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This study presents an effective approach to stabilizing a continuous-time (CT) nonlinear system
using dithers and a discrete-time (DT) fuzzy controller. A CT nonlinear system is first discretized to
a DT nonlinear system. Then, a Neural-Network (NN) system is established to approximate a DT
nonlinear system. Next, a Linear Difference Inclusion state-space representation is established for
the dynamics of the NN system. Subsequently, a Takagi-Sugeno DT fuzzy controller is designed to
stabilize this NN system. If the DT fuzzy controller cannot stabilize the NN system, a dither, as an
auxiliary of the controller, is simultaneously introduced to stabilize the closed-loop CT nonlinear
system by using the Simplex optimization and the linear matrix inequality method. This dither
can be injected into the original CT nonlinear system by the proposed injecting procedure, and this
NN system is established to approximate this dithered system. When the discretized frequency or
sampling frequency of the CT system is sufficiently high, the DT system can maintain the dynamic
of the CT system. We can design the sampling frequency, so the trajectory of the DT system and
the relaxed CT system can be made as close as desired.

1. Introduction

During the past decade, fuzzy control [1, 2] has attracted great attention from both the
academic and industrial communities, and there have been many successful applications.
Despite this success, it has become evident that many basic and important issues [3] remain
to be further addressed. These stability analysis and systematic designs are among the
most important issues for fuzzy control systems [4] and H∞ control theories [1, 2, 5–10],
and there has been significant research on these issues (see [4, 11, 12]). In addition, fuzzy
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controller has been suggested as an alternative approach to conventional control techniques
for complex control systems [1, 2]. Moreover, Neural-Network- (NN-) based modeling has
become an active research field because of its unique merits in solving complex nonlinear
system identification and control problems (see [12]). Neural networks (NNs) are composed
of simple elements operating in parallel, inspired by biological nervous systems. As a result,
we can train a neural network to represent a particular function by adjusting the weights
between elements [13]. As the discrete-time (DT) controller is cheaper and more flexible
than continuous-time (CT) controller, the DT control problem for CT plant is worth studying
in this paper. However, an NN-model-based design method with dither has not yet been
developed to adjust the parameters of a discrete-time (DT) fuzzy controller such that the
original continuous-time (CT) system is uniformly ultimately bounded (UUB) stable.

Therefore, to solve this problem, this paper proposes a less conservative DT control
design methodology for a CT nonlinear system with dither based on using an NN model, then
these problems of the systematic control design are overcame using the simplex optimization
[14] and the LMI method [3, 11]. Our design approach is to approximate a DT nonlinear
system with a multilayer perceptron of which the transfer functions. Then, an LDI state-space
representation [12] is established for the dynamics of the NN system. Finally, a DT fuzzy
controller is designed to stabilize the CT nonlinear system. According to this approach, if the
closed-loop DT system cannot be stabilized, a dither is injected into the original CT nonlinear
system as an auxiliary of the controller (see Figure 1).

A dither [15] is a high-frequency signal injected into a CT nonlinear system in order to
augment stability, quench undesirable limit cycles, eliminate jump phenomena, and reduce
nonlinear distortion. Zames and Shneydor [16] rigorously examined the effect of a dither
depending on its amplitude distribution function. Mossaheb [17] showed that when the
dither frequency is high enough, the output of the smoothed system and the dithered system
may be as closed as desired. Desoer and Shahruz [18] studied the effect of dither in nonlinear
control systems involving backlash or hysteresis. A rigorous analysis of stability in a general
CT nonlinear system with a dither control was given in [19]. Based on these articles, we
suggest that the trajectory of a DT system can be predicted rigorously by establishing a
corresponding system the CT relaxed system, provided that the dither’s frequency and the
discretized frequency (or sampling frequency) are sufficiently high. This enables us to obtain
a rigorous prediction of the stability of the closed-loop DT system by establishing the stability
of the NN system. On the other hand, some parameters of membership functions for fuzzy
controller could not be optimized by the LMI method; hence, we use the simplex optimization
method [14] to search these parameters quickly. A simulation example is given to illustrate
the proposed design method.

2. System Description

Consider an open-loop CT nonlinear system fCT described by the following equation:

ẋ(t) = fCT(x(t), u,D(ξ,�)) = fCT(ξ), (2.1)

where D(ξ,�) is the dither signal and ξ is the maximum dither amplitude; � is dither’s
lower-bound frequency [15] when D = 0, (2.1) is a common CT nonlinear system without
dither, otherwise, it is a CT nonlinear dithered system; x(t) is a CT state vector, u is a DT
control input vector, and fCT is a vector-valued function that satisfies the assumptions of
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Figure 1: CT to DT fuzzy control system with dither effect and design flow chart.

boundedness given in [19]. Then fCT is discretized by setting the sampling time or sampling
period T (sec), and t = k · T , k is a positive integer, to the following a DT nonlinear system
fDT:

x
(
(k + 1) · T

)
= fDT

(
x
(
k · T

)
, u
(
k · T

))
, or x(k + 1) = fDT(x(k), u(k)), (2.2)

where k indicates the signal sequence, the DT state vector is x(k ·T), and the DT control input
vector is u(k · T).

In this study, an NN system is first established to approximate a CT nonlinear system
(2.1). An LDI state-space representation is then established for the dynamics of the NN
system. Finally, a DT fuzzy controller is designed to stabilize the CT nonlinear system.

2.1. Neural Network System

An NN system with S layers each having Re (r = 1e, 2e, . . . , Re; e = 1, 2, . . . , S) neurons is
established to approximate a CT nonlinear system fCT, as shown in Figure 1. Superscript
text is used to distinguish these layers. Specifically, we append the number of the layer as
superscript to the names of these variables. Thus, the weight matrix for the eth (e = 1, 2, . . . , S)
layer is written as We(T). Moreover, it is assumed that vr (r = 1e, 2e, . . . , Re) is the net input
and that all the transfer functions TS(vr) of units in the NN system are described by the
following sigmoid function:

TS(vr) = λ ·
(

2
1 + exp

(
−vr/q

) − 1

)
, (2.3)
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where q and λ are the positive parameters associated with the sigmoid function. The transfer
function vector of the eth layer is defined as

Ψe(vr) ≡ [TS(v1e), TS(v2e), . . . , TS(vRe)]T , e = 1, 2, . . . , S, (2.4)

where TS(vr) (r = 1e, 2e, . . . , Re) is a transfer function of the rth neuron. The final outputs of
the NN system can then be inferred as follows:

x(k + 1) = ψS
(
WSψS−1

(
WS−1ψS−2

(
· · ·ψ2

(
W2ψ1

(
W1Z(k)

))
· · ·

)))
, (2.5)

where ZT (k) = [x(k), u(k)]. In next section, an LDI state-space representation is established
in order to deal with the stability problem of the NN system.

2.2. Linear Difference Inclusion (LDI)

An LDI system can be described in the state-space representation as [12]:

y(k + 1) = A(a(k))y(k), A(a(k)) =
l∑
i=1

hi(a(k))Ai, (2.6)

where l is a positive integer, a is a vector signifying the dependence of hi on its elements,
Ai (i = 1, 2, . . . , l), and y(k) = [y1(k), y2(k), . . . , yς(k)]

T . Moreover, it is assumed that hi ≥ 0,∑l
i=1 hi = 1. From the properties of LDI, without loss of generality, we can use hi(k) instead of

hi(a(k)). In the following, a procedure is taken to represent the dynamics of the NN system
(2.5) by LDI state-space representation [12]:

g(TS(vr)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g1 = min

vr

dTS(vr)
dvr

= 0,

g2 = max
vr

dTS(vr)
dvr

=
λ

2q
,

(2.7)

where g1 and g2 are the minimum and the maximum of the derivative of TS, respectively. The
min-max matrix Ge is defined as

Ge = diag
(
g
)
, e = 1, 2, . . . , S; r = 1e, 2e, . . . , Re. (2.8)
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Next, using the interpolation method and (2.5), we can obtain

x(k + 1) =
2∑

v1=1

2∑
v2=1

· · ·
2∑

vRS=1

hSv1
(k)hSv2

(k) · · ·hSvRS (k)G
S

×

⎛⎝WS

⎡⎣· · ·
⎡⎣ 2∑
v1=1

2∑
v2=1

· · ·
2∑

vR2=1

h2
v1
(k)h2

v2
(k) · · ·h2

vR2
(k)G2

×

⎛⎝W2

⎡⎣ 2∑
v1=1

2∑
v2=1

· · ·
2∑

vR1=1

h1
v1
(k)h1

v2
(k) · · ·h1

vR1
(k)G1

(
W1Z(k)

)⎤⎦⎞⎠⎤⎦ · · ·
⎤⎦⎞⎠

=
∑
ΩS

h̃SΩS(k)GSWS · · ·
∑
Ω2

h̃2
Ω2(k)G2W2

∑
Ω1

h̃1
Ω1(k)G1W1Z(k) =

∑
Ω

ĥΩ(k)EΩZ(k),

(2.9)

where

∑
Ωe

h̃eΩe(k) ≡
2∑

v1=1

2∑
v2=1

· · ·
2∑

vRe=1

hev1
(k)hev2

(k) · · ·hevRe (k), for e = 1, 2, . . . , S;

hevr (k) ∈ [0, 1],
2∑

vr=1

hevr (k) = 1, for r = 1e, 2e, . . . , Re,

EΩ ≡ GSWS · · ·G2W2G1W1,
∑
Ω

ĥΩ(k) ≡
∑
ΩS

· · ·
∑
Ω2

∑
Ω1

h̃SΩS(k) · · · h̃2
Ω2(k)h̃1

Ω1(k).

(2.10)

Finally, using (2.6), we can rewrite the dynamics of the NN system (2.9) in the following LDI
state-space representation:

x(k + 1) =
l∑
i=1

ĥi(k)EiZ(k), (2.11)

where ĥi(k) ≥ 0,
∑l

i=1 ĥi(k) = 1, l is a positive integer, and Ei is a constant matrix with
appropriate dimension associated with EΩ. The LDI state-space representations (2.11) can be
further rearranged as follows:

x(k + 1) =
l∑
i=1

ĥi(k)[Aix(k) + Biu(k)], (2.12)

where Ai and Bi are the partitions of Ei corresponding to the partitions of Z(k). Furthermore,
we obtain the LDI relaxed representations of the CT dithered system, as shown in the next
section.
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2.3. LDI Form of the Dithered System

The LDI form of a CT nonlinear system with dither includes the dither’s maximum
amplitude ξ and can be obtained by replacing ĥi, Ai, Bi in (2.12) with the relaxed parameters
h̆i, Ăi(ξ), B̆i(ξ), respectively. For relaxed theory and its application for dithered systems,
refer to [15]. Hence, we directly obtain the LDI state-space relaxed representation of this CT
dithered system as

x(k + 1) =
l∑
i=1

h̆i(k)
[
Ăi(ξ)x(k) + B̆i(ξ)u(k)

]
, (2.13)

where u(k) is a Takagi-Sugeno (T-S) DT fuzzy controller, as shown in the following section.

3. T-S DT Fuzzy Controller

Here, a Takagi-Sugeno (T-S) DT fuzzy controller is synthesized to stabilize the NN system
(2.13). The DT fuzzy controller is in the following form.

Rule j. IF x1(k) is Mj1, and . . . and xς(k) is Mjς, THEN u(k) = −Fjx(k), where j = 1, 2, . . . , δ
and δ is the number of IF-THEN rules and Mjμ (μ = 1, 2, . . . , ς) are the fuzzy sets. Hence, the
final output of this DT fuzzy controller is inferred as follows:

u(k) =
−
∑δ

j=1 ωj(x)Fjx(k)∑δ
j=1 ωj(x)Fjx(k)

= −
δ∑
j=1

hj(x)Fjx(k) (3.1)

with

ωj(x) =
ς∏
μ=1

Mjμ

(
xμ(k)

)
, hj(x) =

ωj(x)∑δ
j=1 ωj(x)

, (3.2)

in which Mjμ is the grade of membership of xμ in Mjμ. In this study, it is also assumed
that ωj(x) ≥ 0,

∑δ
j=1 ωj(x) > 0, j = 1, 2, . . . , δ, and k = 1, 2, . . . , K. Therefore, hj(x) ≥

0,
∑δ

j=1 hj(x) = 1 for all k. Substituting (3.1) into (2.12), we have

x(k + 1) =
l∑
i=1

δ∑
j=1

h̆ihj(x)
[
Ăi(ξ) − B̆i(ξ)Fj

]
x(k) =

l∑
i=1

δ∑
j=1

h̆ihjH̆ij(ξ)x(k), (3.3)

where H̆ij = Ăi − B̆iFj .
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Furthermore, we consider the CT system (2.1) by using the above NN system (3.3)
and modeling error emod (k) as follows:

x(k + 1) =
l∑
i=1

δ∑
j=1

h̆ihjH̆ij(ξ)x(k) + emod (k), for i = 1, 2, . . . , l; m = 1, 2, . . . , τ ; j = 1, 2, . . . , δ,

(3.4)

where emod (k) ≡ fCT(ξ) −
∑l

i=1
∑δ

j=1 h̆ihj[Ăi(ξ) − B̆i(ξ)Fj]x(k).

If the closed-loop CT system’s sampling frequency is sufficiently high, according to
the Nyquist sampling theory, the discretized states of this dithered system can approximate
its original CT states. This permits a rigorous prediction of the stability of the CT dithered
system by establishing the stability of the closed-loop NN system (3.4) with the bounded
condition (eU). The modeling error emod (k) satisfies the following bounded condition:

eTmod (k)emod (k) ≤ eTUeU. (3.5)

Moreover, according to the Lyapunov approach, the following Theorem 3.1 is given to
guarantee the uniformly ultimately bounded (UUB) stability of the closed-loop CT system
(3.4).

Theorem 3.1. The closed-loop CT system (3.4) is UUB stable in the large if there exists a common
positive definite matrix P > 0, Q > 0, κ2 and ξ ≥ 0 such that

H̆T
ijP · H̆ij − P + κ2H̆T

ijP
TPH̆ij ≤ −Q, (3.6)

where H̆ij(ξ) = Ăi(ξ) − B̆i(ξ)Fj .

Proof. See the appendix.

According to the stability conditions addressed in Theorem 3.1, the closed-loop NN
system is classified into two conditions. Condition 1: if there exists a common positive definite
matrix P to satisfy the stability conditions in Theorem 3.1, then the fuzzy controller can
stabilize this closed-loop NN system without dither. Condition 2: if there does not exist a
common positive definite matrix P to satisfy the stability conditions in Theorem 3.1, then
the DT fuzzy controller and the dither (as an auxiliary of the T-S fuzzy controller) are
simultaneously introduced to stabilize the closed-loop CT nonlinear system. Therefore, the
rest of this paper focuses on the robust stability analysis of Condition 2.

4. T-S DT Fuzzy Controller and Dither Design Algorithm

An illustration of the flow chart in Figure 1 for DT fuzzy controller and dither design
algorithm is as follows.
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Step 1. If the DT fuzzy controller cannot stabilize the NN system, a dither, as an auxiliary
of this controller, is simultaneously introduced to stabilize the closed-loop CT system. This
study suggests users add the dither’s amplitude from zero, and go to Step 2 until Step 4 has
a stable solution.

Step 2. The CT nonlinear system with dither is discretized by setting the sampling time T ,
and go to Step 3.

Step 3. Collect DT training input data: x(k) and u(k), output data: x(k + 1), and the NN
system can be obtained by a Levenberg-Marquardt backpropagation (LM-BP) algorithm [13]
and the LDI relaxed representation, then go to Step 4.

Step 4. According to the LDI relaxed representation in Step 3, a T-S DT fuzzy controller (3.1)
can be designed by the linear matrix inequality (LMI) method. Finally, we can adjust the
dither’s amplitude in Step 1 and verify the stability condition of a system with this DT fuzzy
controller in Step 4.

5. Case Study

The above T-S DT fuzzy controller and dither design algorithm discussed in the preceding
section is illustrated below by the numerical example of a van der Pol control system:

ẋ1 = x2,

ẋ2 = −x1 + 2 ·
(

1 − x2
1

)
x2 + u,

(5.1)

where the initial states x1(0) = −3, x2(0) = 0.
In this example, we use the dither method [19] in Case 2 to compare with our method

in Case 1 as follows.

Case 1. Stability of the NN model in Figure 2 of the dithered system with a fuzzy controller,
and demonstrate the control performance of dither plus fuzzy controller in the van der Pol
system.

Case 2. Demonstrate the control performance of the dithering system [19] in the van der Pol
system.

First, the neural-network structure 3-3-1 of Case 1 has 3 inputs, 3 sigmoid neurons
of (2.3) in a hidden layer, 1 sigmoid neuron in an output layer, and their weights are 12, as
shown in Figure 2.

Step 1. According to Theorem 3.1, the T-S DT fuzzy controller cannot stabilize the NN
system of (5.2) without dither. Hence, we use a dither and DT fuzzy controller and rebuild
the NN system of (5.2) with dither to stabilize the following closed-loop CT system with
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Figure 2: NN model of CT dithered system.

dither:

ẋ1 = x2,

ẋ2 = −x1 + 2 ·
(

1 − x2
1

)
x2 + uD + u(t) = −x1 + 2

[
1 − (x1 +D(ξ,�))2

]
x2 + u(t),

(5.2)

where uD = −2[2x1D(ξ,�)+D2(ξ,�)]x2. A periodic symmetrical square-wave ditherD(ξ,�)
with sufficiently high frequency is added in front of u(t). The lower-bound dither’s maximum
amplitude ξ = 0.5.

Step 2. The CT nonlinear system with dither is discretized as the following equations by
setting the sampling time T = 0.05 sec, and go to Step 3,

x1(k + 1) = x1(k) + x2(k)T,

x2(k + 1) = x2(k) +
{
−x1(k) + 2

[
1 − (x1(k) +D(�))2

]
x2(k) + u(k)

}
T.

(5.3)

Step 3. Collect and shuffle DT training input data: x(k) and u(k), output data: x(k + 1) to
avoid most of local optimal weight values, due to the NN system is obtained by a LM-BP
algorithm [13]. The training result is shown in Figure 3.
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The weight matrices of the hidden and the output layer are denoted by W1 and W2.
After training via the LM-BP algorithm, the weights can be obtained as follows:

W1
1,1 = 0.2304, W1

2,1 = 0.6039, W1
3,1 = 0.6846,

W1
1,2 = −0.1446, W1

2,2 = 2.4534, W1
3,2 = −0.1107,

W1
1,3 = 1.8985, W1

2,3 = −0.1123, W1
3,3 = 0.8417,

W2
1,1 = 0.2853, W2

1,2 = −0.0002, W2
1,3 = 0.0267.

(5.4)

If the symbol vab denotes the net input of the bth neuron of the ath layer, then

v1
r =W

1
r,1Suu(k) +W

1
r,2Sxx1(k) +W1

r,3Sxx2(k), r = 1, 2, 3, (5.5)

where Sx = 1/3 and Su = 1/11 are the scaling constants to limit the range of inputs x, u in
the NN model; respectively, and

v2
1 =W2

1,1TS
(
v1

1

)
+W2

1,2TS
(
v1

2

)
+W2

1,3TS
(
v1

3

)
, x(k + 1) = TS

(
v2

1

)
, (5.6)

where TS(v1
r ) = 2/(1 + exp(−v1

r/0.5)) − 1, r = 1, 2, 3, TS(v2
1) = 2/(1 + exp(−v2

1/0.5)) − 1.
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Hence, g1 = 0, g2 = 1, and we can obtain Ăi(0.5), B̆i(0.5) of the LDI relaxed represent-
ation as follows:

Ă1 =

⎡⎣ 1 T

g2
2W

2
1,1W

1
1,2 g2

2W
2
1,1W

1
1,3

⎤⎦, Ă2 =

⎡⎣ 1 T

g2
2W

2
1,2W

1
2,2 g2

2W
2
1,2W

1
2,3

⎤⎦,

Ă3 =

⎡⎣ 1 T

g2
2W

2
1,3W

1
3,2 g2

2W
2
1,3W

1
3,3

⎤⎦,

Ă4 =

⎡⎣ 1 T

g2
2

(
W2

1,1W
1
1,2 +W

2
1,2W

1
2,2

)
g2

2

(
W2

1,1W
1
1,3 +W

2
1,2W

1
2,3

)
⎤⎦,

Ă5 =

⎡⎣ 1 T

g2
2

(
W2

1,1W
1
1,2 +W

2
1,3W

1
3,2

)
g2

2

(
W2

1,1W
1
1,3 +W

2
1,3W

1
3,3

)
⎤⎦,

Ă6 =

⎡⎣ 1 T

g2
2

(
W2

1,2W
1
2,2 +W

2
1,3W

1
3,2

)
g2

2

(
W2

1,2W
1
2,3 +W

2
1,3W

1
3,3

)
⎤⎦,

Ă7 =

⎡⎣ 1 T

g2
2

(
W2

1,1W
1
1,2 +W

2
1,2W

1
2,2 +W

2
1,3W

1
3,2

)
g2

2

(
W2

1,1W
1
1,3 +W

2
1,2W

1
2,3 +W

2
1,3W

1
3,3

)
⎤⎦,

B̆1 =

[
0

g2
2W

2
1,1W

1
1,1Su/Sx

]
, B̆2 =

[
0

g2
2W

2
1,2W

1
2,1Su/Sx

]
, B̆3 =

[
0

g2
2W

2
1,3W

1
3,1Su/Sx

]
,

B̆4 =

⎡⎣ 0

g2
2

(
W2

1,1W
1
1,1 +W

2
1,2W

1
2,1

)
Su/Sx

⎤⎦, B̆5 =

⎡⎣ 0

g2
2

(
W2

1,1W
1
1,1 +W

2
1,3W

1
3,1

)
Su/Sx

⎤⎦,
B̆6 =

⎡⎣ 0

g2
2

(
W2

1,2W
1
2,1 +W

2
1,3W

1
3,1

)
Su/Sx

⎤⎦,
B̆7 =

⎡⎣ 0

g2
2

(
W2

1,1W
1
1,1 +W

2
1,2W

1
2,1 +W

2
1,3W

1
3,1

)
Su/Sx

⎤⎦.
(5.7)

Because the case of Ăi =
[ 0 0

1 0

]
and B̆i =

[
0
0

]
did not have any effect on x(k + 1) in the

LDI relaxed representation, so the relaxed LMI conditions are not considered this case.
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Step 4. According to [15], the lower-bound dither’s frequency� is 50 Hz. In this example, we
choose the sampling frequency of a T-S DT fuzzy controller (3.1) to be 20 Hz, and it can be
designed by the linear matrix inequality (LMI) method in Theorem 3.1. First, we design the
membership functions of Rule 1, 2 as follows:

Rule 1 : IF x1(k) is M1(x1(k)), THEN u(k) = −F1x(k),

Rule 2 : IF x1(k) is M2(x1(k)), THEN u(k) = −F2x(k),
(5.8)

where x(k) = [x1(k), x2(k)]
T .

Next, we design

h1 =M1 = exp

(
− (x1(k) − c)2

(2σ2)

)
, h2 =M2 = 1 − h1. (5.9)

Then, we use the Simplex optimization method [14] to search σ = 2.2132 and c = 0.00000445.
According to (3.1), the overall T-S DT fuzzy controller is

u(k) = −
2∑
j=1

hjFjx(k). (5.10)

Finally, we can adjust dither’s amplitude in Step 1, and according to the LMI solutions:

P =

[
4.174 0.1803

0.1803 4.7201

]
, κ2 = 10−7, Q =

[
10−6 0

0 10−6

]
, (5.11)

we have verified the stability condition of the system with these DT fuzzy gains:

F1 = [−0.0000376, 7.3814], F2 = [0.0000391,−18.8912]. (5.12)

The DT controller of Case 1 is to check the fulfillment of (3.5). According to the recorded
values shown in Figure 4, (3.5) is satisfied. Hence, the DT controller of Case 1 can stabilize
the CT dithered nonlinear system (5.2), as shown in Figure 5. The DT controller of Case 1 is
shown in Figure 6. However, Case 2 cannot stabilize this CT nonlinear system, as shown in
Figure 7. Furthermore, the different dither’s shapes did not have an effect on the stability of
the system, but the system responses to different dithers’ shapes of Case 1 must be clearly
different.

6. Conclusion

This study presents an effective NN-based approach to stabilizing continuous-time (CT)
nonlinear systems by a dither and a T-S discrete-time (DT) fuzzy controller. This NN system
is established to approximate a nonlinear system with dither. The dynamics of the NN system
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Figure 4: The result of detecting modeling error emod = [emod 1, emod 2]
T for Case 1.

Response of CT control system for Case 1
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Figure 5: The detail of response of a van der Pol control system for Case 1.

are then converted into an LDI relaxed representation, and finally, a T-S DT fuzzy controller
is designed to stabilize the CT nonlinear system by the LMI method. If the designed DT
fuzzy controller cannot asymptotically stabilize the NN system, a dither is injected into this
system. The T-S DT fuzzy controller and the dither signal are simultaneously introduced
to stabilize the closed-loop CT nonlinear system. With sufficiently high dither frequency
and system sampling frequency, simulation results show that the DT fuzzy controller can
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Figure 6: The digital control signal of a van der Pol CT plant for Case 1.
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Figure 7: Comparison of results for Cases 1, 2.

stabilize the nonlinear dithered system by appropriately regulating the dither amplitude.
The algorithm of LMI solver needs the special form to obtain control gains; therefore we
will develop less conservative theorem by SOS algorithm for further research [20]. LM-
BP has disadvantages such as getting into local minimum for the offline training stage
of NN. For this reason, we will improve these disadvantages of LM-BP by studying fast
convergence of genetic algorithm [14] with the multilayer perceptron (MLP) neural network
[13].
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Appendix

Lemma A.1 (see [11]). For any matrices A and B with appropriate dimension, we have

ATB + BTA ≤ κ2ATA + κ−2BTB. (A.1)

Let the Lyapunov function for the nonlinear system be defined as

V (k) = x(k)TPx(k), (A.2)

where P = PT > 0. We then evaluate the backward difference ΔV (k) of V (k) to obtain

ΔV (k) = V (k + 1) − V (k) = x(k + 1)TP · x(k + 1) − x(k)TP · x(k)

=

⎧⎨⎩ l∑
i=1

δ∑
j=1

h̆ihjH̆ij(ξ)x(k) + emod (k)

⎫⎬⎭
T

P

⎧⎨⎩ l∑
i=1

δ∑
j=1

h̆ihjH̆ij(ξ)x(k) + emod (k)

⎫⎬⎭
− x(k)TP · x(k)

=
l∑
i=1

δ∑
j=1

h̆ihjx(k)
T
[
H̆T

ij(ξ)PH̆ij(ξ) − P
]
x(k) +

l∑
i=1

δ∑
j=1

h̆ihjx(k)
TH̆T

ijP · emod (k)

+
l∑
i=1

δ∑
j=1

h̆ihjemod (k)TP · H̆ijx(k) + emod (k)TP · emod (k).

(A.3)

According to Lemma .1, we obtain

x(k)TH̆T
ijP · emod (k) + emod (k)TP · H̆ijx(k)

≤ κ2x(k)TH̆T
ijP

TPH̆ijx(k) + κ
−2emod (k)Temod (k).

(A.4)

Therefore, we obtain

ΔV (k) ≤
l∑
i=1

δ∑
j=1

h̆ihjx(k)
T
(
H̆T

ijP · H̆ij − P
)
x(k)

+
l∑
i=1

δ∑
j=1

h̆ihj
[
κ2x(k)TH̆T

ijP
TP · H̆ijx(k) + κ

−2emod (k)Temod (k)
]

=
l∑
i=1

δ∑
j=1

h̆ihjx(k)
T
(
H̆T

ijP · H̆ij − P + κ2H̆T
ijP

TP · H̆ij

)
x(k) + κ−2emod (k)Temod (k)

≤ −x(k)TQ · x(k) + κ−2emod (k)Temod (k).
(A.5)
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In accordance with H̆T
ijP · H̆ij − P + κ2H̆T

ijP
TPH̆ij ≤ −Q < 0, we have

ΔV (k) ≤ −x(k)TQ · x(k) + κ−2emod (k)Temod (k) ≤ −λmin(Q)x(k)Tx(k) + κ−2eTUeU, (A.6)

where λmin(Q) denotes the minimum eigenvalue of Q. Whenever

‖x(k)‖ > κ−1eU√
λmin(Q)

, ΔV (k) < 0. (A.7)

By a standard Lyapunov extension [21], this illustrates the trajectories of the closed-
loop nonlinear systems are UUB stable. From k = 0 to N yields

V (N + 1) − V (0) < −
N∑
k=0

x(k)TQ · x(k) + κ−2
N∑
k=0

emod (k)Temod (k),

N∑
k=0

x(k)TQ · x(k) < V (0) − V (N + 1) + κ−2
N∑
k=0

emod (k)Temod (k).

(A.8)

Hence, we have

N∑
k=0

x(k)TQ · x(k) < x(0)T P̃ · x(0) + κ−2
N∑
k=0

emod (k)Temod (k). (A.9)

Hence, the H∞ control performance is achieved with a prescribed κ−2 in (3.6). Next,
recasting a control problem as an LMI problem is equivalent to finding a solution to the
original problem, H̆T

ijP · H̆ij − P < 0. The stability conditions encountered in Theorem 3.1 are

expressed in the following forms of LMIs. The conditions H̆T
ijP · H̆ij − P < 0 are not jointly

convex in Fj and P . Now multiplying the inequality on the left and right by P−1 and defining
new variables P = P−1 and Mj = FjP , the conditions H̆T

ijP · H̆ij −P < 0 can be rewritten using
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the Schur complement as follows:

⎡⎣ −P
(
ĂiP − B̆iMj

)T
ĂiP − B̆iMj −P

⎤⎦ < 0, for i = 1, 2, . . . l; j = 1, 2, . . . , δ,

⎡⎣ −2P
(

2ĂiP − B̆iMj − B̆iMβ

)T
2ĂiP − B̆iMj − B̆iMβ −P

⎤⎦ < 0, for j < β = 1, 2, . . . , δ,

⎡⎣ −2P (ĂiP − B̆iMj + ĂαP − B̆αMj)
T

ĂiP − B̆iMj + ĂαP − B̆αMj −P

⎤⎦ < 0, for i < α = 1, 2, . . . , l,

⎡⎣−4P M̆T

M̆ −P

⎤⎦ < 0, for i < α = 1, 2, . . . , l; j < β = 1, 2 . . . , δ,

(A.10)

where M̆ ≡ ĂiP − B̆iMj + ĂαP − B̆αMβ + ĂiP − B̆iMβ + ĂαP − B̆αMj .

The feedback gain Fj and a common P can be obtained as P = P
−1

, Fj = MjP
−1

from
the solutions P and Mj .
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