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Nonlinear differential equations have applications in the modelling area for a broad variety of
phenomena and physical processes; having applications for all areas in science and engineering.
At the present time, the homotopy perturbation method (HPM) is amply used to solve in an
approximate or exact manner such nonlinear differential equations. This method has found wide
acceptance for its versatility and ease of use. The origin of the HPM is found in the coupling
of homotopy methods with perturbation methods. Homotopy methods are a well established
research area with applications, in particular, an applied branch of suchmethods are the homotopy
continuation methods, which are employed on the numerical solution of nonlinear algebraic
equation systems. Therefore, this paper presents two modified versions of standard HPM method
inspired in homotopy continuation methods. Both modified HPMs deal with nonlinearities
distribution of the nonlinear differential equation. Besides, we will use a calcium-induced calcium
released mechanism model as study case to test the proposed techniques. Finally, results will be
discussed and possible research lines will be proposed using this work as a starting point.

1. Introduction

Many important physical phenomena on the engineering and science fields are frequently
modelled by nonlinear differential equations. Such equations are often difficult or impossible
to solve in a closed way. Nevertheless, analytic methods to obtain approximate solutions
have gained importance in recent years. Among the most employed methods we have the
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homotopy perturbationmethod (HPM) [1–9]; it was proposed by the Chinese mathematician
Ji-Huan He, and it was introduced as a powerful tool to approach various kinds of nonlinear
problems. As is well known, nonlinear phenomena appear in a wide variety of scientific
fields, such as applied mathematics, physics, and engineering. Scientists in those disciplines
are constantly faced with the task of finding solutions for linear and nonlinear ordinary
differential equations, partial differential equations, and systems of nonlinear ordinary
differential equations. In fact, there are several methods used to find approximate solutions
to nonlinear problems like variational approaches [10–14], Tanh Method [15], exp-function
[16], Adomian’s decomposition method [17, 18], parameter expansion [19], and so on.
Nevertheless, the HPM method is powerful, relatively simple to use, and has been tested
successfully in a variety of applications [13, 20–33]. The HPM method can be considered as
combination of the classical perturbation technique and the homotopy (whose origin is in
the topology), but has eliminated the limitations of the traditional perturbation methods. For
example, the method does not need a small parameter or linearisation, in fact, only requires
few iterations to obtain accurate solutions.

The basic idea of HPM method is to introduce a homotopy parameter p, which takes
values from 0 to 1. When parameter p = 0, the equation usually reduces to a simple, or trivial,
equation to solve. Then p gradually is increase to 1, producing a sequence of deformations,
where every solution is close to the last one. Eventually at p = 1, the system takes the
original form of the equation and the final stage of deformation provides the desired solution.
However, only a few iterations are needed to achieve a good accuracy.

Contributions to the HPM have been done in order to solve, in the most efficient way,
certain types of nonlinear problems [21, 34–36]. Nevertheless, we will see it is possible to
modify HPM by using analogies to the homotopy continuation methods (HCM) [37–52].
The HCM methods are a mathematical technique that allows to locate one or multiple roots
from nonlinear algebraic equation systems (NAESs). For the HCM methods, the homotopy
parameter plays a role similar to the homotopy parameter in the HPM methods; it serves to
create a continuous deformation from, say λ = 0, where the homotopy equation has a trivial
solution or simple to solve, up to λ = 1, where the homotopy equation recovers the form of the
original nonlinear problem. In every deformation step for λ the previous solution is employed
to find the next. Nevertheless, for some cases the homotopy simulation HCM is unable to
locate a solution; in the HCM the nonlinearities in the equation or system of equations to
solve play a determinant role on the probability to locate one or more solutions. Therefore,
the HCM have been developed with nonlinear mitigation techniques by embedding the
homotopy parameter in the equation to solve, generating a mitigation on the nonlinearities
capable to increase the probability to find the solution even for initial points located far from
the solution. Hence, due to the similarity of the HPM andHCM, we propose that it is possible
to distribute the nonlinearities of the differential equation, in the HPM to create iterations
easier to solve.

In this work, we have applied the new proposed modification of HPM to find an
approximate solution of the model of calcium-induced calcium release (CICR) mechanism.
A detailed physical interpretation of the CICR mechanism is given by [53, 54].

This paper is organized as follows. In Section 2, we provide a brief review of the
basic idea for the HPM and HCM. In Section 3, we propose a variant of the HPM based
on the nonlinear distributions of the differential equation between subsequent iterations
of the method. In Section 4, we propose a multiparameter version of the HPM. Section 5
provides a brief explanation of the CICR mechanism, then we solve it by the HPM and
the proposed modifications. In Section 6, we discuss the results, summarize our findings,
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and suggest possible directions for future investigations. Finally, a brief conclusion is given in
Section 7.

2. Basic Idea of HPMs and HCMs

HPM methods are a mathematical tool which bases its origin coupling the perturbation and
homotopy methods. Therefore, in this section we will explore the basic concepts for the HPM
and HCM in order to find analogies or similarities that allows to propose modifications to the
HPM inspired on the HCMs.

2.1. Basic Idea of HPMs

In the HPM is considered that a nonlinear differential equation can be expressed as

A(u) − f(r) = 0, where r ∈ Ω. (2.1)

With the boundary condition

B

(
u,

∂u

∂η

)
, where r ∈ Γ, (2.2)

where A is a general differential operator, f(r) is a known analytic function, B is a boundary
operator, and Γ is the boundary of the domain Ω. The A operator, generally, can be divided
into two operators, L and N, where L is the linear operator and N is the nonlinear operator.
Hence, (2.1) can be rewritten as

L(u) +N(u) − f(r) = 0. (2.3)

Now, the homotopy function is

H
(
v, p

)
=
(
1 − p

)
[L(v) − L(u0)] + p

(
L(v) +N(v) − f(r)

)
= 0 where p ∈ [0, 1], (2.4)

where u0 is the initial approximation of (2.3) which satisfies the boundary conditions and p
is known as the perturbation homotopy parameter. Analysing (2.4) can be concluded that

H(v, 0) = L(v) − L(u0),

H(v, 1) = L(v) +N(v) − f(r).
(2.5)

We assume that the solution of (2.4) can be written as a power series of p [1]

v = p0v0 + p1v1 + p2v2 + · · · . (2.6)
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Adjusting p = 1 results that the approximate solution for (2.1) is

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (2.7)

The series (2.7) is convergent on most cases, nevertheless, the convergence depends
on the nonlinear operator A(v) [1, 2].

2.2. Basic Idea of HCMs

In the area of the HCMs, the first step to formulate a homotopy is to establish the nonlinear
algebraic equation to be solved; which is being defined as

f(x) = 0, where f :∈ �n −→ �n, (2.8)

where x represents the variables of problem and n is the number of variables. This equation
plays the same role as the nonlinear differential equation (2.3) for the HPM.

The homotopy function can be represented as

H
(
f(x), p

)
= 0, (2.9)

where f(x) is the equilibrium equation and p is the homotopy parameter just like the HPM.
For this case, (2.9) represents any homotopy formulation that fulfils the following basic
conditions:

(i) for p = 0 the solution of H−1(0) is known or easy to obtain using numerical
methods. This point is known as Homotopy’s initial point (x0),

(ii) for p = 1, H(f(x), 1) = f(x). Means that at p = 1 all solutions for f(x) are located,

(iii) the path forH−1(0) is a continuous function of p within the range of 0 ≤ p ≤ 1.

The homotopy path is the solution set ofH−1(0), representing a continuous curve that
can be traced by some numerical continuation technique or path following method [48, 55].
An example of HCM is Newton’s homotopy. The formulation is

H
(
f(x), p

)
= f(x) − (

1 − p
)
f(x0) = 0, (2.10)

where f(x) is the equilibrium equation, x0 is the initial point of the homotopy, and p is the
homotopy parameter.

If p = 0,

H
(
f(x), 0

)
= f(x) − f(x0) = 0, (2.11)

where x0 represents the initial point. It is simple to obtain or is chosen arbitrarily.
If p = 1

H
(
f(x), 1

)
= f(x) = 0, (2.12)

in this case the solution ofH is, precisely, the desired solution of the NA equation f(x). That
is, a continuous path is created between p = 0 and p = 1 which can be described as in Figure 1.
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Figure 1: Homotopy path.

In case that there is more than one solution: x∗
1, x

∗
2, x

∗
3, and x∗

4, for f(x), there is a chance that
those are connected to the same path.

3. HPM with Nonlinearities Distributions

For the HCM methods the selection of the initial point is vital, since it may affect the
probabilities to find a solution, even producing a failure on the search for the solution of
the NAES. It is known that nonlinearities of the NAES usually directly affect the probabilities
to find a solution, so a common strategy is to embed the homotopy parameter inside the
NAES, multiplying p by the nonlinear terms responsible for the nonlinearities that affect the
NAES. This is equivalent to soften the nonlinearities inherent to the NAES and increasing
the probabilities of success for the HCM. In other words, the nonlinearities of the NAES are
distributed along the homotopy path from p = 0 to p = 1, creating a smooth path for the
homotopy. An example of this type of homotopy can be formulated as

H
(
f(x), p

)
=
(
1 − p

)
(x − x0) + pf

(
x, p

)
= 0, (3.1)

where f(x) is the NA equation, x0 is the initial point of the homotopy, and p is the homotopy
parameter. It can be seen that when p = 0, then

H
(
f(x), 0

)
= x − x0 = 0, (3.2)

when p = 1, then

H
(
f(x), 1

)
= f(x, 1) = f(x) = 0, (3.3)

where for p between zero and one, the homotopy parameter reduce the nonlinear effect from
nullifying it at p = 0 until giving them their original state at p = 1. This kind of strategy may
provide better convergence to the solutions.
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Therefore, using the previously exposed for the HCMs, it is proposed to distribute
nonlinearities ofN and f among sequential iterations of the HPM.

H
(
v, p

)
=
(
1 − p

)
[L(v) − L(u0)] + p

(
L(v) +N

(
v, p

) − f
(
r, p

))
= 0, where p ∈ [0, 1].

(3.4)

The homotopy function (3.4) is essentially the same as (2.4), except for the nonlinear
operator N and function f which contain embedded the homotopy parameter. We propose,
first, to subdivideN and f into a series of terms and multiply pi by the most nonlinear terms,
where i is an integer number greater or equal to zero. The i power is selected according to
how much displacement is desired in the iterations for the corresponding nonlinear term of
N or f .

As mentioned before, embedding the homotopy parameter p within the differential
equation is a strategy to redistribute the nonlinearities between the successive iterations of
the HPM, we expect that this strategy helps to increase the probabilities to find the solution
sought. The rest of the method is exactly the same as the standard procedure for the HPM.
Therefore, we establish that

v = p0v0 + p1v1 + p2v2 + · · · , (3.5)

adjusting p = 1 turns out that the approximate solution of (2.1) is

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (3.6)

An advantage of this procedure is that given the distribution of nonlinearities
from the differential equation over the successive iterations of (3.5), less complex analytic
approximations may be obtained than the generated by the original standard of the HPM.
This method will be designated as nonlinear distribution HPM (NDHPM).

The convergence of themethodwill be tested on the next subsection taking as reference
the exposed in [56, 57].

3.1. Convergence

We construct a homotopy v(r, p) : Ω × [0, 1] → �n which satisfies

H
(
v, p

)
= L(v) − L(u0) + pL(u0) + p

[
N
(
v, p

) − f
(
r, p

)]
= 0, (3.7)

where u0 is the initial approximation of (2.1).
Let one writes (3.7) in the following form:

L(v) = L(u0) + p
[
f
(
r, p

) −N
(
v, p

) − L(u0)
]
= 0. (3.8)

Applying the inverse operator, L−1, to both sides of (3.8) we obtain

v = u0 + p
[
L−1f

(
r, p

) − L−1N
(
v, p

) − u0

]
. (3.9)
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Suppose that

v =
∞∑
i=0

pivi, (3.10)

substituting (3.10) in the right-hand side of (3.9) in the following form:

v = u0 + p

[
L−1f

(
r, p

) − (
L−1N

)[ ∞∑
i=0

pivi

]
− u0

]
. (3.11)

If p → 1, the exact solution may be obtained by using

u = lim
p→ 1

v = L−1f(r) − (
L−1N

)[∞∑
i=0
vi

]
= L−1f(r) −

[∞∑
i=0

(
L−1N

)
(vi)

]
. (3.12)

Now, to study the convergence of the method we use the Banach’s fixed point theorem
as done in [56]. Besides, in [56] a study of convergence for the standard HPM is performed,
giving as result exactly the same equation (3.12). Therefore, it can be concluded that the
NDHPM, essentially, has the same convergence as the standard method; except that it allows
the redistribution of the nonlinearities between the iterations of the method.

4. Multiparameter HPM

In theHCMmethod there aremultiparameter versions [52]. Thosemultiparameter homotopy
methods have certain advantages like the distribution of nonlinearities, bifurcations evasion,
sharp folds, singularities, location of complex solutions, among others [55, 58]. We expect
the creation of a multiparameter HPM may offer practical advantages, like the strategic
distribution of nonlinearities between successive iterations of the HPM. The homotopy
perturbation function is reformulated as

H
(
v, p

)
=
(
1 − p1

)
[L(v) − L(u0)] + p1

(
L(v) +N

(
v, p2

) − f
(
r, p2

))
= 0, (4.1)

where p1 ∈ [0, 1] and p2 ∈ [0, 1], both of them being homotopy parameters.
The homotopy formulation (4.1) is similar to (2.4), except that now there are two

homotopy parameters p1 and p2; the first homotopy parameter p1 formulates the basic
homotopy (2.4) and the second homotopy parameter p2 helps to distribute the nonlinearities
of the differential equation between successive iterations of the HPM. Hence, the main benefit
is that the nonlinearity degree can be redistributed for the resultant approximation, with
respect to the obtained results with the original HPM (see (2.4)).

Just like in the homotopy (3.4), we propose to subdivideN and f in a set of terms and
multiply pi2 by the most nonlinear terms, where i is an integer number greater or equal to
zero. The i power is selected according to how much displacement is desired in the iterations
the corresponding termN or f .
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The rest of the method is the basically the standard HPM method, except that the
power series are done in a multivariable way. Therefore, it is established that

v = v0 + v1p1 + v2p2 + v3p1p2 + v4p
2
1 + v5p

2
2 + v6p1p

2
2 + v7p

2
1p2 + · · · , (4.2)

adjusting p = 1 results that the approximate solution for (2.1) is

u = lim
p1 → 1 p2 → 1

v = v0 + v1 + v2 + · · · . (4.3)

This method will be designated as multiparameter HPM (MHPM).

4.1. Convergence

We construct a homotopy v(r, p1, p2) : Ω × [0, 1] → �n which satisfies

H
(
v, p

)
= L(v) − L(u0) + p1L(u0) + p1

[
N
(
v, p2

) − f
(
r, p2

)]
= 0, (4.4)

where u0 is the initial approximation of (2.1).
Let one writes (4.4) in the following form:

L(v) = L(u0) + p1
[
f
(
r, p2

) −N
(
v, p2

) − L(u0)
]
= 0. (4.5)

Applying the inverse operator L−1 to both sides of (4.5), we obtain

v = u0 + p1
[
L−1f

(
r, p2

) − L−1N
(
v, p2

) − u0

]
. (4.6)

Substituting (4.2) in the right-hand side of (4.6) in the following form:

v =u0+p1
[
L−1f

(
r, p1, p2

)−(L−1N
)[

v0+v1p1+ v2p2+v3p1p2+v4p
2
1 + v5p

2
2+v6p1p

2
2+· · ·

]
− u0

]
.

(4.7)

If p1 → 1 and p2 → 1, the exact solution may be obtained by using

u = lim
p1 → 1 p2 → 1

v = L−1f(r) − (
L−1N

)[∞∑
i=0
vi

]
= L−1f(r) −

[∞∑
i=0

(
L−1N

)
(vi)

]
. (4.8)

Now, to study the convergence of the method we use the Banach’s fixed point theorem
as done in [56]. Besides, in [56] a study of the convergence for the standard HPM is
performed, resulting in exactly the same equation (4.8). Therefore, it can be concluded that
theNDHPMhas, essentially, the same convergence as the standardmethod except that allows
the redistribution of the nonlinearities between the iterations of the method.
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5. Solution of the CICR Model

There are a number of phenomena in biological sciences, where the precursor of a particular
process is the appearance of a travelling wave of chemical concentration, mechanical
deformation, electrical signals, and so on [53, 54]. There are, for instance, both chemical and
mechanical waves that propagate on the surface of many vertebrate eggs. In the case of
the egg of Medaka fish, a Calcium (Ca++) wave sweeps over the surface; it emanates
from the point of sperm entry. Another example, related to interacting populations, is the
progressing wave of an epidemic, on which, for instance, the rabies epizootic spreading a
country. Another example is the movement of microorganisms moving into a food source
chemotactically directed. The existence of wave phenomena in biomedical sciences requires a
detailed study of travelling waves, and the search for analytic solutions of the equations that
govern them. A kind of biological wave is the calcium-induced calcium release mechanism
(CICR). This mechanism is relevant, for instance, to understand how themembrane enclosing
certain fertilized amphibian eggs works. Due to the importance of the CICR mechanism, this
work proposes to implement an approximate solution with good accuracy that describes the
behaviour of such process.

During the development of living systems there is almost continual interchange of
information at both inter and intra cellular level. Embryogenesis is an example on how such
communication is necessary for a sequential development. Propagating waveforms of varied
biochemical concentrations are the transmission medium of such information.

A biochemical switch is a mechanism whereby sufficiently large perturbation from
one steady state can move a system to another steady state. An important example, which
arises experimentally, is known as the calcium stimulated, calcium release mechanism. In
this process, if calcium (Ca++) is perturbed above a given threshold concentration, it causes
the further release of sequestered calcium, that is, the system moves to another steady state.
This happens, for instance, in certain calcium sites on the membrane enclosing fertilised
amphibian eggs.

The model represents the kinetics model equations of the calcium resequestration and
the autocatalytic release of calcium [53, 54]:

y′(x) = A +
k1y

2(
1 + y2

) − k2y
, (5.1)

where x represents time, y represents calcium concentration, k1 and k2 are constants, and A
represents a small leakage into the membrane.

In this work the mechanism for the CICR is solved just as a mathematical case to
explore the variants of the HPM proposed here.

5.1. Using Basic HPM

In order to analyse (5.1), it should be reordered

y′(x) + y2y′(x) + k2y
3 − (A + k1)y2 + k2y −A = 0. (5.2)
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To exemplify, we assign the following values A = 1, k1 = 3, k2 = 1, and the initial
condition y(0) = 0.9. Therefore, (5.2) is updated becoming

y′(x) + y2y′(x) + y3 − 4y2 + y − 1 = 0, where y(0) = 0.9. (5.3)

Equation (5.3) represents the transition from a state given by the initial condition
y(0) = 0.9 until a steady state for the calcium concentration. Now, the linear part is separated

L
(
y
)
= y′(x) + y − 1, (5.4)

and its nonlinear part

N
(
y
)
= y2(x)y′(x) + y3 − 4y2. (5.5)

Adjustment constants are added to (5.4), the result is

Lc

(
y
)
= ay′(x) + by + c − 1, (5.6)

here a, b, and c are adjustment constants.
Now, we establish the homotopy equation

(
1 − p

)
Lc

(
y
)
+ p

(
L
(
y
)
+N

(
y
))

= 0, (5.7)

where p is the homotopy parameter.
We suppose that solution for (5.7) has the form

y(x) = y0(x) + py1(x) + p2y2(x) + · · · . (5.8)

Adjusting p = 1, we can obtain an approximate solution

y(x) = y0(x) + y1(x) + y2(x) + · · · . (5.9)

Substituting (5.8) into (5.7) and equaling terms having potentials in the same order
as p, it can be solved for y0(x), y1(x), y2(x), and so on (in order to fulfil initial conditions
from y(0) = 0.9, it follows that y0(0) = 0.9, y1(0) = 0, y2(0) = 0, and so on). Therefore, the
following differential equations are established:

ay′
0(x) + by0(x) + c − 1 = 0,

ay′
1(x) + by1(x) +

(
y2
0(x) − a + 1

)
y′
0(x) + y3

0(x) − 4y2
0(x) + (1 − b)y0(x) − c = 0,

...

(5.10)

where terms y2 and subsequent are ignored because the first two terms (y0(x) and y1(x))
contribute to obtain a good accurate solution. In a similar process presented in [20, 59], we
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useNonlinearFit (given a total of k-samples from the exact model, theNonlinearFit command
finds values of the approximate model parameters such that the sum of the squared k-
residuals is minimized). command from Maple (Release 15) and command “convert” (with
option “rational”), to set the adjustment parameters (this process will repeat for the rest of
the examples in this paper), giving as a result:

y(x) =
(
−73
97

)
exp

(
−86
33

x

)
+
(
115
36

)
exp

(
−33
19

x

)
+
53
14

+
(
−293
55

+
37
53

x

)
exp

(
−33
38

x

)
.

(5.11)

5.2. Using the NDHPM

The NDHPMs establish that

(
1 − p

)
Lc

(
y
)
+ p

(
L
(
y
)
+Ni

(
y, p

) − f(r)
)
= 0, (5.12)

where p is the homotopy parameter, Lc is established in (5.6), f(r) = 0, and the nonlinear part
Ni(y, p) (i = 1, 2, 3, 4) is one of the following representative cases:

N1
(
y, p

)
=
(
y2y′(x) + y3 − 4y2

)
p,

N2
(
y, p

)
= y2y′(x) + y3p − 4y2p,

N3
(
y, p

)
= y2y′(x)p + y3 − 4y2p,

N4
(
y, p

)
= y2y′(x)p + y3p − 4y2.

(5.13)

Consider that when limp→ 1Ni = N.
Now, the exact basic steps for the HPM method are followed to obtain the following

differential equation system for cases N1, N2, N3, and N4:

p0 : ay′
0(x) + by0(x) + c − 1 = 0,

p1 : ay′
1(x) + by1(x) + (−a + 1)y′

0(x) + (1 − b)y0(x) − c = 0,

...

p0 : ay′
0(x) + by0(x) + c − 1 = 0,

p1 : ay′
1(x) + by1(x) +

(
y2
0(x) − a + 1

)
y′
0(x) + (1 − b)y0(x) − c = 0,

...

p0 : ay′
0(x) + by0(x) + c − 1 = 0,

p1 : ay′
1(x) + by1(x) + (−a + 1)y′

0(x) + y3
0(x) + (1 − b)y0(x) − c = 0,

...
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p0 : ay′
0(x) + by0(x) + c − 1 = 0,

p1 : ay′
1(x) + by1(x) + (−a + 1)y′

0(x) − 4y2
0(x) + (1 − b)y0(x) − c = 0,

...

(5.14)

with initial conditions y0(0) = 0.9, y1(0) = 0, y2(0) = 0, . . .. This is done to fulfil initial
conditions of (5.3).

In this case, the terms y2 and subsequent are ignored because the first two terms (y0(x)
and y1(x)) provide good accuracy to the solution. Then, we obtain the following accurate
approximations for all cases N1, N2, N3 and N4:

y(x) =
53
14

+
(
−26
9

+
16
29

x

)
exp

(
−15
29

x

)
, (5.15)

y(x) =
(

1
1264

)
exp

(
−43
12

x

)
−
(

11
118

)
exp

(
−43
18

x

)
+
19
5

+
(
−45
16

− 37
19

x

)
exp

(
−37
31

x

)
,

(5.16)

y(x) =
(

5
54

)
exp

(
−43
11

x

)
−
(
85
71

)
exp

(
−99
38

x

)
+
19
5

+
(
−79
44

− 94
29

x

)
exp

(
−43
33

x

)
,

(5.17)

y(x) = −
(
13
41

)
exp

(
−39
16

x

)
+
19
5

+
(
−31
12

− 29
13

x

)
exp

(
−39
32

x

)
, (5.18)

respectively.

5.3. Using the Multiparameter HPM

The homotopy equation is established according to the basic guidelines for the multiparam-
eter HPM:

(
1 − p1

)
Lc

(
y
)
+ p1

(
L
(
y
)
+Ni

(
y, p2

))
= 0, (5.19)

where p1 is the first homotopy parameter, Lc is defined in (5.6), and we propose the nonlinear
operator Ni(y, p2) (i = 1, 2, 3, 4) as the following representative case:

N1
(
y, p2

)
=
(
y2y′(x) + y3 − 4y2

)
p2,

N2
(
y, p2

)
= y2y′(x)p2 + y3p22 − 4y2p2,

N3
(
y, p2

)
= y2y′(x)p2 + y3p2 − 4y2p22,

N4
(
y, p2

)
= y2y′(x)p22 + y3p22 − 4y2p2.

(5.20)



Mathematical Problems in Engineering 13

From (4.2) we obtain

y(x) = y0(x) + y1(x)p1 + y2(x)p2 + y3(x)p1p2 + y4(x)p21 + y5(x)p22 + · · · . (5.21)

Now, we substitute (5.21) into (5.19) and follow the same basic steps to obtain the
following differential equations for the first six terms of the multivariable power series (with
initial conditions y0(0) = 0.9, y1(0) = 0, y2(0) = 0, y3(0) = 0, y4(0) = 0, and y5(0) = 0) for cases
N1, N2, N3, and N4, we obtain

p01p
0
2 : ay

′
0(x) + by0(x) + c − 1 = 0,

p11p
0
2 : ay

′
1(x) + by1(x) + (1 − a)y′

0(x) + (1 − b)y0(x) − c = 0,

p01p
1
2 : ay

′
2(x) + by2(x) = 0,

p11p
1
2 : ay

′
3(x) + by3(x) + (1 − a)y′

2(x) + (1 − b)y2(x) + y2
0(x)y

′
0(x) − 4y2

0(x) + y3
0(x) = 0,

p21p
0
2 : ay

′
4(x) + by4(x) + (1 − a)y′

1(x) + (1 − b)y1(x) = 0,

p01p
2
2 : ay

′
5(x) + by5(x) = 0,

(5.22)

p01p
0
2 : ay

′
0(x) + by0(x) + c − 1 = 0,

p11p
0
2 : ay

′
1(x) + by1(x) + (1 − a)y′

0(x) + (1 − b)y0(x) − c = 0,

p01p
1
2 : ay

′
2(x) + by2(x) = 0,

p11p
1
2 : ay

′
3(x) + by3(x) + (1 − a)y′

2(x) + (1 − b)y2(x) + y2
0(x)y

′
0(x) − 4y2

0(x) = 0,

p21p
0
2 : ay

′
4(x) + by4(x) + (1 − a)y′

1(x) + (1 − b)y1(x) = 0,

p01p
2
2 : ay

′
5(x) + by5(x) = 0,

(5.23)

p01p
0
2 : ay

′
0(x) + by0(x) + c − 1 = 0,

p11p
0
2 : ay

′
1(x) + by1(x) + (1 − a)y′

0(x) + (1 − b)y0(x) − c = 0,

p01p
1
2 : ay

′
2(x) + by2(x) = 0,

p11p
1
2 : ay

′
3(x) + by3(x) + (1 − a)y′

2(x) + (1 − b)y2(x) + y2
0(x)y

′
0(x) + y3

0(x) = 0,

p21p
0
2 : ay

′
4(x) + by4(x) + (1 − a)y′

1(x) + (1 − b)y1(x) = 0,

p01p
2
2 : ay

′
5(x) + by5(x) = 0,

(5.24)

p01p
0
2 : ay

′
0(x) + by0(x) + c − 1 = 0,

p11p
0
2 : ay

′
1(x) + by1(x) + (1 − a)y′

0(x) + (1 − b)y0(x) − c = 0,

p01p
1
2 : ay

′
2(x) + by2(x) = 0,

p11p
1
2 : ay

′
3(x) + by3(x) + (1 − a)y′

2(x) + (1 − b)y2(x) − 4y2
0(x) = 0,

p21p
0
2 : ay

′
4(x) + by4(x) + (1 − a)y′

1(x) + (1 − b)y1(x) = 0,

p01p
2
2 : ay

′
5(x) + by5(x) = 0.

(5.25)

respectively.
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In all cases, solution for y(x) = y0(x) and y(x) = y0(x) + y1(x) are

y(x) =
23
6

−
(
44
15

)
exp

(
−13
17

x

)
, (5.26)

y(x) =
580
153

−
(
26
9

)
exp

(
−17
14

x

)
−
(
35
18

)
exp

(
−17
14

x

)
x, (5.27)

respectively.
For theN1, N2, N3, andN4 cases, the results for y(x) = y0(x) + y1(x) + y2(x) + y3(x)

are

y(x) =
68579
18104

−
(
86964
34529

)
exp

(
−24
19

x

)
−
(
1199
488

)
exp

(
−24
19

x

)
x

+
(

3
448

)
exp

(
−1225
323

x

)
−
(
104
277

)
exp

(
−48
19

x

)
,

(5.28)

y(x) =
259257
68476

−
(
316829
130380

)
exp

(
−14
11

x

)
−
(
5557
2160

)
exp

(
−14
11

x

)
x

−
(

9
19

)
exp

(
−28
11

x

)
+
(

3
176

)
exp

(
−42
11

x

)
,

(5.29)

y(x) =
758584
199745

−
(
157979
46956

)
exp

(
−41
36

x

)
−
(
181
140

)
exp

(
−41
36

x

)
x

−
(

5
127

)
exp

(
−41
12

x

)
+
(
40
79

)
exp

(
−41
18

x

)
,

(5.30)

y(x) =
3863
1020

−
(
1322
525

)
exp

(
−24
19

x

)
−
(
22697
9238

)
exp

(
−24
19

x

)
x −

(
17
46

)
exp

(
−48
19

x

)
,

(5.31)

respectively.

6. Result and Discussion

The graph showing the exact solution for (5.3) (cross) against the approximate solution for
(5.11) (solid line), obtained by the standard HPM, is shown in Figure 2. In this figure can be
seen a good approximation to the real behaviour of the exact solution. Also, the rest of the
located solutions using the proposed methods in this work accomplished similar results to
the presented in Figure 2. Therefore, in Table 1 is shown the numerical comparison between
the exact result for (5.3) using numerical methods against the results obtained by the HPM
standard method, NDHPM, and MHPM. Also, the average absolute relative error (A.A.R.E)
is calculated for the five samples taken between the exact numerical solution and the obtained
approximations. In all cases the results showed good accuracy (See Table 1). Nevertheless,
the approximate solutions (5.15), (5.26), and (5.27), turned to be a less complex mathematical
expression compared to the solutions from the basic HPM.

We suggested a two modified versions NDHPM y MHPM of standard HPM inspired
in HCMs. Also, the convergence of the NDHPM and MHPM were analysed; it was
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Figure 2: Exact solution for (5.3) (cross) and its approximate solution (5.11) (solid line).

Table 1: Comparison between the obtained solution against standard HPM, NHPM, and MHPM.

Equation x = 0 x = 2 x = 4 x = 6 x = 8 A.A.R.E

Exact (3.12) 0.90000 3.19238 3.70353 3.78942 3.80354
Standard HPM (5.11) 0.90030 3.18849 3.71018 3.77959 3.78596 2.1E-3
NDHPM (5.15) 0.89683 3.15115 3.69957 3.80464 3.81005 4.6E-3
NDHPM (5.16) 0.89507 3.18285 3.71046 3.78875 3.79869 2.4E-3
NDHPM (5.17) 0.89995 3.18236 3.71951 3.79145 3.79918 1.8E-3
NDHPM (5.18) 0.89959 3.18200 3.71213 3.78935 3.79881 1.5E-3
MHPM (5.26) 0.90000 3.19779 3.69563 3.80349 3.82687 2.7E-3
MHPM (5.27) 0.90196 3.19330 3.70794 3.78087 3.78974 1.90E-3
MHPM (5.28) 0.90072 3.19141 3.70912 3.77924 3.78715 1.92E-3
MHPM (5.29) 0.89942 3.18899 3.70782 3.77748 3.78523 2.2E-3
MHPM (5.30) 0.90032 3.19308 3.70812 3.78578 3.79625 0.9E-3
MHPM (5.31) 0.89959 3.19069 3.70832 3.77843 3.78635 1.94E-3

determined that those methods are capable to converge according to the Banach’s fixed point
theorem. Then, we applied those modified HPMs for solving the CICR model obtaining
acceptable results (see Table 1). Additionally, we showed that it is possible to find different
solutions to the ones obtained by the standard HPM, with the added value that for the CICR
model was possible to find solutions with less exponential terms ((5.15), (5.26), and (5.27)).
Approximations containing few exponential termsmay considerably reduce computing time,
for the case of extensive simulations. Future research should be done to develop the criteria
to establish how to place the parameter within the nonlinear part of the differential equation.

For the case of the HPMs just one solution is searched, although is known that there are
nonlinear differential equations with multiple critical points that represent different solutions
that depends on the initial conditions. Therefore, one possible research line for the HPMs
would be to locate multiple solutions at the same time in analogy with Figure 1.



16 Mathematical Problems in Engineering

Homotopy methods are a well-established research area with applications, in
particular, an applied branch of such methods are the homotopy continuation methods [38–
45, 45–52, 60–73]. Therefore, it is possible to research on the properties, characteristics, or
variations in such methods in order to be reused focusing on the modification of the HPM.

7. Conclusions

This work presented a series of proposals to create two modified HPMs: NDHPM and
MHPM. Both methods were tested by obtaining, successfully, the approximate solution of
the CICR model. The main advantage of both methods is the distribution of the nonlinear
terms between iterations of the HPM, could generate solutions with good accuracy without
highmathematical complexity, compared to the standardHPM. As future work for this paper,
other nonlinear equations should be solved based on the proposals made in this paper.
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