ,

φ = φr

[
1 + CR

(
p − pr

)]
,

φp = faφ,

(2.10)

where pr is the reference pressure (MPa), φr , Bor , and Bwr denote the porosity, the oil and
water volume factor under the condition of the reference pressure, respectively, fa is the
effective pore volume coefficient, Co, Cw, and CR denote the compressibility factors of oil,
water, and rock, respectively.

Functions relating values of the oil and water relative permeabilities kro and krw to the
water saturation Sw are

krw = krwro

(
Sw − Swc

1 − Swc − Sor

)nw

,

kro = krocw

(
1 − Sw − Sor

1 − Swc − Sor

)no

,

(2.11)

where krwro is the oil relative permeability at the irreducible water saturation Swc, krwcw is
the water relative permeability at the residual oil saturation Sor , nw, and no are constant
coefficients.

The polymer solution viscosity μp (mPa · s), the permeability reduction factor Rk, and
the amount adsorbed per unit mass of the rock Crp (mg/g) which depend on the polymer
concentration cp are given by

μp = μw

[
1 +
(
ap1cp + ap2c

2
p + ap3p

)]
,

Rk = 1 +
(Rkmax − 1) · brk · cp

1 + brk · cp ,

Crp =
acp

1 + bcp
,

(2.12)

where μw is the viscosity of the aqueous phase with no polymer (mPa·s), ap1, ap2, ap3,Rkmax,
brk, a (cm3/g), and b (L/g) are constant coefficients.

The fractional flow of water fw is given by

fw =
rw

ro + rw
. (2.13)
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2.3. Constraints

Since the polymer injection amount is limited, and the negative and overhigh injection con-
centrations are not allowed, the constraints in polymer flooding are expressedmathematically
as follows.

(1) The polymer injection amount constraint:

∫ tf

0

∫∫
Ω
qincpindσdt ≤ mpmax. (2.14)

(2) The injection polymer concentration constraint:

0 ≤ cpin ≤ cmax, (2.15)

where mpmax is the maximum polymer injection amount and cmax is the maximum
injection polymer concentration.

3. Full Implicit Finite Difference Method

The governing equations given by (2.4)–(2.8) are nonlinear PDEs. Several finite difference
approximations for the numerical simulation of such DPS are possible. We adopt a full-
implicit finite-difference scheme for the calculation of the governing equations. The scheme
is described below.

For two space variables, we now consider the grid system with which we divide up
the reservoir region in the x-y plane. The integer i (i = 1, 2, . . . , nx) is used as the index in
the x-direction, and the integer j (j = 1, 2, . . . , ny) for the index in the y-direction. Thus, xi is
the ith value of x, and yj is the jth value of y. Double indexing is used to identify functions
within the two-dimensional region. Let u(x, y, t) = [p, Sw, cp]

T denote the system state vector.
The discrete state vector in grid point (xi, yj) is described by

ui,j = u
(
xi, yj

)
. (3.1)

The reservoir domain is divided into nx×ny blocks, and the point (xi, yj) is considered
to be at the center of block (i, j). There are nx blocks in the x-direction and ny blocks in the
y-direction. Further details concerning this grid are given in Figure 1. We identify the coordi-
nate xi−(1/2) with the left side of the block (i, j), and xi+(1/2) with the right side of the block.
Similarly, yj−(1/2) is identified with the bottom of the block, and yj+(1/2) with the top.
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yj

yj

+1

yj+1

/2

yj−1

yj−1

/2

xi

xi

+1

xi+1

/2xi−1

xi−1

/2

•

• ••

•

i, j + 1

i, ji − 1, j i + 1, j

i, j − 1

Figure 1: Details of block-centred grid.

Using the predefined grid system, the derivatives in (2.4)–(2.6) are replaced by finite
differences. Three formulas are useful in this context:

∂u
∂t

=
un+1 − un

Δtn
,

∂u
∂x

=
ui+(1/2),j − ui−(1/2),j

Δx
,

∂u
∂y

=
ui,j+(1/2) − ui,j−(1/2)

Δy
,

(3.2)

where n = 0, 1, . . . ,N − 1 is the index of reservoir simulation time step, N is the number of
simulation time steps, Δtn represents the size of the nth time step in days, un+1 represents the
state vector at time tn+1, tn+1 is the total simulation time in days at the end of the nth time step
(tN = tf), and Δx and Δy (m) denote the space step lengths in the x-direction and y-direc-
tion, respectively.

Apply the formulas (3.2) to discretize the governing equations (2.4)–(2.6), and
multiply the grid areaΔxΔy (m2) to the two sides of the equations. For the full implicit finite
difference method, the second spatial derivative items in (2.4)–(2.6) are evaluated at time
tn+1 instead of at tn. Then, the full-implicit finite-difference equations of the polymer flood-
ing model has the general form:

gn = Fn+1
(
ũn+1

)
+Wn+1

(
ũn+1,vn

)
−
[
An+1

(
ũn+1

)
−An(ũn)

]
= 0, (3.3)

where g = [gT1,1, . . . ,g
T
i,j , . . . ,g

T
nx,ny

]T ∈ Rnx×ny×3 is the discrete governing equations of polymer

flooding model, ũ = [uT
1,1, . . . ,u

T
i,j , . . . ,u

T
nx,ny

]T ∈ Rnx×ny×3 is the discrete state vector, v =

[vi,j | vi,j = cpin i,j , (i, j) ∈ κw]
T ∈ RNw is the control vector, κw is the set of grid coordinates

where injection wells located, F refers to the flux terms, W refers to the source terms, and A
refers to the accumulation terms.
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The discrete governing equations gi,j = [goi,j , gwi,j , gci,j]
T for the grid point (i, j) at time

tn are given by

gn
oi,j = Fn+1

oi,j +Wn+1
oi,j −An+1

oi,j +An
oi,j = 0,

gn
wi,j = Fn+1

wi,j +Wn+1
wi,j −An+1

wi,j +An
wi,j = 0,

gn
ci,j = Fn+1

ci,j +Wn+1
ci,j −An+1

ci,j +An
ci,j = 0.

(3.4)

Equations (3.4) are discrete flow equations for oil phase, water phase, and polymer com-
ponent, respectively. The full-implicit finite-difference schemes for the flux terms Fi,j =
[Foi,j , Fwi,j , Fci,j]

T are given by

Fn+1
oi,j = Δy

[
kpi+(1/2),j r

n+1
oi+(1/2),j

Δx

(
pn+1i+1,j − pn+1i,j

)
+
kpi−(1/2),j r

n+1
oi−(1/2),j

Δx

(
pn+1i−1,j − pn+1i,j

)]

+ Δx

[
kpi,j+(1/2)r

n+1
oi,j+(1/2)

Δy

(
pn+1i,j+1 − pn+1i,j

)
+
kpi,j−(1/2)r

n+1
oi,j−(1/2)

Δy

(
pn+1i,j−1 − pn+1i,j

)]
,

Fn+1
wi,j = Δy

[
kpi+(1/2),j r

n+1
wi+(1/2),j

Δx

(
pn+1i+1,j − pn+1i,j

)
+
kpi−(1/2),j r

n+1
wi−(1/2),j

Δx

(
pn+1i−1,j − pn+1i,j

)]

+ Δx

[
kpi,j+(1/2)r

n+1
wi,j+(1/2)

Δy

(
pn+1i,j+1 − pn+1i,j

)
+
kpi,j−(1/2)r

n+1
wi,j−(1/2)

Δy

(
pn+1i,j−1 − pn+1i,j

)]
,

Fn+1
ci,j = Δy

⎡
⎣kdi+(1/2),j r

n+1
di+(1/2),j

Δx

(
cn+1pi+1,j − cn+1pi,j

)
+
kdi−(1/2),j r

n+1
di−(1/2),j

Δx

(
cn+1pi−1,j − cn+1pi,j

)⎤⎦

+ Δx

⎡
⎣kdi,j+(1/2)r

n+1
di,j+(1/2)

Δy

(
cn+1pi,j+1 − cn+1pi,j

)
+
kdi,j−(1/2)r

n+1
di,j−(1/2)

Δy

(
cn+1pi,j−1 − cn+1pi,j

)⎤⎦

+ Δy

[
kpi+(1/2),j r

n+1
ci+(1/2),j

Δx

(
pn+1i+1,j − pn+1i,j

)
+
kpi−(1/2),j r

n+1
ci−(1/2),j

Δx

(
pn+1i−1,j − pn+1i,j

)]

+ Δx

[
kpi,j+(1/2)r

n+1
ci,j+(1/2)

Δy

(
pn+1i,j+1 − pn+1i,j

)
+
kpi,j−(1/2)r

n+1
ci,j−(1/2)

Δy

(
pn+1i,j−1 − pn+1i,j

)]
.

(3.5)

The discrete source terms Wi,j = [Woi,j ,Wwi,j ,Wci,j]
T are expressed as

Wn+1
oi,j = −

(
1 − fn+1

wi,j

)
Qn

out i,j ,

Wn+1
wi,j = Qn

in i,j − fn+1
wi,jQ

n
out i,j ,

Wn+1
ci,j = Qn

in i,jc
n
pin i,j − fn+1

wi,jQ
n
out i,jc

n+1
pi,j ,

(3.6)
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where Qout is the fluid production rate (Qout = ΔxΔyqout, m3/d, Qout i,j ≥ 0 at (i, j) ∈ κo, and
Qout i,j ≡ 0 at (i, j) /∈ κo), κo is the set of grid coordinates where production wells located,
Qin is the fluid injection rate (Qin = ΔxΔyqin, m3/d, Qin i,j ≥ 0 at (i, j) ∈ κw, and Qin i,j ≡ 0
at (i, j) /∈ κw). The full-implicit finite-difference schemes for the accumulation terms Ai,j =
[Aoi,j , Awi,j , Aci,j]

T are

An+1
oi,j =

Vi,j

Δtn

φn+1
i,j

(
1 − Sn+1

wi,j

)

Bn+1
oi,j

, An
oi,j =

Vi,j

Δtn

φn
i,j

(
1 − Sn

wi,j

)
Bn
oi,j

,

An+1
wi,j =

Vi,j

Δtn

φn+1
i,j Sn+1

wi,j

Bn+1
wi,j

, An
wi,j =

Vi,j

Δtn

φn
i,jS

n
wi,j

Bn
wi,j

,

An+1
ci,j =

Vi,j

Δtn

⎡
⎣φ

n+1
pi,j S

n+1
wi,jc

n+1
pi,j

Bn+1
wi,j

+ ρr
(
1 − φn+1

i,j

)
Cn+1

rpi,j

⎤
⎦,

An
ci,j =

Vi,j

Δtn

[
φn
pi,jS

n
wi,jc

n
pi,j

Bn
wi,j

− ρr
(
1 − φn

i,j

)
Cn

rpi,j

]
,

(3.7)

where V is the grid volume (Vi,j = hi,jΔxΔy, m3).
The boundary condition (2.7) is equivalent to

∂u
∂x

= 0,
∂u
∂y

= 0, ∀(x, y, t) ∈ ∂Ω × [0, tf]. (3.8)

Therefore, by using finite difference and (3.8), we have

ui,0 = ui,1, ui,ny+1 = ui,ny , i = 1, 2, . . . , nx,

u0,j = u1,j , unx+1,j = unx,j , j = 1, 2, . . . , ny.
(3.9)

The initial condition (2.8) is discretized as

u0
i,j = u

(
xi, yj , 0

)
, i = 1, . . . , nx, j = 1, . . . , ny. (3.10)

In solving the governing equations (2.4)–(2.8) by the full-implicit finite-difference
methods, a problem that was originally described by PDEs defined over continuous time
and spatial domains is transformed to problem that is described by a set of nonlinear discrete
algebraic equations that are implicit form.
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4. Necessary Conditions of OCP for Polymer Flooding

By using the full-implicit finite-difference method, the optimal control model of polymer
flooding is discretized as the general form:

max J =
N−1∑
n=0

Jn =
N−1∑
n=0

Δtn

⎡
⎣ξo ∑

(i,j)∈κo

(
1 − fn+1

wi,j

)
Qn

out i,j − ξp
∑

(i,j)∈κw

cnpin i,jQ
n
in i,j

⎤
⎦, (4.1)

s.t. gn
(
ũn+1, ũn,vn, n

)
= 0, n = 0, . . . ,N − 1, (4.2)

ũn|n=0 = ũ0, (4.3)

N−1∑
n=0

Δtn
∑

(i,j)∈κw

cnpin i,jQ
n
in i,j ≤ mpmax, (4.4)

0 ≤ vn ≤ vmax, (4.5)

where (4.1) is the discrete performance index and (4.4) is the discrete constraint of polymer
injection amount.

We desire to find a set of necessary conditions for the state vector, ũ, and the control,
v, to be extremals of the functional J (4.1) subject to the governing (4.2)-(4.3) and the
constraints (4.4)-(4.5). A convenient way to cope with such a discrete OCP is through the
use of Pontryagin’s maximum principle. The first step is to form an augmented functional by
adjoining the governing equations to the performance index J :

JA =
N−1∑
n=0

[
Jn
(
ũn+1,vn, n

)
+
(
λn+1

)T
gn
(
ũn+1, ũn,vn, n

)]
, (4.6)

where λ = [λT
1,1, . . . ,λ

T
i,j , . . . ,λ

T
nx,ny

]
T
is the adjoint vector and λi,j = [λoi,j , λwi,j , λci,j]

T .
We can simplify the augmented performance function of (4.6) by introducing the

Hamiltonian, H, as

Hn
(
ũn+1, ũn,vn,λn+1, n

)
= Jn

(
ũn+1,vn, n

)
+
(
λn+1

)T
gn
(
ũn+1, ũn,vn, n

)
. (4.7)

Therefore, the augmented performance function can be written as

JA =
N−1∑
n=0

Hn
(
ũn+1, ũn,vn,λn+1, n

)
. (4.8)
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Following the standard procedure of the calculus of variations, the increment of JA,
denoted by ΔJA, is formed by introducing variations δũn+1, δũn, δvn, and δλn+1 giving

ΔJA = JA
(
ũn+1 + δũn+1, ũn + δũn,vn + δvn,λn+1 + δλn+1

)
− JA

(
ũn+1, ũn,vn,λn+1

)
. (4.9)

This formulation assumes that the final time, tf , is fixed.
Expanding (4.9) in a Taylor series and retaining only the linear terms gives the varia-

tion of the functional, δJA,

δJA =
N−1∑
n=0

[(
∂Hn

∂ũn+1

)T

δũn+1 +
(
∂Hn

∂ũn

)T

δũn +
(

∂Hn

∂λn+1

)T

δλn+1 +
(
∂Hn

∂vn

)T

δvn
]
. (4.10)

The variations δũn+1 and δũn are not independent but can be related by a discrete version of
the integration by parts as

N−1∑
n=0

(
∂Hn

∂ũn+1

)T

δũn+1 =
N−1∑
n=0

(
∂Hn−1

∂ũn

)T

δũn −
(

∂H−1

∂ũ0

)T

δũ0 +

(
∂HN−1

∂ũN

)T

δũN. (4.11)

By substituting (4.11) into (4.10), the first variation δJA becomes

δJA =
N−1∑
n=0

(
∂Hn−1

∂ũn
+
∂Hn

∂ũn

)T

δũn −
(

∂H−1

∂ũ0

)T

δũ0 +

(
∂HN−1

∂ũN

)T

δũN

+
N−1∑
n=0

(
∂Hn

∂λn+1

)T

δλn+1 +
N−1∑
n=0

(
∂Hn

∂vn

)T

δvn+1.

(4.12)

The following necessary conditions for optimality are obtained when we apply
Pontryagin’s discrete maximum principle.

4.1. Adjoint Equations

Since the variation δũn is free and not zero, the coefficient terms involving the δũn variation
in (4.12) are set to zero. This results in the following adjoint equations:

∂Hn−1

∂ũn
+
∂Hn

∂ũn
= 0. (4.13)

Substituting the Hamiltonian (4.7) into (4.13), the adjoint equations reduce for the polymer
flooding problem under consideration as given by

(
∂gn−1

∂ũn

)T

λn +
(
∂gn

∂ũn

)T

λn+1 +
∂Jn−1

∂ũn
= 0. (4.14)
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4.2. Governing Equations

Since the variation δλn+1 is free, we have

∂Hn

∂λn+1
= gn

(
ũn+1, ũn,vn, n

)
= 0. (4.15)

4.3. Transversality Conditions

Since the initial state is specified, the variation δũ0 of (4.12) is zero. However, the final state
is not specified; therefore, the variation δũN is free and nonzero. This means the following
relation must be zero:

∂HN−1

∂ũN
= 0. (4.16)

By substituting the Hamiltonian (4.7) into (4.16), the transversality conditions of adjoint
equations for the polymer flooding OCP are expressed as

∂JN−1

∂ũN
+
(
λN
)T ∂gN−1

∂ũN
= 0. (4.17)

Equation (4.17) shows that the adjoint variables are known at the final time tN . Since the state
variables are known at the initial time and the adjoint variables are known at the final time,
the discrete OCP is a split two-point boundary-value problem.

4.4. Optimal Control

With all the previous terms vanishing, the variation of the functional δJA becomes

δJA =
N−1∑
n=0

[(
∂Hn

∂vn

)T

δvn
]
. (4.18)

When the state and control regions are not bounded, the variation of the functional
must vanish at an extremal (the fundamental theorem of the calculus of variations), therefore,

∂Hn

∂vn
=

∂Jn

∂vn
+
(
∂gn

∂vn

)T

λn+1 = 0. (4.19)

Since there are bounds and amount constraints on the control vn, we use the discrete
maximum principle to assert the following necessary conditions for optimality:

Hn
(
ũn+1, ũn,λn+1,vn

∗)
= max

vn
Hn
(
ũn+1, ũn,λn+1,vn

)
, (4.20)

where vn
∗
denotes the optimal control vector.
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5. Numerical Solution

A gradient-based iterative numerical technique is proposed to determine the optimal injec-
tion strategies of polymer flooding. The computational procedure is based on adjusting esti-
mates of control vector vn to improve the value of the objective functional. For a control to
be optimal, the necessary condition given by (4.20) must be satisfied. If the control vn is not
optimal, then a correction δvn is determined so that the functional is made lager, that is,
δJA > 0. If δvn is selected as

δvn = w

[
∂Jn

∂vn
+
(
∂gn

∂vn

)T

λn+1

]
, (5.1)

where w is an arbitrary positive weighting factor, the functional variation becomes

δJA =
∫ tf

0

∫∫
Ω
w

[
∂Jn

∂vn
+
(
∂gn

∂vn

)T

λn+1

]T[
∂Jn

∂vn
+
(
∂gn

∂vn

)T

λn+1

]
dσ dt ≥ 0. (5.2)

Thus, choosing δvn as the gradient direction ensures a local improvement in the objective
functional, JA. At the higher and lower bounds on vn, we must make the appropriate
weighting terms equal to zero to avoid leaving the allowable region.

By substituting the discrete governing equations (3.3) and the performance index (4.1)
into (5.1), the required gradient for the OCP of polymer flooding is expressed as

δvni,j = w
(
λn+1ci,j −Δtnξp

)
Qn

in i,j ,
(
i, j
) ∈ κw. (5.3)

The computational algorithm of control iteration based on gradient direction is as
follows.

Step 1. Make an initial guess for the control vector, vn, n = 0, . . . ,N − 1.

Step 2. Using stored current value of vn, n = 0, . . . ,N − 1, integrate the governing equations
forward in time with known initial state conditions. Store the discrete states ũn+1, n =
0, . . . ,N − 1.

Step 3. Calculate the profit functional with the results of the forward integration.

Step 4. Solve the adjoint equations using the stored discrete states to calculate the adjoint
variables λn+1, n = 0, . . . ,N − 1, with (4.14) and (4.17). Compute and store δvn as defined by
(5.3).

Step 5. Using the evaluated δvn, an improved function is computed as

vnnew = vnold + δvn, n = 0, 1, . . .N − 1, (5.4)

where 0 ≤ vnnew ≤ vmax. A single variable search strategy can be used to find the value of
the positive weighting factorw which maximizes the improvement in the performance func-
tional using (5.4).
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Step 6. The optimization algorithm is stoppedwhen the variation δv is too small to effectively
change the performance measure, that is, when

|Jnew − Jold| < ε, (5.5)

where ε is a small positive number.
A penalty function method is adopted to deal with the polymer injection amount

constraint (4.4). For more information about that, we are able to use this method within
gradient-based algorithm, see [19].

It is clear that one forward governing equations evaluation and one backward adjoint
equations evaluation are required to calculate the gradients of the performance index,
irrespective of the number of controls. The time required to solve the adjoint equations is
of the same order of magnitude as the governing equations. Thus, with this process, a time
equivalent to approximately two integrations is all that is required to calculate any number
of gradients. This is why gradient-based algorithms can be very efficient and can potentially
lead to huge time savings if the number of controls is large.

6. New Algorithm for Adjoint Construction

Despite the great efficiency of the gradient-based algorithm, a major drawback of the
approach is that an adjoint code is required in order to apply the algorithm. The complexity
of the adjoint equations is similar to that of the governing equations. A modified approach is
proposed to construct the adjoint that makes it relatively easy to create the adjoint code. The
approach is due to the properties of the full-implicit finite-difference code and the forms of
the performance index used in the OCP model of polymer flooding.

The main coefficient terms of the adjoint equations given by (4.14) are the two
Jacobians of the governing equations:

∂gn
(
ũn+1, ũn,vn

)
∂ũn

,
∂gn−1

(
ũn, ũn−1,vn−1

)
∂ũn

. (6.1)

The two terms are difficult to calculate because they are functions of the governing equations.
During the forward integration of the governing equations, we solve (3.3) to determine ũn+1

at each time step. Since these equations are nonlinear with respect to ũn+1, the usual method
to solve them is through the Newton-Raphson algorithm [20]:

∂gn

∂ũn+1

∣∣∣∣
ũn+1,k

δũn+1,k = −gn
(
ũn+1, ũn,vn

)
, (6.2)

ũn+1,k+1 = ũn+1,k + δũn+1,k, (6.3)
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where k is the iteration index of the Newton-Raphson algorithm at a given time step, ũn+1,k

is the state vector of the kth iteration and (∂gn/∂ũn+1)|ũn+1,k is the Jacobian of the kth iteration
which is calculated by

∂gn

∂ũn+1

∣∣∣∣
ũn+1,k

=
∂Fn+1

∂ũn+1,k
+

∂Wn+1

∂ũn+1,k
− ∂An+1

∂ũn+1,k
. (6.4)

Equation (6.2) is linear with respect to δũn+1,k. At the convergence of the algorithm, the
Jacobian used in (6.2) is the same as the second Jacobian of (6.1).

Considering the full-implicit governing equations (3.3), the first Jacobian of (6.1) is
given as

∂gn

∂ũn
=

∂An(ũn)
∂ũn

. (6.5)

The governing equations of the previous time step is expressed as

gn−1 = Fn(ũn) +Wn
(
ũn,vn−1

)
−
[
An(ũn) −An−1

(
ũn−1

)]
= 0. (6.6)

Then the second Jacobian for this time step is given by

∂gn−1

∂ũn
=

∂Fn−1(ũn)
∂ũn

+
∂Wn−1(ũn,vn−1

)
∂ũn

− ∂An(ũn)
∂ũn

. (6.7)

The last term of (6.7) is the same as the right side of (6.5). Thus, the first Jacobian of any given
time step is calculated during the computation of the second Jacobian of the previous time
step.

The rest terms of adjoint equations are the derivatives of the scalar performance index
Jn−1 with respect to the state vector ũn. Due to the discrete form of performance index (4.1),
the terms ∂Jn−1/∂ũn are directly functions of the source terms derivatives with respective to
states ∂Wn/∂ũn. This is also calculated within the forward integration as seen from (6.4) and
is easy to extract.

Thus, all the terms required for solving the adjoint equations can be calculated during
the forward governing equations evaluation itself. The computational algorithm of control
iteration based on gradient direction is modified as follows.

Step 1. Make an initial guess for the control vector, vn, n = 0, . . . ,N − 1.

Step 2. Using stored current value of vn, n = 0, . . . ,N − 1, integrate the governing equations
forward in time with known initial state conditions. Store the discrete states ũn+1 and
the coefficients involved in the adjoint equations ∂gn/∂ũn, ∂gn/∂ũn+1, ∂Wn+1/∂ũn+1, n =
0, . . . ,N − 1.

Step 3. Calculate the profit functional with the results of the forward integration.
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Figure 2: Permeability (μm2) distribution.

Step 4. Solve the adjoint equations using the stored Jacobians and source terms derivatives in
Step 2 to calculate the adjoint variables λn+1, n = 0, . . . ,N−1, with (4.14) and (4.17). Compute
and store δvn as defined by (5.3).

Step 5. Using the evaluated δvn, an improved function is computed as (5.4).

Step 6. The optimization algorithm is stoppedwhen the variation δv is too small to effectively
change the performance measure.

It should be noted that mathematically there is no change in the algorithm, but the
adjoint equations become much simpler to code. Furthermore, the adjoint equations code can
be fully consistent with the governing equations if the polymer flooding model is changed.
For example, some terms reflecting new physical characteristics are added to (3.3). This
is because the coefficient terms in adjoint equations are taken directly from the governing
equations in the proposed method.

7. Case Study

In this section, we present a numerical example of optimal control for polymer flooding done
with the proposed implicit discrete maximum principle method.

The two-phase flow of oil and water in a heterogeneous two-dimensional reservoir is
considered. The reservoir covers an area of 421.02 × 443.8m2 and has a thickness of 5m and
is discretized into 90 (9 × 10 × 1) grid blocks. The production model is a five-spot pattern,
with one production well P1 located at the center of the reservoir (5, 6) and four injection
wells W1–W4 placed at the four corners (1, 10), (9, 10), (1, 1), and (9, 1) as shown in
the permeability distribution map of Figure 2. Polymer is injected when the fractional flow
of water for the production well comes to 97% after water flooding. The time domain of
polymer injection is 0–1440 days and the polymer flooding project life is tf = 5500 (days).
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Figure 4: Initial reservoir pressure (MPa) contour map.

Figures 3 and 4 show the contour maps of the initial water saturation S0
w and the initial

reservoir pressure p0, respectively. The initial polymer concentration is c0p = 0 (g/L). In the
performance index calculation, we use the price of oil ξo = 0.0503 (104$/m3) [80($/bbl)],
and the cost of polymer ξp = 2.5 × 10−4 (104$/kg). The fluid rate of the production well is
Qout = 60m3/day, and the fluid rate of every injection well is Qin = 15m3/day. The PDEs
are solved by full-implicit finite-difference method with step size 10 days. For the constraint
(2.15), the maximum injection polymer concentration is cmax = 2.2 (g/L). The parameters of
the reservoir description and the fluid data are shown in Tables 1 and 2, respectively.
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Figure 5: Injection polymer concentration of well W1.

The polymer injection strategies obtained by the conventional engineering judgment
method (trial and error) are the same 1.8 (g/L) for all injection wells. The performance
index is J = $1.592 × 107 with oil production 32429m3 and polymer injection 155520 kg.
For comparison, the results obtained by engineering judgment method are considered as
the initial control strategies of the proposed implicit discrete maximum principle method.
The maximum polymer injection amount in constraint (2.14) is mp max = 155520 (kg). A
backtracking search strategy [19] is used to find the appropriate weighting term w and the
stopping criterion is chosen as ε = 1 × 10−5. By using the proposed algorithm, we obtain a
cumulative oil of 33045m3 and a cumulative polymer of 155520.01 kg yielding the profit of
J∗ = $1.623 × 107 over the polymer flooding project life of the reservoir. The results show an
increase in performance index of $3.1 × 105. Figures 5, 6, 7, and 8 show the optimal control
policies of the injectionwellsW1–W4. As a result, the optimal injection polymer concentration
profiles of W1, W2 are significantly different from those of W3, W4. It is mainly due to
the differences of the well positions and the distance to the production well, as well as the
reservoir heterogeneity and the uniform initial water saturation distribution. Figures 9 and 10
show the fractional flow ofwater in productionwell and the cumulative oil production curves
of the two methods, respectively. It is obvious that the fractional flow of water obtained by
implicit discrete maximum principle method is lower than that by engineering judgment.
Therefore, with the same cumulative polymer injection, the proposed method gets more oil
production and higher recovery ratio.

8. Conclusion

In this work, a new optimal control model of DPS is established for the dynamic injection
strategies making of polymer flooding. Necessary conditions of this OCP are obtained by
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Figure 6: Injection polymer concentration of well W2.
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Figure 7: Injection polymer concentration of well W3.

using the calculus of variations and Pontryagin’s discrete maximum principle. A gradient-
based iterative computational algorithm with new adjoint construction is proposed for the
determination of optimal injection strategies. It is shown that the modified approach makes it
relatively easy to code the adjoint equations as compared to the standard approach. The opti-
mal control model of polymer flooding and the proposed method are used for a reservoir
example and the optimum injection concentration profiles for each well are offered. The
results show that the profit is enhanced by the proposed method. Meanwhile, more oil
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Figure 8: Injection polymer concentration of well W4.
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Figure 9: Fractional flow of water for the production well P1.

production and higher recovery ratio are obtained. And the injection strategies chosen by
engineering judgment are the same for all the wells, whereas the optimal control policies by
the proposed method are different from each other as a result of the reservoir heterogeneity
and the uniform initial conditions.

In conclusion, given the properties of an oil reservoir and the properties of a polymer
solution, optimal polymer flooding injection strategies to maximize profit can be designed by
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Figure 10: Cumulative oil production.

Table 1: Parameters of reservoir description used in the example.

Parameters Values
Number of production well,Np 1
Number of injection wells,Nw 4
Thickness of the reservoir bed, h (m) 5
Reference pressure, pr (MPa) 12
Porosity under the condition of the reference pressure, φr 0.31
Rock density, ρr (kg/m3) 2000
Rock compressibility factor, CR (1/MPa) 9.38 × 10−6

Irreducible water saturation, Sor 0.25
Residual oil saturation, Swc 0.22
Oil relative permeability at the irreducible water saturation, krwro 0.5228
Water relative permeability at the residual oil saturation, krocw 0.9
Index of oil relative permeability curve, no 4.287
Index of water relative permeability curve, nw 2.3447

using implicit discrete maximum principle. The approach used is a powerful tool that can aid
significantly in the development of operational strategies for EOR processes.
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