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This paper deals with the problem of robust stabilization of stochastic systems with time-delay
and nonlinear uncertainties via memory state feedback. Based on Lyapunov krasoviskii functional,
some sufficient conditions on local (global) stabilization are given in terms of matrix inequalities.
In particular, these stabilizable conditions for a class of nonlinear stochastic time-delay systems are
derived in the form of linear matrix inequalities, which have the advantage of easy computation.
Moreover, the corresponding results are further extended to the stochastic multiple time-delays
systems. Finally, an example is presented to show the superiority of memory state feedback
controller to memoryless state feedback controller.

1. Introduction

Stochastic differential delay equations are one of the most useful stochastic models in
applications, for example, aircraft, chemical or process control system, and distributed
networks. It is known that time-delay is, in many cases, a source of poor system performance
or instability. Hence, the stability and stabilization of stochastic time delay systems have been
recently attracting the attention of a number of researchers, see [1–18] and the references
therein. In [2], the authors studied the stability of linear stochastic systems with uncertain
time delay by generalized Riccati equation approach, while [3] extended the results of [2]
to nonlinear case via linear matrix inequalities. Reference [4] investigated the problems of
stabilization for a class of linear stochastic systems with norm-bounded uncertainties and
state delay, and it developed two criteria for the stability analysis: delay-dependent and
delay-independent. The memoryless nonfragile state feedback control law for nonlinear
stochastic time-delay systems was designed in [5], in which new sufficient conditions for the
existence of such controllers were presented based on the linear matrix inequalities approach.
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Reference [6] was concerned with the stability analysis and proposed improved delay-
dependent stability criteria for uncertain stochastic systems with interval time-varying delay.
The study of exponential stability of stochastic delay-differential equations was discussed
in [7–9]. The output feedback stabilization of stochastic nonlinear time-delay systems was
investigated in [10], and some stabilization criterions for nonlinear stochastic time-delay
systems with state and control-dependent noise were given in [11, 12] by means of matrix
inequalities.

We usually design memoryless state feedback controller for the stabilization of
systems because of its advantage of easy implementation. However, its performance, for
time-delay systems, cannot be better than a memory state feedback controller which utilizes
the available information of the size of delay. Reference [19] has given a general form of a
memory state feedback (delayed feedback) controller:

u(t) = Gx(t) +
∫ t

t−τ
G1(s)x(s)ds. (1.1)

But the task of storing all the previous states x(·) and computing the values of time-varying
gain matrices G1(·) makes the practical realization of infinite-dimensional controller (1.1)
very difficult. For these reasons, the controller

u(t) = Gx(t) +G2x(t − τ) (1.2)

could be considered as a compromise between the performance improvement and the
implementation simplicity. Reference [20] gave the sufficient conditions for the stabilization
of deterministic state-delayed systems. References [21] and [22] designed a memory state
feedback controller for neutral time-delay systems and singular timedelay systems, respec-
tively. Reference [23] studied the stabilization problem for a class of discrete-time Markovian
jump linear systems with time-delays both in the system state and in the mode signal via
time-delayed controller and obtained a sufficient condition. What [13] actually studied is
the stabilization problem of linear stochastic time-delay systems using generalized Riccati
equation method. Up to now, to the best of the authors’ knowledge, the issue on memory
state feedback stabilization of stochastic systems with time-delay and nonlinear uncertainties
has not been fully investigated in previous literatures.

In this paper, we consider the problem on robust stabilization for stochastic systems
with time-delay and nonlinear uncertainties via memory state feedback. This problem
contains three inevitable aspects of practical application: timedelay, nonlinear uncertainties
and more effective controller, which is more complex than the stabilization of pure stochastic
systems via memoryless control. These complexities result in some difficulties of memory
stabilizing controller design. By the Itô formula, mathematical expectation properties, and
matrix transformation, some sufficient conditions are obtained on locally and globally
asymptotic stabilization in probability by means of matrix inequalities. Especially for a
class of nonlinear stochastic time-delay systems, a sufficient condition for the existence of
memory state feedback stabilizing controller is obtained in terms of LMIs, which has the
advantage of easy computation. Meanwhile, a memoryless state feedback controller is also
given as a special case of memory state feedback controller. Moreover, the robust stabilization
problem for stochastic multiple time-delays systems is further studied and a general sufficient
condition is derived.
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The paper is organized as follows. Some preliminaries and problem formulations are
presented in Section 2. In Section 3, main results are given. Section 4 presents one example to
illustrate the effectiveness of our developed results. Section 5 concludes this paper.

Notation 1. A′: the transpose of matrix A; A ≥ 0(A > 0): A is positive semidefinite (positive
definite) symmetric matrix; I: identity matrix; ‖ · ‖: Euclidean norm; L2

F([0, ∞), Rl): space of
nonanticipative stochastic process y(t) ∈ Rl with respect to an increasing σ-algebra Ft(t ≥ 0)
satisfying E

∫∞
0 ‖y(t)‖2dt < ∞. In×n: n × n identity matrix.

2. Preliminaries and Problem Statement

Consider the following continuous nonlinear stochastic time-delay systems:

dx(t) = (Ax(t) + Bx(t − τ) + B1u(t) +H0(x(t), x(t − τ), u(t)))dt

+ (Cx(t) +Dx(t − τ) +D1u(t) +H1(x(t), x(t − τ), u(t)))dw(t),

x(t) = ø(t) ∈ L2(ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(2.1)

where x(t) ∈ Rn and u(t) ∈ Rm are system state and control input, respectively; w(t) is
1-dimensional standard Wiener process defined on the probability space (Ω, F, Ft, P) with
Ft = σ{w(s) : 0 ≤ s ≤ t};Hi(0, ·, ·) = 0, i = 0, 1;A, B, B1,C,D, andD1 are constant matrices; τ >
0 is a certain timedelay. Under very mild conditions onHi(0, ·, ·), i = 0, 1, (2.1) exists a unique
global solution [1]. It should be pointed out that any general nonlinear stochastic system
which is sufficiently differentiable can take the form of (2.1) via Taylor’s series expansion at
the origin.

Next, we give the following definitions essential for the paper.

Definition 2.1 (see [1]). System (2.1) with u(t) = 0 is said to be stable in probability, if for any
ε > 0,

lim
x→ 0

P

(
sup
t≥0

‖x(t)‖ > ε

)
= 0. (2.2)

Additionally, if we also have

lim
x0 → 0

P

(
lim
t→∞

x(t) = 0
)

= 1, (2.3)

then system (2.1) with u(t) = 0 is said to be locally asymptotically stable in probability.
If (2.2) holds and

P

(
lim
t→∞

x(t) = 0
)

= 1 (2.4)

for all x0 ∈ Rn, then system (2.1) with u(t) = 0 is said to be globally asymptotically stable in
probability.
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Definition 2.2. If there exists a constant memory state feedback control law

u(t) = K1x(t) +K2x(t − τ), (2.5)

such that the equilibrium point of the closed-loop system

dx(t) = ((A + B1K1)x(t) + (B + B1K2)x(t − τ) +H0(x(t), x(t − τ), K1x(t) +K2x(t − τ)))dt

+ ((C +D1K1) x(t) + (D +D1K2)x(t − τ)

+H1(x(t), x(t − τ), K1x(t) +K2x(t − τ)))dw(t),

x(t) = ø(t), [−τ, 0]
(2.6)

is asymptotically stable in probability [1] for all τ > 0, then stochastic time-delay differential
system (2.1) is called locally robustly stabilizable. If (2.6) is robustly stable [2], that is, the
equilibrium point of (2.6) is asymptotically stable in the large [1] for all τ > 0, (2.1) is globally
robustly stabilizable.

Remark 2.3. Definition 2.2 gives locally (globally) robustly stabilizable of stochastic time-
delay systems via memory state feedback control law u(t) = K1x(t) + K2x(t − τ), which
is more general than that via memoryless state feedback control law [12]. This is because
Definition 2.2 reduces to the corresponding definition under memoryless state feedback
control law when K2 = 0.

The aim of this paper is to find a constant memory state feedback control law (2.5),
such that the equilibrium point of (2.6) is asymptotically stable in probability for all τ > 0.

3. Main Results

In this section, we will give some sufficient conditions of the stabilization of system (2.1).
Without loss of generality, we can give the following assumption for nonlinear functionHi.

Assumption 3.1. There exists an ε > 0, such that

sup
∥∥Hi

(
x, y,K1x +K2y

)∥∥ ≤ ε
(‖x‖ + ∥∥y∥∥), i = 0, 1, (3.1)

holds for all x, y ∈ U (a neighborhood of the origin).

The following general theorem is presented, which yields several applicable corollar-
ies.

Theorem 3.2. If (3.1) holds and K1, K2 ∈ Rm×n, P > 0, Q > 0 are the solutions of the following
matrix inequality

Z + Z1 < 0, (3.2)
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then system (2.1) can be locally robustly stabilized by (2.5). If U is replaced by Rn, then system (2.1)
can be globally robustly stabilized by the same controller.

In (3.2), Z and Z1 are defined by

Z =

[
Σ1 Σ2

∗ (D +D1K2)′P(D +D1K2) −Q

]
,

Z1 =

[
Σ3 0

0 Σ4

]
,

(3.3)

where

Σ1 = P(A + B1K1) + (A + B1K1)′P +Q + (C +D1K1)′P(C +D1K1),

Σ2 = P(B + B1K2) + (C +D1K1)′P(D +D1K2),

Σ3 = ε(3 + 3‖C‖ + 3‖D1‖ · ‖K1‖ + 3ε + ‖D‖ + ε‖D1‖ · ‖K2‖)‖P‖I,

Σ4 = ε(3 + ‖D‖ + ‖D1‖ · ‖K2‖ + ‖C‖ + ‖D1‖ · ‖K1‖ + 2ε)‖P‖I.

(3.4)

Proof. Choose the following Lyapunov-Krasoviskii functional:

V (t, x) = x′(t)Px(t) +
∫ τ

0
x′(t − s)Qx(t − s)ds, (3.5)

where P > 0 and Q > 0 are the solutions of (3.2). Let L be the infinitesimal generator of the
closed-loop system (2.6), then, by the Itô’s formula, we have

LV (t, x(t)) = x′(t)
[
P(A + B1K1) + (A + B1K1)′P +Q + (C +D1K1)′P(C +D1K1)

]
x(t)

+ 2x′(t)
[
P(B + B1K2) + (C +D1K1)′ · P(D +D1K2)

]
x(t − τ) + x′(t − τ)

· [(D +D1K2)′P(D +D1K2) −Q
]
x(t − τ)

+ 2H ′
0Px(t) + 2H ′

1P(D +D1K2)x(t − τ)

+ 2H ′
1P(C +D1K1)x(t) +H ′

1PH1

=

[
x(t)

x(t − τ)

]′
Z

[
x(t)

x(t − τ)

]
+ 2H ′

0Px(t) +H ′
1PH1

+ 2H ′
1P(D +D1K2)x(t − τ) + 2H ′

1P(C +D1K1)x(t).

(3.6)
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In addition, by (3.1), we obtain

2H ′
0Px(t) + 2H ′

1P(D +D1K2)x(t − τ) + 2H ′
1P(C +D1K1)x(t) +H ′

1PH1

≤ 2ε‖P‖(1 + ‖C‖ + ‖D1‖ · ‖K1‖ + ε)‖x(t)‖2

+ 2ε‖P‖(1 + ‖C‖ + ‖D1‖ · ‖K1‖ + ‖D‖ + ‖D1‖ · ‖K2‖ + ε)‖x(t)‖ · ‖x(t − τ)‖

+
(
2ε + ε2

)
‖P‖ · ‖x(t − τ)‖2.

(3.7)

By inequality |ab| ≤ (1/2)(a2 + b2), then (3.7) becomes

2H ′
0Px(t) + 2H ′

1P(D +D1K2)x(t − τ) + 2H ′
1P(C +D1K1)x(t) +H ′

1PH1

≤ ε(3 + 3‖C‖ + 3‖D1‖ · ‖K1‖ + 3ε + ‖D‖ + ‖D1‖ · ‖K2‖)‖P‖I‖x(t)‖2

+ ε(3 + ‖D‖ + ‖D1‖ · ‖K2‖ + ‖K2‖‖C‖ + ‖D1‖ · ‖K1‖ + 2ε)‖P‖I‖x(t − τ)‖2

=

[
x(t)

x(t − τ)

]′
Z1

[
x(t)

x(t − τ)

]
.

(3.8)

Substituting (3.8) into (3.6), it follows

LV (t, x(t)) ≤
[

x(t)

x(t − τ)

]′
(Z + Z1)

[
x(t)

x(t − τ)

]
. (3.9)

According to (3.2), that is LV (t, x(t)) < 0 in the domain {t > 0} × U for x /= 0, so the local
stabilization of Theorem 3.2 is obtained by Corollary of [1]. By the same discussion, the global
stabilization conditions can be also obtained by Theorem 4.4 of [1].

From Theorem 3.2, we can derive some useful results, which can be expressed in terms
of LMIs.

Corollary 3.3. If Hi ≡ 0, i = 0, 1, and the matrix inequality Z < 0 has solutions P > 0, Q > 0 and
K1, K2 ∈ Rm×n, then the linear stochastic time-delay system

dx(t) = (Ax(t) + Bx(t − τ) + B1u(t))dt + (Cx(t) +Dx(t − τ) +D1u(t))dw(t) (3.10)

is globally robustly stabilizable. If D = 0, D1 = 0, and the following LMI:

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ5 P̂ P̂C′ B1X

P̂ −Q̂ 0 0

CP̂ 0 −P̂ 0

XB′
1 0 0 −Q̂

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (3.11)



Mathematical Problems in Engineering 7

has solutions P̂ > 0, Y ∈ Rm×n, X ∈ Rn×m, and Q̂ > 0, then

dx(t) = (Ax(t) + Bx(t − τ) + B1u(t))dt + Cx(t)dw(t) (3.12)

is globally robustly stabilizable, where Σ5 = AP̂ + P̂A′ + B1Y + Y ′B′
1 + BQ̂B′ + BXB′

1 + B1XB′, and
a stabilizing feedback control law u(t) = K1x(t) +K2x(t − τ) = YP̂−1x(t) +XQ̂−1x(t − τ).

Proof. If Hi(·, ·, ·) = 0, i = 0, 1, we can take ε = 0 in (3.1), then LV (t, x(t)) < 0 for (t, x) ∈ t >
0 × Rn, except possibly at x = 0.

Thus, the first part of Corollary 3.3 is proved.
Furthermore, if D = 0, D1 = 0, (3.2) degenerates into

Z =

[
Σ6 P(B + B1K2)

(B + B1K2)′P −Q

]
< 0, (3.13)

where Σ6 = P(A + B1K1) + (A + B1K1)′P +Q + C′PC.
According to Schur’s complement, (3.13) is equivalent to

Σ6 + P(B + B1K2)Q−1(B + B1K2)′P < 0. (3.14)

Then, pre- and post-(3.14) by P−1, we have

P−1Σ6P
−1 + (B + B1K2)Q−1(B + B1K2)′ < 0. (3.15)

Setting P̂ = P−1, Y = K1P
−1, Q̂ = Q−1, and X = K2Q

−1. Again, by Schur’s complement, (3.15)
is equivalent to (3.11). Thus, the second part of Corollary 3.3 is also proved.

Remark 3.4. Reference [13] considered the analogous problem to Corollary 3.3 by delay
feedback, where the main result is expressed by means of generalized algebraic Riccati
equations (GAREs) GAREs. However, Corollary 3.3 gives a sufficient condition in terms of
LMIs which are easy to be solved.

Corollary 3.5. If the following LMI:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ∗1
√
2P̂C′ P̂ B′ 0 0

√
2CP̂ −P̂ 0 0 0 0

P̂ 0 −I 0 0 0

B 0 0 −I √
2D′ K′

2B
′
1

0 0 0
√
2D −P̂ 0

0 0 0 B1K2 0 −P̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.16)
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has solution P̂ > 0, Y , and K2, then the stochastic linear time-delay controlled system

dx(t) = (Ax(t) + Bx(t − τ) + B1u(t))dt + (Cx(t) +Dx(t − τ) +D1u(t))dw(t) (3.17)

is globally robustly stabilizable, where Γ∗1 = A′P̂ + P̂A + B1Y + Y ′B′
1 + P̂ . Moreover, the stabilizing

feedback control law

u(t) = YP̂−1x(t) +K2x(t − τ). (3.18)

Proof. Applying the well-known inequality

X′Y + Y ′X ≤ γX′X + γ−1Y ′Y, ∀γ > 0, (3.19)

and supposing γ = 1 for simplicity, we have

2x′(t)PB1K2x(t − τ) + 2x′(t)(C +D1K1)′P · (D +D1K2)x(t − τ)

≤ x′(t)
[
P + (C +D1K1)′P(C +D1K1)

]
x(t)

+ x′(t − τ)
[
K′

2B
′
1PB1K2 + (D +D1K2)′P · (D +D1K2)

]
x(t − τ).

(3.20)

Let Γ1 = Σ1 + P + (C +D1K1)′P(C +D1K1), Γ2 = 2(D +D1K2)′P(D +D1K2) +K′
2B

′
1PB1K2 −Q.

Then,

Z ≤
[
Γ1 PB

∗ Γ2

]
= Γ. (3.21)

Obviously, if Γ < 0, then Z < 0. Applying the Theorem 3.2, the closed-loop system of (3.17) is
robustly stable [2].

Then, pre- and post-multiplying Γ < 0 by diag{P−1, I}, and by Schur’s complement,
we have Γ < 0 is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ∗1
√
2P−1C′ P−1 B′ 0 0

√
2CP−1 −P−1 0 0 0 0

P−1 0 −Q−1 0 0 0

B 0 0 −Q √
2D′ K′

2B
′
1

0 0 0
√
2D −P−1 0

0 0 0 B1K2 0 −P−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.22)

where Γ∗1 = AP−1 + P−1A + B1K1P
−1 + P−1K′

1B
′
1 + P−1. Set P̂ = P−1, Y = K1P

−1 = K1P̂ , Q = I,
(3.22) is equivalent to (3.16). This ends the proof of Corollary 3.5.

Below, for D = 0, D1 = 0, we give another sufficient condition for the local (global)
stabilization of system (2.1) in the terms of LMIs.
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Theorem 3.6. For D = 0, D1 = 0 in (2.1), suppose (3.1) holds for all x, y ∈ U(x, y ∈ Rn). If the
LMIs:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π1 P̂ P̂
√
2P̂C′ B + B1K2

P̂ −Q̂ 0 0 0

P̂ 0 − α

6ε2
I 0 0

√
2CP̂ 0 0 −P̂ 0

B′ +K′
2B

′
1 0 0 0 −ε2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.23)

P̂ ≤ αI, (3.24)

Q̂ ≤ αI

7ε2
, (3.25)

0 < α ≤ 1, (3.26)

have solutions P̂ > 0, α, Q̂ > 0,K2, and Y ∈ Rm×n, then system (2.1) can be locally (globally) robustly
stabilized by

u(t) = YP̂−1x(t) +K2x(t − τ), (3.27)

whereΠ1 = AP̂ + P̂A′ + B1Y + Y ′B′
1 + P̂ .

Proof. Applying the well-known inequality (3.19) again and supposing γ = 1 for simplicity,
we have (if 0 < P ≤ I/α for some α > 0)

2H ′
0Px(t) + 2H ′

1PCx(t) +H ′
1PH1

≤ 6ε2

α

(
‖x(t)‖2 + ‖x(t − τ)‖2

)
+ x′(t)

(
P + C′PC

)
x(t)

(3.28)

which holds because

2H ′
0Px = H ′

0P
1/2 · P 1/2x + x′P 1/2 · P 1/2H ′

0

≤ H ′
0PH0 + x′Px

≤ 2ε2

α

(
‖x(t)‖2 + ‖x(t − τ)‖2

)
+ x′Px,

H ′
1PH1 ≤ 2ε2

α

(
‖x(t)‖2 + ‖x(t − τ)‖2

)
,

2H ′
1PCx = H ′

1P
1/2 · P 1/2Cx + x′C′P 1/2 · P 1/2H ′

1

≤ 2ε2

α

(
‖x(t)‖2 + ‖x(t − τ)‖2

)

+ x′(t)C′PCx(t).

(3.29)
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Substituting (3.28) into (3.6), it follows that

LV (t, x(t)) ≤
[

x(t)

x(t − τ)

]′
Ẑ

[
x(t)

x(t − τ)

]
, (3.30)

where

Ẑ =

⎡
⎢⎣Π

∗
1 +

6
α
ε2I P(B + B1K2)

∗ 6
α
ε2I −Q

⎤
⎥⎦. (3.31)

Considering (3.24), (3.25), and (3.26), it follows that

Ẑ ≤
⎡
⎣Π∗

1 +
6
α
ε2I P(B + B1K2)

∗ −ε2I

⎤
⎦. (3.32)

Let

Z1 =

⎡
⎣Π∗

1 +
6
α
ε2I P(B + B1K2)

∗ −ε2I

⎤
⎦, (3.33)

where Π∗
1 = P(A + B1K1) + (A + B1K1)′P +Q + P + 2C′PC.

Obviously, if Z1 < 0, then Ẑ < 0. So if (3.1) holds for all x ∈ U (x ∈ Rn), and Ẑ < 0,
then system (2.1) can be locally (globally) robustly stabilized by u(t) = K1x(t) +K2x(t − τ).

Note that Z1 < 0 is equivalent to that

P(A + B1K1) + (A + B1K1)′P +Q + P + 2C′PC +
6
α
ε2I + P(B + B1K2)ε−2I

(
K′

2B
′
1 + B′)P < 0.

(3.34)

Then pre- and postmultiply (3.34) by P−1, we have

(A + B1K1)P−1 + P−1(A + B1K1)′ + P−1QP−1

+ P−1 + 2P−1C′PCP−1 + P−1 6
α
ε2IP−1

+ (B + B1K2)ε−2I
(
K′

2B
′
1 + B′) < 0.

(3.35)

Setting P̂ = P−1, Y = K1P
−1 = K1P̂ , and Q̂ = Q−1 by the Schur’s complement, (3.35) is

equivalent to (3.23). Thus, the theorem is proved.

In the special case when K2 = 0, our results reduce the corresponding results in
memoryless state feedback case. The following theorem gives a sufficient condition for the
existence of memoryless state feedback controller of system (2.1) with D = 0, D1 = 0.
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Theorem 3.7. For D = 0, D1 = 0 in (2.1), suppose there exists an ε > 0,

sup ‖Hi

(
x, y,K1x

)‖ ≤ ε
(‖x‖ + ‖y‖), i = 0, 1, (3.36)

holds for all x, y ∈ U (x, y ∈ Rn), if the LMIs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π1 P̂ P̂
√
2P̂C′ B

P̂ −Q̂ 0 0 0

P̂ 0 − α

6ε2
I 0 0

√
2CP̂ 0 0 −P̂ 0

B′ 0 0 0 −ε2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.37)

and (3.24), (3.25), and (3.26) have solutions P̂ > 0, Q̂ > 0, α, and Y ∈ Rm×n, then system (2.1) can
be locally(globally) robustly stabilized by

u(t) = YP̂−1x(t). (3.38)

Proof. It is derived by the same procedure as the proof of Theorem 3.6.

By the above discussion about stochastic systems with single delay (2.1), we further
study robust stabilization for the following stochastic systems with multiple delays

dx(t) =

⎡
⎣Ax(t) +

q∑
j=1

Bjx
(
t − τj

)
+

q∑
j=1

B1juj(t) +H0
(
x(t), x

(
t − τj

)
, uj(t)

)
⎤
⎦dt

+

⎡
⎣Cx(t) +

q∑
j=1

Djx
(
t − τj

)
+

q∑
j=1

D1juj(t) +H1
(
x(t), x

(
t − τj

)
, uj(t)

)
⎤
⎦dw(t),

x(t) = ø(t) ∈ L2(ω,F0, C([−h, 0], Rn)), t ∈ [−h, 0],

(3.39)

where τj > 0, j = 1, . . . , q, denote the state delay; h = max{τj , j ∈ [1, q]}.
For system (3.39), the following memory state feedback control law is adopted:

uj(t) = Kj1x(t) +Kj2x
(
t − τj

)
, j = 1, . . . , q. (3.40)
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Applying control law (3.40) to system (3.39), the resulting closed-loop system is given by

dx(t) =

⎡
⎣Ax(t) +

q∑
j=1

Bx
(
t − τj

)
+H0

(
x(t), x

(
t − τj

)
, Kj1x(t) +Kj2x

(
t − τj

))
⎤
⎦dt

+

⎡
⎣Cx(t) +

q∑
j=1

Dx
(
t − τj

)
+H1

(
x(t), x

(
t − τj

)
, Kj1x(t) +Kj2x

(
t − τj

))
⎤
⎦dw(t),

x(t) = ø(t) ∈ L2(ω,F0, C([−h, 0], Rn)), t ∈ [−h, 0],
(3.41)

where A = A +
∑q

j=1 B1jKj1, B = Bj + B1jKj2, C = C +
∑q

j=1 D1jKj1, D = Dj +D1jKj2.
By the same analysis as Theorem 3.2, we obtain the following theorem which gives

a general sufficient condition for the robust stabilization of stochastic multiple time-delays
system (3.39).

Theorem 3.8. If (3.1) holds, andKj1,Kj2, P > 0, andQ > 0 are the solutions of the following matrix
inequality

Z0 + Z1 < 0, (3.42)

then system (3.39) can be locally robustly stabilized by uj(t) = Kj1x(t) +Kj2x(t − τj). Especially if
U is replaced by Rn, then system (3.39) can be globally robustly stabilized by the same controller.

In (3.42), Z0 and Z1 are defined by

Z0 =

[
Z0

11 Z0
12

∗ Z0
22

]
,

Z1 =

[
Z1

11 0

0 Z1
22

]
,

(3.43)

where

Z0
11 = P

⎛
⎝A +

q∑
j=1

B1jKj1

⎞
⎠ +

⎛
⎝A +

q∑
j=1

B1jKj1

⎞
⎠

′

P +Q

+

⎛
⎝C +

q∑
j=1

D1jKj1

⎞
⎠

′

P

⎛
⎝C +

q∑
j=1

D1jKj1

⎞
⎠,

Z0
12 = P

q∑
j=1

(
Bj + B1jKj2

)
+

⎛
⎝C +

q∑
j=1

D1jKj1

⎞
⎠

′

P
q∑
j=1

(
Dj +D1jKj2

)
,
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Z0
22 =

⎡
⎣ q∑

j=1

(
Dj +D1jKj2

)
⎤
⎦

′⎡
⎣ q∑

j=1

(
Dj +D1jKj2

)
⎤
⎦ −Q,

Z1
11 = ε

⎛
⎝3 + 3‖C‖ + 3

∥∥∥∥∥∥
q∑
j=1

D1j

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

q∑
j=1

Kj1

∥∥∥∥∥∥ + 3ε

+‖D‖ + ε

∥∥∥∥∥∥
q∑
j=1

D1j

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

q∑
j=1

Kj2

∥∥∥∥∥∥
⎞
⎠‖P‖I,

Z1
22 = ε

⎛
⎝3 + ‖D‖ +

∥∥∥∥∥∥
q∑
j=1

D1j

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

q∑
j=1

Kj2

∥∥∥∥∥∥ + ‖C‖

+

∥∥∥∥∥∥
q∑
j=1

D1j

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

q∑
j=1

Kj1

∥∥∥∥∥∥ + 2ε

⎞
⎠‖P‖I.

(3.44)

Remark 3.9. From Theorem 3.7, some useful results can be easily derived for stochastic multiple time-
delays systems (3.39), which are similar to the results obtained for stochastic single time-delay systems
(2.1).

4. Numerical Example

Now, we present one example to illustrate the effectiveness of our developed result
(Theorem 3.6) in testing the stabilization of nonlinear stochastic time-delay system (2.1).

In (2.1), take D = 0, D1 = 0, and

A =

[−5.00 2.23

−1.56 2.15

]
, B =

[−0.24 0.89

1.22 −0.76

]
,

B1 =

[−2.25
4.48

]
, C =

[−0.05 −0.15
0.15 −0.10

]
,

H0 =

[
sin(u(t)x2(t − τ))x1(t)

cos(u(t)x1(t − τ))x2(t)

]
,

H1 =

⎡
⎣exp

(
−(u(t) + x1(t − τ) + x2(t − τ))2

)
x2(t)

exp
(−(u2(t)x2

1(t − τ)
))
x1(t)

⎤
⎦,

φ(0) =
[
10 8

]′
, τ = 0.5.

(4.1)

Obviously, (2.1) holds for all x ∈ Rn with ε = 1.
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Case 1 (Memory State Feedback Stabilization). Substituting all the above data into (3.23)
and then solving the LMIs (3.23), (3.24), (3.25), and (3.26) by LMIs Toolbox, we can obtain
solutions

P̂ =

[
0.4625 −0.0626
−0.0626 0.3383

]
> 0,

α = 0.9015,

Y =
[−0.1377 −0.6674],

K2 =
[−0.2391 0.2149

]
,

Q̂ =

[
0.1141 0.0052

0.0052 0.0974

]
> 0.

(4.2)

So by Theorem 3.6, system (2.1) can be globally robustly stabilized by

u(t) = YP̂−1x(t) +K2x(t − τ)

= −0.5790x1(t) − 2.0795x2(t)

− 0.2391x1(t − τ) + 0.2149x2(t − τ).

(4.3)

The state trajectories of close-loop system (2.6) and control curve in memory state feedback
case are illustrated as Figure 1, from which, we see that the closed-loop system (2.6) takes
only one second to have been stable.

Case 2 (Memory-Less State Feedback Stabilization). Solving LMIs (3.37), (3.24), (3.25), and
(3.26), we obtain

P̂ =

[
0.5609 −0.1964
−0.1964 0.4117

]
> 0,

Y =
[
0.0602 −0.5168],

Q̂ =

[
0.0923 0.0017

0.0017 0.0790

]
> 0,

α = 0.9243.

(4.4)

So by Theorem 3.7, system (2.1) can be globally robustly stabilized by

u(t) = YP̂−1x(t) = −0.4449x1(t) − 1.5770x2(t). (4.5)
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Figure 1: State trajectories and control input in memory state feedback case.

The state trajectories of close-loop system (2.6) and control curve in memoryless state
feedback case are illustrated as Figure 2, from which, it can be seen that the closed-loop
system (2.6) takes 1.5 seconds to have been stable.

From the two simulation results, the time needed to stabilize system using memory
state feedback controller is less than that using memory-less state feedback controller, which
shows the advantage of memory state feedback control.

5. Conclusions

This paper has discussed memory state feedback stabilization of stochastic systems with
time-delay and nonlinear uncertainties. Some sufficient conditions have been given for
the existence of a memory state feedback stabilizing control law in terms of linear matrix
inequalities, which have the advantage of easy computation. The corresponding results to
stochastic single time-delay systems have been further extended to the stochastic multiple
time-delays systems. The results obtained in this paper can be reduced to the corresponding
results inmemoryless state feedback case andmay also be extended to other stochastic system
model.
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Figure 2: State trajectories and control input in memoryless state feedback case.
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