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The purpose of this paper is to give a numerical treatment for a class of nonlinear multipoint
boundary value problems. The multipoint boundary condition under consideration includes
various commonly discussed boundary conditions, such as the three- or four-point boundary
condition. The problems are discretized by the fourth-order Numerov’s method. The existence and
uniqueness of the numerical solution are investigated by the method of upper and lower solutions.
The convergence and the fourth-order accuracy of the method are proved. An accelerated
monotone iterative algorithm with the quadratic rate of convergence is developed for solving
the resulting nonlinear discrete problems. Some applications and numerical results are given to
demonstrate the high efficiency of the approach.

1. Introduction

Multipoint boundary value problems arise in various fields of applied science. An often
discussed problem is the following nonlinear second-order multipoint boundary value
problem:

−u′′(x) = f(x, u(x)), 0 < x < 1,

u(0) =
p∑

i=1

αiu(ξi), u(1) =
p∑

i=1

βiu
(
ηi
)
,

(1.1)
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where f(x, u) is a continuous function of its arguments and for each i, αi, βi ∈ [0,∞) and ξi,
ηi ∈ (0, 1). An application of this problem appears in the design of a large-size bridge with
multipoint supports, where u(x) denotes the displacement of the bridge from the unloaded
position (e.g., see [1]). For other applications of problem (1.1), we see [2–4] and the references
therein. It is allowed in (1.1) that αi = 0 or βi = 0 for some or all i. This implies that
the boundary condition in (1.1) includes various commonly discussed multipoint boundary
conditions. In particular, the boundary condition in (1.1) is reduced to

u(0) = 0, u(1) =
p∑

i=1

βiu
(
ηi
)
, (1.1a)

if αi = 0 for all i (see [5–14]), to the form

u(0) =
p∑

i=1

αiu(ξi), u(1) = 0, (1.1b)

if βi = 0 for all i (see [15]), to the four-point boundary condition

u(0) = αu(ξ), u(1) = βu
(
η
)
, (1.1c)

if p = 1 and ξ1 = ξ, η1 = η (see [11, 15–17]), and to the two-point boundary condition

u(0) = u(1) = 0, (1.1d)

if αi = 0 and βi = 0 for all i. Condition (1.1c) includes the three-point boundary condition
when ξ = η (see [16, 17]).

The study of multipoint boundary value problems for linear second-order ordinary
differential equations was initiated in [18, 19] by Il’in and Moiseev. In [20], Gupta studied
a three-point boundary value problem for nonlinear second-order ordinary differential
equations. Since then, more general nonlinear second-order multipoint boundary value
problems in the form (1.1) have been studied. Most of the discussions were concerned with
the existence and multiplicity of solutions by using different methods. Applying the fixed
point index theorem in cones, the works in [5–14] showed the existence of one or more
solutions to the problem (1.1)-(1.1a), while the works in [15–17]were devoted to the existence
of solutions for the three- or four-point boundary value problem (1.1)–(1.1c). For the problem
(1.1) with the more general multipoint boundary conditions, some existence results were
obtained in [21, 22] by using the fixed point index theory or the topological degree theory.
Based on the method of upper and lower solutions, the authors of [17, 23] obtained some
sufficient conditions so that (1.1) or its some special form has at least one solution. Additional
works that deal with the existence problem of nonlinear second-order multipoint boundary
value problems can be found in [24–29].

On the other hand, there are also some works that are devoted to numerical methods
for the solutions of multipoint boundary value problems. The work in [30] made use
of the Chebyshev series for approximating solutions of nonlinear first-order multipoint
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boundary value problems, and the work in [31] showed how an adaptive finite difference
technique can be developed to produce efficient approximations to the solutions of nonlinear
multipoint boundary value problems for first-order systems of equations. Another method
for computing the solutions of nonlinear first-order multipoint boundary value problemswas
described in [32], where a multiple shooting technique was developed. Some other works
for the computational methods of first-order multipoint boundary value problems can be
seen in [33–35]. In [36–38] the authors gave several constructive methods for the solutions of
multipoint discrete boundary value problems, including the method of adjoints, the invariant
embedding method, and the shooting-type method. In the case of second-order multipoint
boundary value problems, there are only a few computational algorithms in the literature.
The paper [39] set up a reproducing kernel Hilbert space method for the solution of a second-
order three-point boundary value problem. Based upon the shooting technique, a numerical
method was developed in [1] for approximating solutions and fold bifurcation solutions of a
class of second-order multipoint boundary value problems.

As we know, Numerov’s method is one of the well-known difference methods to solve
the second-order ordinary differential equation −u′′ = f(x, u). Because Numerov’s method
possesses the fourth-order accuracy and a compact property, it has attracted considerable
attention and has been extensively applied in practical computations (cf. [40–51]). Although
many theoretical investigations have focused on Numerov’s method for two-point boundary
conditions such as (1.1d) (cf. [40, 41, 43, 44, 47–51]), there is relatively little discussion
on the analysis of Numerov’s method applied to fully multipoint boundary conditions in
(1.1). The study presented in this paper is aimed at filling in such a gap by considering
Numerov’s method for the numerical solution of the multipoint boundary value problem
(1.1) with the more general boundary conditions, including the boundary conditions (1.1a),
(1.1b), and (1.1c). It is not difficult to give a Numerov’s difference approximation to (1.1)
in the same manner as that for two-point boundary value problems. However, a lack of
explicit information about the boundary value of the solution in the multipoint boundary
conditions prevents us from using the standard analysis process of treating two-point
boundary value problems, and so we here develop a different approach for the analysis
of Numerov’s difference approximation to (1.1). Our specific goals are (1) to establish
the existence and uniqueness of the numerical solution, (2) to show the convergence of
the numerical solution to the analytic solution with the fourth-order accuracy, and (3) to
develop an efficient computational algorithm for solving the resulting nonlinear discrete
problems. To achieve the above goals, we use the method of upper and lower solutions and
its associated monotone iterations. It should be mentioned that the proposed fourth-order
Numerov’s discretization methodology may be straightforwardly extended to the following
nonhomogeneous multipoint boundary condition:

u(0) =
p∑

i=1

αiu(ξi) + λ1, u(1) =
p∑

i=1

βiu
(
ηi
)
+ λ2, (1.2)

where λ1 and λ2 are two prescribed constants.
The outline of the paper is as follows. In Section 2, we discretize (1.1) into a finite

difference system by Numerov’s technique. In Section 3, we deal with the existence and
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uniqueness of the numerical solution by using the method of upper and lower solutions.
The convergence of the numerical solution and the fourth-order accuracy of the method
are proved in Section 4. Section 5 is devoted to an accelerated monotone iterative algorithm
for solving the resulting nonlinear discrete problem. Using an upper solution and a lower
solution as initial iterations, the iterative algorithm yields two sequences that converge
monotonically from above and below, respectively, to a unique solution of the resulting
nonlinear discrete problem. It is shown that the rate of convergence for the sum of the two
produced sequences is quadratic (the error metric is the sum of the infinity norm of the error
between the mth-iteration of the upper solution and the true solution with the infinity norm
of the error between themth-iteration of the lower solution and the true solution) and under
an additional requirement, the quadratic rate of convergence is attained for one of these
two sequences. In Section 6, we give some applications to three model problems and present
some numerical results demonstrating the monotone and rapid convergence of the iterative
sequences and the fourth-order accuracy of the method. We also compare our method with
the standard finite difference method and show its advantages. The final section contains
some concluding remarks.

2. Numerov’s Method

Let h = 1/L be the mesh size, and let xi = ih(0 ≤ i ≤ L) be the mesh points in [0, 1].
Assume that for all 1 ≤ i ≤ p, the points ξi and ηi in the boundary condition of (1.1) serve
as mesh points. This assumption is always satisfied by a proper choice of mesh size h. For
convenience, we use the following notations:

Sα[u(ξ)] =
p∑

i=1

αiu(ξi), Sβ[u(η)] =
p∑

i=1

βiu
(
ηi
)

(2.1)

and introduce the finite difference operators δ2
h and Ph as follows:

δ2
hu(xi) = u(xi−1) − 2u(xi) + u(xi+1), 1 ≤ i ≤ L − 1,

Phu(xi) =
h2

12
(u(xi−1) + 10u(xi) + u(xi+1)), 1 ≤ i ≤ L − 1.

(2.2)

Using the following Numerov’s formula (cf. [52, 53]):

δ2
hu(xi) = Phu

′′(xi) +O
(
h6
)
, 1 ≤ i ≤ L − 1, (2.3)

we have from (1.1) and (2.1) that

−δ2
hu(xi) = Phf(xi, u(xi)) +O

(
h6
)
, 1 ≤ i ≤ L − 1,

u(0) = Sα[u(ξ)], u(1) = Sβ[u(η)].
(2.4)
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After dropping the O(h6) term, we derive a Numerov’s difference approximation to (1.1) as
follows:

−δ2
huh(xi) = Phf(xi, uh(xi)), 1 ≤ i ≤ L − 1,

uh(0) = Sα[uh(ξ)], uh(1) = Sβ[uh(η)],
(2.5)

where uh(xi) represents the approximation of u(xi).

For two constants M and M satisfying M ≥ M > −π2, we define

h
(
M,M

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
12

M
, M > −8, M > 0,

1, M > −8, M ≤ 0,

min

{√
12

M
,

√
12
π2

(
1 +

M

π2

)}
, M ≤ −8, M > 0,

√
12
π2

(
1 +

M

π2

)
, M ≤ −8, M ≤ 0.

(2.6)

A fundamental and useful property of the operators δ2
h
and Ph is stated below.

Lemma 2.1 (See Lemma 3.1 of [50]). LetM,M, and Mi be some constants satisfying

−π2 < M ≤ Mi ≤ M, 0 ≤ i ≤ L. (2.7)

If

−δ2
huh(xi) + Ph(Miuh(xi)) ≥ 0, 1 ≤ i ≤ L − 1,

uh(0) ≥ 0, uh(1) ≥ 0,
(2.8)

and h < h(M,M), then uh(xi) ≥ 0 for all 0 ≤ i ≤ L.

The following results are also useful for our forthcoming discussions. Their proofs will
be given in the appendix.

Lemma 2.2. Assume

σ ≡ max

{
p∑

i=1

αi,
p∑

i=1

βi

}
< 1. (2.9)

LetM,M, and Mi be the given constants such that

−8(1 − σ) < M ≤ Mi ≤ M, 0 ≤ i ≤ L. (2.10)
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If

−δ2
huh(xi) + Ph(Miuh(xi)) ≥ 0, 1 ≤ i ≤ L − 1,

uh(0) ≥ Sα[uh(ξ)], uh(1) ≥ Sβ[uh(η)],
(2.11)

and h < h(M,M), then uh(xi) ≥ 0 for all 0 ≤ i ≤ L.

Lemma 2.3. Let the condition (2.9) be satisfied, and let M, M, and Mi be the given constants
satisfying (2.10). Assume that the functions uh(xi) and g(xi) satisfy

−δ2
huh(xi) + Ph(Miuh(xi)) = g(xi), 1 ≤ i ≤ L − 1,

uh(0) = Sα[uh(ξ)], uh(1) = Sβ[uh(η)].
(2.12)

Then when h < h(M,M),

‖uh‖∞ ≤
∥∥g
∥∥
∞(

8(1 − σ) +min
(
M, 0

))
h2

, (2.13)

where ‖uh‖∞ = max1≤i≤L−1|uh(xi)| denotes discrete infinity norm for any mesh function uh(xi).

Remark 2.4. It is clear from Lemma 2.1 that if σ = 0 then the condition (2.10) in Lemma 2.2
can be replaced by the weaker condition (2.7). Lemmas 2.1 and 2.2 guarantee that the linear
problems based on (2.8) and (2.11) with the inequality relation “≥” replaced by the equality
relation “=” are well posed.

3. The Existence and Uniqueness of the Solution

To investigate the existence and uniqueness of the solution of (2.5), we use the method
of upper and lower solutions. The definition of the upper and lower solutions is given as
follows.

Definition 3.1. A function ũh(xi) is called an upper solution of (2.5) if

−δ2
hũh(xi) ≥ Phf(xi, ũh(xi)), 1 ≤ i ≤ L − 1,

ũh(0) ≥ Sα[ũh(ξ)], ũh(1) ≥ Sβ[ũh(η)].
(3.1)

Similarly, a function ûh(xi) is called a lower solution of (2.5) if it satisfies the above
inequalities in the reversed order. A pair of upper and lower solutions ũh(xi) and ûh(xi) are
said to be ordered if ũh(xi) ≥ ûh(xi) for all 0 ≤ i ≤ L.
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It is clear that every solution of (2.5) is an upper solution as well as a lower solution.
For a given pair of ordered upper and lower solutions ũh(xi) and ûh(xi), we set

〈ûh, ũh〉 = {uh; ûh(xi) ≤ uh(xi) ≤ ũh(xi)(0 ≤ i ≤ L)},
[ûh(xi), ũh(xi)] = {ui ∈ R; ûh(xi) ≤ ui ≤ ũh(xi)}

(3.2)

and make the following basic hypotheses:

(H1) For each 0 ≤ i ≤ L, there exists a constant Mi such that Mi > −π2 and

f(xi, vi) − f
(
xi, v

′
i

) ≥ −Mi

(
vi − v′

i

)
(3.3)

whenever ûh(xi) ≤ v′
i ≤ vi ≤ ũh(xi);

(H2) h < h(M,M), where M = max0≤i≤LMi and M = min0≤i≤LMi.

The existence of the constant Mi in (H1) is trivial if f(xi, u) is a C1-function of u ∈
[ûh(xi), ũh(xi)]. In fact, Mi may be taken as any nonnegative constant satisfying

Mi ≥ max
{−fu(xi, u);u ∈ [ûh(xi), ũh(xi)]

}
. (3.4)

Theorem 3.2. Let ũh(xi) and ûh(xi) be a pair of ordered upper and lower solutions of (2.5), and let
hypotheses (H1) and (H2) be satisfied. Then system (2.5) has a maximal solution uh(xi) and a minimal
solution uh(xi) in 〈ûh, ũh〉. Here, the maximal property of uh(xi) means that for any solution uh(xi)
of (2.5) in 〈ûh, ũh〉, one hase uh(xi) ≤ uh(xi) for all 0 ≤ i ≤ L. The minimal property of uh(xi) is
similarly understood.

Proof. The proof is constructive. Using the initial iterations u
(0)
h (xi) = ũh(xi) and u

(0)
h (xi) =

ûh(xi)we construct two sequences {u(m)
h

(xi)} and {u(m)
h

(xi)}, respectively, from the following
iterative scheme:

−δ2
hu

(m)
h (xi) + Ph

(
Miu

(m)
h (xi)

)
= Ph

(
Miu

(m−1)
h (xi) + f

(
xi, u

(m−1)
h (xi)

))
, 1 ≤ i ≤ L − 1,

u
(m)
h (0) = Sα

[
u
(m−1)
h (ξ)

]
, u

(m)
h (1) = Sβ

[
u
(m−1)
h (η)

]
,

(3.5)

where Mi is the constant in (H1). By Lemma 2.1, these two sequences are well defined. We
shall first prove that for all m = 0, 1, . . .,

u
(m)
h (xi) ≤ u

(m+1)
h (xi) ≤ u

(m+1)
h (xi) ≤ u

(m)
h (xi), 0 ≤ i ≤ L. (3.6)

Let w(0)
h
(xi) = u

(0)
h
(xi) − u

(1)
h
(xi). Then by (3.1) and (3.5),

−δ2
hw

(0)
h (xi) + Ph

(
Miw

(0)
h (xi)

)
≥ 0, 1 ≤ i ≤ L − 1,

w
(0)
h (0) ≥ 0, w

(0)
h (1) ≥ 0.

(3.7)
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It follows from Lemma 2.1 that w(0)
h (xi) ≥ 0, that is, u(0)

h (xi) ≥ u
(1)
h (xi) for all 0 ≤ i ≤ L.

A similar argument using the property of a lower solution gives u
(1)
h
(xi) ≥ u

(0)
h
(xi) for all

0 ≤ i ≤ L. Let w(1)
h
(xi) = u

(1)
h
(xi) − u

(1)
h
(xi). We have from (3.3) and (3.5) that

−δ2
hw

(1)
h (xi) + Ph

(
Miw

(1)
h (xi)

)
≥ 0, 1 ≤ i ≤ L − 1,

w
(1)
h (0) ≥ 0, w

(1)
h (1) ≥ 0.

(3.8)

Again by Lemma 2.1,w(1)
h
(xi) ≥ 0, that is, u(1)

h
(xi) ≥ u

(1)
h
(xi) for all 0 ≤ i ≤ L. This proves (3.6)

for m = 0. Finally, an induction argument leads to the desired result (3.6) for all m = 0, 1, . . ..
In view of (3.6), the limits

lim
m→∞

u
(m)
h (xi) = uh(xi), lim

m→∞
u
(m)
h (xi) = uh(xi), 0 ≤ i ≤ L (3.9)

exist and satisfy

u
(m)
h (xi) ≤ u

(m+1)
h (xi) ≤ uh(xi) ≤ uh(xi) ≤ u

(m+1)
h (xi) ≤ u

(m)
h (xi), 0 ≤ i ≤ L, m = 0, 1, . . . .

(3.10)

Letting m → ∞ in (3.5) shows that both uh(xi) and uh(xi) are solutions of (2.5).
Now, if uh(xi) is a solution of (2.5) in 〈ûh, ũh〉, then the pair uh(xi) and ûh(xi) are

also a pair of ordered upper and lower solutions of (2.5). The above arguments imply that
uh(xi) ≤ uh(xi) for all 0 ≤ i ≤ L. Similarly, we have uh(xi) ≤ uh(xi) for all 0 ≤ i ≤ L. This
shows that uh(xi) and uh(xi) are the maximal and the minimal solutions of (2.5) in 〈ûh, ũh〉,
respectively. The proof is completed.

Theorem 3.2 shows that the system (2.5) has a maximal solution uh(xi) and a minimal
solution uh(xi) in 〈ûh, ũh〉. If uh(xi) = uh(xi) for all 0 ≤ i ≤ L, then uh(xi) or uh(xi) is a unique
solution of (2.5) in 〈ûh, ũh〉. In general, these two solutions do not coincide. Consider, for
example, the case

p∑

i=1

αi =
p∑

i=1

βi = 1. (3.11)

If there exist two different constants c and c such that f(x, c) = f(x, c) = 0 for all x ∈ (0, 1)
then both c and c are solutions of (2.5). Hence to show the uniqueness of a solution it is
necessary to impose some additional conditions on αi, βi and f . Assume that there exists a
constant Mu such that

f(xi, vi) − f
(
xi, v

′
i

) ≤ −Mu

(
vi − v′

i

)
, 0 ≤ i ≤ L (3.12)
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whenever ûh(xi) ≤ v′
i ≤ vi ≤ ũh(xi). This condition is trivially satisfied if f(xi, u) is a C1-

function of u ∈ [ûh(xi), ũh(xi)] for all 0 ≤ i ≤ L. In fact, Mu may be taken as

Mu = min
0≤i≤L

min
{−fu(xi, u);u ∈ [ûh(xi), ũh(xi)]

}
. (3.13)

The following theorem gives a sufficient condition for the uniqueness of a solution.

Theorem 3.3. Let the conditions in Theorem 3.2 hold. If, in addition, the conditions (2.9) and (3.12)
hold and either

−8(1 − σ) < Mu ≤ 0 or Mu > 0, h <

√
12
Mu

, (3.14)

then the system (2.5) has a unique solution u∗
h
(xi) in 〈ûh, ũh〉. Moreover, the relation (3.10) holds

with uh(xi) = uh(xi) = u∗
h
(xi) for all 0 ≤ i ≤ L.

Proof. It suffices to show uh(xi) = uh(xi) for all 0 ≤ i ≤ L, where uh(xi) and uh(xi) are the
limits in (3.9). Let wh(xi) = uh(xi) − uh(xi). Then wh(xi) ≥ 0, and by (2.5),

−δ2
hwh(xi) = Ph

(
f(xi, uh(xi)) − f

(
xi, uh(xi)

))
, 1 ≤ i ≤ L − 1,

wh(0) = Sα[wh(ξ)], wh(1) = Sβ[wh(η)].
(3.15)

Therefore, we have from (3.12) that

−δ2
hwh(xi) + Ph

(
Muwh(xi)

) ≤ 0, 1 ≤ i ≤ L − 1,

wh(0) = Sα[wh(ξ)], wh(1) = Sβ[wh(η)].
(3.16)

By Lemma 2.2, wh(xi) ≤ 0 for all 0 ≤ i ≤ L. This proves uh(xi) = uh(xi) for all 0 ≤ i ≤ L.
To give another sufficient condition, we assume that there exists a nonnegative

constant M
∗
u such that

∣∣f(xi, vi) − f
(
xi, v

′
i

)∣∣ ≤ M
∗
u

∣∣vi − v′
i

∣∣, 0 ≤ i ≤ L (3.17)

whenever ûh(xi) ≤ v′
i ≤ vi ≤ ũh(xi). If f(xi, u) is a C1-function of u ∈ [ûh(xi), ũh(xi)] for all

0 ≤ i ≤ L, the above condition is clearly satisfied by

M
∗
u = max

0≤i≤L
max

{∣∣fu(xi, u)
∣∣;u ∈ [ûh(xi), ũh(xi)]

}
. (3.18)

Theorem 3.4. Let the conditions in Theorem 3.2 hold. If, in addition, the conditions (2.9) and (3.17)
hold and

M
∗
u < 8(1 − σ), (3.19)

then the conclusions of Theorem 3.3 are also valid.
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Proof. Applying Lemma 2.3 withMi = 0 to (3.15) leads to

‖wh‖∞ ≤
∥∥g
∥∥
∞

8(1 − σ)h2
, (3.20)

where g(xi) = Ph(f(xi, uh(xi)) − f(xi, uh(xi))). By (3.17), we obtain ‖g‖∞ ≤ h2M
∗
u‖wh‖∞.

Consequently,

‖wh‖∞ ≤ M
∗
u‖wh‖∞

8(1 − σ)
. (3.21)

This together with (3.19) implies wh(xi) = 0, that is, uh(xi) = uh(xi) for all 0 ≤ i ≤ L.

It is seen from the proofs of Theorems 3.2–3.4 that the iterative scheme (3.5) not only
leads to the existence and uniqueness of the solution of (2.5) but also provides a monotone
iterative algorithm for computing the solution. However, the rate of convergence of the
iterative scheme (3.5) is only of linear order because it is of Picard type. A more efficient
monotone iterative algorithm with the quadratic rate of convergence will be developed in
Section 5.

4. Convergence of Numerov’s Method

In this section, we deal with the convergence of the numerical solution and show the fourth-
order accuracy of Numerov’s scheme (2.5). Throughout this section, we assume that the
function f(x, u) and the solution u(x) of (1.1) are sufficiently smooth.

Let u(xi) be the value of the solution of (1.1) at the mesh point xi, and let uh(xi) be the
solution of (2.5). We consider the error eh(xi) = u(xi)−uh(xi). In fact, we have from (2.4) and
(2.5) that

−δ2
heh(xi) = Ph

(
f(xi, u(xi)) − f(xi, uh(xi))

)
+O
(
h6
)
, 1 ≤ i ≤ L − 1,

eh(0) = Sα[eh(ξ)], eh(1) = Sβ[eh(η)].
(4.1)

Theorem 4.1. Let the condition (2.9) hold, and let [u∗,i, u∗
i ] be an interval in R such that

u(xi), uh(xi) ∈ [u∗,i, u∗
i ]. Assume that

max
0≤i≤L

max
{
fu(xi, u);u ∈ [u∗,i, u∗

i

]}
< 8(1 − σ). (4.2)

Then for sufficiently small h,

‖u − uh‖∞ ≤ C∗h4, (4.3)

where C∗ is a positive constant independent of h.
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Proof. Applying the mean value theorem to the first equality of (4.1), we have

−δ2
heh(xi) + Ph(Mieh(xi)) = O

(
h6
)
, 1 ≤ i ≤ L − 1,

eh(0) = Sα[eh(ξ)], eh(1) = Sβ[eh(η)],
(4.4)

where Mi = −fu(xi, θi) and θi ∈ [u∗,i, u∗
i ]. Let M = mini Mi and M = mini Mi. Then by (4.2),

−8(1 − σ) < M ≤ Mi ≤ M. We, therefore, obtain from Lemma 2.3 that when h < h(M,M),

‖eh‖∞ ≤ C1
∥∥O(h6)∥∥

∞
h2

, (4.5)

whereC1 is a positive constant independent of h. Finally, the error estimate (4.3) follows from
‖O(h6)‖∞ ≤ C2h

6 for some positive constant independent of h.

Theorem 4.1 shows that Numerov’s scheme (2.5) possesses the fourth-order accuracy
under the conditions of the theorem.

5. An Accelerated Monotone Iterative Algorithm

The iterative scheme (3.5) gives an algorithm for solving the system (2.5). However, as
already mentioned in Section 3, its rate of convergence is only of linear order because it is
of Picard type. To raise the rate of convergence while maintaining the monotone convergence
of the sequence, we propose an accelerated monotone iterative algorithm. An advantage of
this algorithm is that its rate of convergence for the sum of the two produced sequences
is quadratic (in the sense mentioned in Section 1) with only the usual differentiability
requirement on the function f(·, u). If the function fu(·, u) possesses a monotone property
in u, this algorithm is reduced to Newton’s method, and one of the two produced sequences
converges quadratically.

5.1. Monotone Iterative Algorithm

Let ũh(xi) and ûh(xi) be a pair of ordered upper and lower solutions of (2.5) and assume that
f(·, u) is aC1-function of u ∈ 〈ûh, ũh〉. It follows from Theorems 3.2–3.4 that (2.5) has a unique
solution u∗

h
(xi) in 〈ûh, ũh〉 under the conditions of the theorems. To compute this solution, we

use the following iterative scheme:

−δ2
h
u
(m)
h (xi) + Ph

(
M

(m−1)
i u

(m)
h (xi)

)

= Ph

(
M

(m−1)
i u

(m−1)
h (xi) + f

(
xi, u

(m−1)
h (xi)

))
, 1 ≤ i ≤ L − 1,

u
(m)
h (0) = Sα

[
u
(m)
h (ξ)

]
, u

(m)
h (1) = Sβ

[
u
(m)
h (η)

]
,

(5.1)
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where u(0)
h (xi) is either ũh(xi) or ûh(xi), and for each i,

M
(m)
i = max

{
−fu(xi, u);u ∈

[
u
(m)
h (xi), u

(m)
h (xi)

]}
. (5.2)

The functions u
(m)
h

(xi) and u
(m)
h

(xi) in the definition of M(m)
i are obtained from (5.1) with

u
(0)
h (xi) = ũh(xi) and u

(0)
h (xi) = ûh(xi), respectively. It is clear from (5.2) that

f(xi, vi) − f
(
xi, v

′
i

) ≥ −M(m)
i

(
vi − v′

i

)
, 0 ≤ i ≤ L, (5.3)

whenever u(m)
h

(xi) ≤ v′
i ≤ vi ≤ u

(m)
h

(xi). Moreover,

M
(m)
i

=

⎧
⎨

⎩
−fu
(
xi, u

(m)
h (xi)

)
, if fu(xi, u) is monotone nonincreasing in u ∈

[
u
(m)
h (xi), u

(m)
h (xi)

]
,

−fu
(
xi, u

(m)
h (xi)

)
, if fu(xi, u) is monotone nondecreasing in u ∈

[
u
(m)
h (xi), u

(m)
h (xi)

]
.

(5.4)

Hence, if fu(xi, u) is monotone nonincreasing/nondecreasing in u ∈ [u(m)
h

(xi), u
(m)
h

(xi)] for
all 0 ≤ i ≤ L, then the iterative scheme (5.1) for {u(m)

h (xi)}/{u(m)
h (xi)} is reduced to Newton’s

form:

−δ2
hu

(m)
h (xi) − Ph

(
fu
(
xi, u

(m−1)
h (xi)

)
u
(m)
h (xi)

)

= −Ph

(
fu
(
xi, u

(m−1)
h (xi)

)
u
(m−1)
h (xi) − f

(
xi, u

(m−1)
h (xi)

))
, 1 ≤ i ≤ L − 1,

u
(m)
h (0) = Sα

[
u
(m)
h (ξ)

]
, u

(m)
h (1) = Sβ

[
u
(m)
h (η)

]
.

(5.5)

To show that the sequences given by (5.1) are well-defined and monotone for an
arbitrary C1-function f(·, u), we let Mu be given by (3.13) and let

Mu = max
0≤i≤L

max
{−fu(xi, u);u ∈ [ûh(xi), ũh(xi)]

}
. (5.6)

Lemma 5.1. Let the condition (2.9) hold, and let ũh(xi) and ûh(xi) be a pair of ordered upper and
lower solutions of (2.5). Assume that Mu > −8(1 − σ) and h < h(Mu,Mu). Then the sequences
{u(m)

h
(xi)}, {u(m)

h
(xi)}, and {M(m)

i } given by (5.1) and (5.2) with u
(0)
h
(xi) = ũh(xi) and u

(0)
h
(xi) =

ûh(xi) are all well defined and possess the monotone property

u
(m)
h (xi) ≤ u

(m+1)
h (xi) ≤ u

(m+1)
h (xi) ≤ u

(m)
h (xi), 0 ≤ i ≤ L, m = 0, 1, . . . . (5.7)
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Proof. Since M
(0)
i = max{−fu(xi, u);ui ∈ [ûh(xi), ũh(xi)]}, −8(1 − σ) < Mu ≤ M

(0)
i ≤ Mu and

h < h(Mu,Mu), we have from Lemma 2.2 that the first iterations u(1)
h (xi) and u

(1)
h (xi) are well

defined. Let w(0)
h
(xi) = u

(0)
h
(xi) − u

(1)
h
(xi). Then, by (3.1) and (5.1),

−δ2
hw

(0)
h (xi) + Ph

(
M

(0)
i w

(0)
h (xi)

)
≥ 0, 1 ≤ i ≤ L − 1,

w
(0)
h (0) ≥ Sα

[
w

(0)
h (ξ)

]
, w

(0)
h (1) ≥ Sβ

[
w

(0)
h (η)

]
.

(5.8)

We have from Lemma 2.2 that w(0)
h (xi) ≥ 0, that is, u(0)

h (xi) ≥ u
(1)
h (xi) for every 0 ≤ i ≤ L.

Similarly by the property of a lower solution, u(1)
h
(xi) ≥ u

(0)
h
(xi) for every 0 ≤ i ≤ L. Let

w
(1)
h
(xi) = u

(1)
h
(xi) − u

(1)
h
(xi). Then by (5.1) and (5.3),

−δ2
hw

(1)
h (xi) + Ph

(
M

(0)
i w

(1)
h (xi)

)
≥ 0, 1 ≤ i ≤ L − 1,

w
(1)
h (0) = Sα

[
w

(1)
h (ξ)

]
, w

(1)
h (1) = Sβ

[
w

(1)
h (η)

]
.

(5.9)

It follows from Lemma 2.2 thatw(1)
h (xi) ≥ 0, that is, u(1)

h (xi) ≥ u
(1)
h (xi) for every 0 ≤ i ≤ L. This

proves the monotone property (5.7) for m = 0.
Assume, by induction, that there exists some integer m0 ≥ 0 such that for all 0 ≤

m ≤ m0, the iterations u
(m)
h

(xi), u
(m+1)
h

(xi), u
(m)
h

(xi), and u
(m+1)
h

(xi) are well-defined and satisfy
(5.7). ThenM

(m0+1)
i is well defined and −8(1−σ) < Mu ≤ M

(m0+1)
i ≤ Mu. Since h < h(Mu,Mu),

we have from Lemma 2.2 that the iterations u
(m0+2)
h (xi) and u

(m0+2)
h (xi) exist uniquely. Let

w
(m0+1)
h

(xi) = u
(m0+1)
h

(xi) − u
(m0+2)
h

(xi). Since

M
(m0+1)
i w

(m0+1)
h (xi)

=
(
M

(m0+1)
i −M

(m0)
i

)
u
(m0+1)
h (xi) +M

(m0)
i u

(m0+1)
h (xi) −M

(m0+1)
i u

(m0+2)
h (xi),

(5.10)

the iterative scheme (5.1) implies that

−δ2
hw

(m0+1)
h (xi) + Ph

(
M

(m0+1)
i w

(m0+1)
h (xi)

)

= Ph

(
M

(m0)
i

(
u
(m0)
h (xi) − u

(m0+1)
h (xi)

)
+ f
(
xi, u

(m0)
h (xi)

)
− f
(
xi, u

(m0+1)
h (xi)

))
, 1 ≤ i ≤ L − 1,

w
(m0+1)
h (0) = Sα

[
w

(m0+1)
h (ξ)

]
, w

(m0+1)
h (1) = Sβ

[
w

(m0+1)
h (η)

]
.

(5.11)
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Using the relation (5.3) yields

−δ2
hw

(m0+1)
h (xi) + Ph

(
M

(m0+1)
i w

(m0+1)
h (xi)

)
≥ 0, 1 ≤ i ≤ L − 1,

w
(m0+1)
h (0) = Sα

[
w

(m0+1)
h (ξ)

]
, w

(m0+1)
h (1) = Sβ

[
w

(m0+1)
h (η)

]
.

(5.12)

By Lemma 2.2, w(m0+1)
h

(xi) ≥ 0, that is, u(m0+1)
h

(xi) ≥ u
(m0+2)
h

(xi) for every 0 ≤ i ≤ L. Similarly
we have u(m0+2)

h (xi) ≥ u
(m0+1)
h (xi) for every 0 ≤ i ≤ L. Letw(m0+2)

h (xi) = u
(m0+2)
h (xi) − u

(m0+2)
h (xi).

Then by (5.1) and (5.3), w(m0+2)
h

(xi) satisfies (5.12) with w
(m0+1)
h

(xi) replaced by w
(m0+2)
h

(xi).
Therefore, by Lemma 2.2, w(m0+2)

h
(xi) ≥ 0, that is, u(m0+2)

h
(xi) ≥ u

(m0+2)
h

(xi) for every 0 ≤ i ≤ L.
This shows that the monotone property (5.7) is also true form = m0+1. Finally, the conclusion
of the lemma follows from the principle of induction.

We next show monotone convergence of the sequences {u(m)
h (xi)} and {u(m)

h (xi)}.

Theorem 5.2. Let the hypothesis in Lemma 5.1 hold. Then the sequences {u(m)
h

(xi)} and {u(m)
h

(xi)}
given by (5.1) converge monotonically to the unique solution u∗

h
(xi) of (2.5) in 〈ûh, ũh〉, respectively.

Moreover,

u
(m)
h (xi) ≤ u

(m+1)
h (xi) ≤ u∗

h(xi) ≤ u
(m+1)
h (xi) ≤ u

(m)
h (xi), 0 ≤ i ≤ L, m = 0, 1, . . . . (5.13)

Proof. It follows from the monotone property (5.7) that the limits

lim
m→∞

u
(m)
h (xi) = uh(xi), lim

m→∞
u
(m)
h (xi) = uh(xi), 0 ≤ i ≤ L (5.14)

exist and they satisfy (3.10). Since the sequence {M(m)
i } is monotone nonincreasing and is

bounded from below by Mu given in (3.13), it converges as m → ∞. Letting m → ∞ in
(5.1) shows that both uh(xi) and uh(xi) are solutions of (2.5) in 〈ûh, ũh〉. SinceMu > −8(1−σ)
and h < h(Mu,Mu), the condition (3.14) of Theorem 3.3 is satisfied. Thus by Theorem 3.3,
uh(xi) = uh(xi)(≡ u∗

h
(xi)) and u∗

h
(xi) is the unique solution of (2.5) in 〈ûh, ũh〉. The monotone

property (5.13) follows from (3.10).

When fu(xi, u) is monotone nonincreasing/nondecreasing in u ∈ [u(m)
h (xi), u

(m)
h (xi)]

for all 0 ≤ i ≤ L, the iterative scheme (5.1) for {u(m)
h

(xi)}/{u(m)
h

(xi)} is reduced to Newton
iteration (5.5). As a consequence of Theorem 5.2, we have the following conclusion.

Corollary 5.3. Let the hypothesis in Lemma 5.1 be satisfied. If fu(xi, u) is monotone nonincreasing
in u ∈ [u(m)

h
(xi), u

(m)
h

(xi)] for all 0 ≤ i ≤ L, the sequence {u(m)
h

(xi)} given by (5.5) with

u
(0)
h
(xi) = ũh(xi) converges monotonically from above to the unique solution u∗

h
(xi) of (2.5) in

〈ûh, ũh〉. Otherwise, if fu(xi, u) is monotone nondecreasing in u ∈ [u(m)
h (xi), u

(m)
h (xi)] for all

0 ≤ i ≤ L, the sequence {u(m)
h (xi)} given by (5.5) with u

(0)
h (xi) = ûh(xi) converges monotonically

from below to u∗
h
(xi).
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5.2. Rate of Convergence

We now show the quadratic rate of convergence of the sequences given by (5.1). Assume that
there exists a nonnegative constant M

∗
such that

∣∣fu(xi, vi) − fu
(
xi, v

′
i

)∣∣ ≤ M
∗∣∣vi − v′

i

∣∣ ∀vi, v
′
i ∈ [ûh(xi), ũh(xi)], 0 ≤ i ≤ L. (5.15)

Clearly, this assumption is satisfied if f(·, u) is a C2-function of u.

Theorem 5.4. Let the hypotheses in Lemma 5.1 and (5.15) hold. Also let {u(m)
h (xi)} and {u(m)

h (xi)}
be the sequences given by (5.1) and let u∗

h(xi) be the unique solution of (2.5) in 〈ûh, ũh〉. Then there
exists a constant ρ, independent of m, such that

∥∥∥u(m)
h − u∗

h

∥∥∥
∞
+
∥∥∥u(m)

h − u∗
h

∥∥∥
∞
≤ ρ
(∥∥∥u(m−1)

h − u∗
h

∥∥∥
∞
+
∥∥∥u(m−1)

h − u∗
h

∥∥∥
∞

)2
, m = 1, 2, . . . . (5.16)

Proof. Let w(m)
h

(xi) = u
(m)
h

(xi) − u∗
h
(xi). Subtracting (2.5) from (5.1) gives

−δ2
h
w

(m)
h (xi) + Ph

(
M

(m−1)
i w

(m)
h (xi)

)

= Ph

(
M

(m−1)
i w

(m−1)
h (xi) + f

(
xi, u

(m−1)
h (xi)

)
− f
(
xi, u

∗
h(xi)

))
, 1 ≤ i ≤ L − 1,

w
(m)
h (0) = Sα

[
w

(m)
h (ξ)

]
, w

(m)
h (1) = Sβ

[
w

(m)
h (η)

]
.

(5.17)

By the intermediate value theorem,

M
(m−1)
i = −fu

(
xi, θ

(m−1)
i

)
, (5.18)

where θ(m−1)
i ∈ [u(m−1)

h (xi), u
(m−1)
h (xi)], and by the mean value theorem,

f
(
xi, u

(m−1)
h (xi)

)
− f
(
xi, u

∗
h(xi)

)
= fu

(
xi, γ

(m−1)
i

)
w

(m−1)
h (xi), (5.19)

where γ (m−1)
i ∈ [u∗

h
(xi), u

(m−1)
h

(xi)]. Let

g
(m−1)
i =

(
fu
(
xi, γ

(m−1)
i

)
− fu
(
xi, θ

(m−1)
i

))
w

(m−1)
h (xi). (5.20)

Then we have from (5.17) that

−δ2
hw

(m)
h (xi) + Ph

(
M

(m−1)
i w

(m)
h (xi)

)
= Phg

(m−1)
i , 1 ≤ i ≤ L − 1,

w
(m)
h (0) = Sα

[
w

(m)
h (ξ)

]
, w

(m)
h (1) = Sβ

[
w

(m)
h (η)

]
.

(5.21)
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Since −8(1 − σ) < Mu ≤ M
(m−1)
i ≤ Mu and h < h(Mu,Mu), it follows from Lemma 2.3 that

there exists a constant ρ1, independent of m, such that

∥∥∥w(m)
h

∥∥∥
∞
≤

ρ1
∥∥∥Phg

(m−1)
i

∥∥∥
∞

h2
. (5.22)

To estimate g(m−1)
i , we observe from (5.15) that

∣∣∣g(m−1)
i

∣∣∣ ≤ M
∗∣∣∣γ (m−1)

i − θ
(m−1)
i

∣∣∣ ·
∣∣∣w(m−1)

h (xi)
∣∣∣. (5.23)

Since both γ
(m−1)
i and θ

(m−1)
i are in [u(m−1)

h (xi), u
(m−1)
h (xi)], the above estimate implies that

∣∣∣g(m−1)
i

∣∣∣ ≤ M
∗∣∣∣u(m−1)

h (xi) − u
(m−1)
h (xi)

∣∣∣ ·
∣∣∣w(m−1)

h (xi)
∣∣∣. (5.24)

Using this estimate in (5.22), we obtain

∥∥∥w(m)
h

∥∥∥
∞
≤ ρ1M

∗∥∥∥u(m−1)
h

− u
(m−1)
h

∥∥∥
∞

∥∥∥w(m−1)
h

∥∥∥
∞
, (5.25)

or

∥∥∥u(m)
h

− u∗
h

∥∥∥
∞
≤ ρ1M

∗∥∥∥u(m−1)
h

− u
(m−1)
h

∥∥∥
∞

∥∥∥u(m−1)
h

− u∗
h

∥∥∥
∞
. (5.26)

Similarly, we have

∥∥∥u(m)
h − u∗

h

∥∥∥
∞
≤ ρ1M

∗∥∥∥u(m−1)
h − u

(m−1)
h

∥∥∥
∞

∥∥∥u(m−1)
h − u∗

h

∥∥∥
∞
. (5.27)

Addition of (5.26) and (5.27) gives

∥∥∥u(m)
h

− u∗
h

∥∥∥
∞
+
∥∥∥u(m)

h
− u∗

h

∥∥∥
∞

≤ ρ1M
∗∥∥∥u(m−1)

h
− u

(m−1)
h

∥∥∥
∞

(∥∥∥u(m−1)
h

− u∗
h

∥∥∥
∞
+
∥∥∥u(m−1)

h
− u∗

h

∥∥∥
∞

)
.

(5.28)

Then the estimate (5.16) follows immediately.

Theorem 5.4 gives a quadratic convergence for the sum of the sequences {u(m)
h

(xi)}
and {u(m)

h (xi)} in the sense of (5.16). If fu(xi, u) is monotone nonincreasing/nondecreasing in
u ∈ [u(m)

h (xi), u
(m)
h (xi)] for all 0 ≤ i ≤ L, the sequence {u(m)

h (xi)}/{u(m)
h (xi)} has the quadratic

convergence. This result is stated as follows.
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Theorem 5.5. Let the conditions in Theorem 5.4 hold. Then there exists a constant ρ, independent of
m, such that

∥∥∥u(m)
h − u∗

h

∥∥∥
∞
≤ ρ
∥∥∥u(m−1)

h − u∗
h

∥∥∥
2

∞
, m = 1, 2, . . . (5.29)

if fu(xi, u) is monotone nonincreasing in u ∈ [u(m)
h (xi), u

(m)
h (xi)] for all 0 ≤ i ≤ L and

∥∥∥u(m)
h

− u∗
h

∥∥∥
∞
≤ ρ
∥∥∥u(m−1)

h
− u∗

h

∥∥∥
2

∞
, m = 1, 2, . . . (5.30)

if fu(xi, u) is monotone nondecreasing in u ∈ [u(m)
h (xi), u

(m)
h (xi)] for all 0 ≤ i ≤ L.

Proof. Consider the monotone nonincreasing case. In this case, the sequence {u(m)
h

(xi)} is
given by (5.5) with u

(0)
h
(xi) = ũh(xi). This implies that θ(m−1)

i = u
(m−1)
h

(xi), where θ
(m−1)
i is

the intermediate value in (5.18). Since γ (m−1)
i in (5.19) is in [u∗

h(xi), u
(m−1)
h (xi)], we see that

∣∣∣γ (m−1)
i − θ

(m−1)
i

∣∣∣ ≤
∣∣∣u(m−1)

h (xi) − u∗
h(xi)

∣∣∣. (5.31)

Thus, (5.24) is now reduced to

∣∣∣g(m−1)
i

∣∣∣ ≤ M
∗∣∣∣w(m−1)

h (xi)
∣∣∣
2
. (5.32)

The argument in the proof of Theorem 5.4 shows that (5.29) holds with ρ = ρ1M
∗
, where ρ1

is the constant in (5.22). The proof of (5.30) is similar.

6. Applications and Numerical Results

In this section, we give some applications of the results in the previous sections to three
model problems. We present some numerical results to demonstrate the monotone and rapid
convergence of the sequence from (5.1) and to show the fourth-order accuracy of Numerov’s
scheme (2.5), as predicted in the analysis.

In order to implement the monotone iterative algorithm (5.1), it is necessary to find
a pair of ordered upper and lower solutions of (2.5). The construction of this pair depends
mainly on the function f(·, u), and much discussion on the subject can be found in [54] for
continuous problems. To demonstrate some techniques for the construction of ordered upper
and lower solutions of (2.5), we assume that f(x, 0) ≥ 0 for all x ∈ [0, 1] and there exists a
nonnegative constant C such that

f(x,C) ≤ 0, x ∈ [0, 1]. (6.1)
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Then −δ2
hC = 0 ≥ Phf(xi, C) for all 1 ≤ i ≤ L − 1. This implies that ũh(xi) ≡ C and ûh(xi) ≡ 0

are a pair of ordered upper and lower solutions of (2.5) if, in addition, the condition (2.9)
holds. On the other hand, assume that there exist nonnegative constants a, bwith a < 8(1−σ)
such that

f(x, u) ≤ au + b for x ∈ [0, 1],u ≥ 0, (6.2)

where σ < 1 is defined by (2.9). We have from Lemma 2.2 that the solution ũh(xi) of the linear
problem

−δ2
hũh(xi) − aPhũh(xi) = h2b, 1 ≤ i ≤ L − 1,

ũh(0) = Sα[ũh(ξ)], ũh(1) = Sβ[ũh(η)]
(6.3)

exists uniquely and is nonnegative. Clearly by (6.2), this solution is a nonnegative upper
solution of (2.5).

As applications of the above construction of upper and lower solutions, we next
consider three specific examples. In each of these examples, the analytic solution u(x) of
(1.1) is explicitly known, against which we can compare the numerical solution u∗

h
(xi) of the

scheme (2.5) to demonstrate the fourth-order accuracy of the scheme. The order of accuracy
is calculated by

error∞(h) = ‖u − u∗
h‖∞, order∞(h) = log2

(
error∞(h)

error∞(h/2)

)
. (6.4)

All computations are carried out by using a MATLAB subroutine on a Pentium 4 computer
with 2G memory, and the termination criterion of iterations for (5.1) is given by

∥∥∥u(m)
h

− u
(m)
h

∥∥∥
∞
< 10−14. (6.5)

Example 6.1. Consider the four-point boundary value problem:

−u′′(x) = θu(x)(1 − u(x)) + q(x), 0 < x < 1,

u(0) =
1
9
u

(
1
2

)
, u(1) =

1
8
u

(
1
4

)
,

(6.6)

where θ is a positive constant and q(x) is a nonnegative continuous function. Clearly, problem
(6.6) is a special case of (1.1) with

f(x, u) = θu(1 − u) + q(x). (6.7)
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Figure 1: The monotone convergence of ({u(m)
h

(xi)}, {u(m)
h

(xi)}) at xi = 0.5 for Example 6.1.

To obtain an explicit analytic solution of (6.6), we choose

q(x) = 8 +

(
π2

2

)
sin(2πx) − θz(x)(1 − z(x)), z(x) = 4x(1 − x) +

1 + sin(2πx)
8

. (6.8)

Then the function u(x) = z(x) is a solution of (6.6). Moreover, q(x) ≥ 0 in [0, 1] if θ ≤ 32−2π2.

For problem (6.6), the corresponding Numerov scheme (2.5) is now reduced to

−δ2
huh(xi) = Phf(xi, uh(xi)), 1 ≤ i ≤ L − 1,

uh(0) =
1
9
uh

(
1
2

)
, uh(1) =

1
8
uh

(
1
4

)
.

(6.9)

To find a pair of ordered upper and lower solutions of (6.9), we observe from (6.7) that
f(x, 0) = q(x) ≥ 0 for all x ∈ [0, 1], and, therefore, ûh(xi) ≡ 0 is a lower solution. Since
q(x) ≤ 14, we have from (6.7) that the condition (6.2) is satisfied for the present function f
with a = θ and b = 14. Therefore, the solution ũh(xi) of (6.3) (corresponding to (6.9)) with
a = θ and b = 14 is a nonnegative upper solution if θ < 7. This implies that ũh(xi) and
ûh(xi) ≡ 0 are a pair of ordered upper and lower solutions of (6.9).

Let θ = π/2. Using u
(0)
h
(xi) = ũh(xi) and u

(0)
h
(xi) = 0, we compute the sequences

{u(m)
h (xi)} and {u(m)

h (xi)} from the iterative scheme (5.1) for (6.9) and various values of h. In
all the numerical computations, the basic feature of monotone convergence of the sequences
was observed. Let h = 1/32. In Figure 1, we present some numerical results of these sequences
at xi = 0.5, where the solid line denotes the sequence {u(m)

h
(xi)} and the dashed-dotted line

stands for the sequence {u(m)
h (xi)}. As described in Theorem 5.2, the sequences converge to

the same limit as m → ∞, and their common limit u∗
h(xi) is the unique solution of (6.9) in

〈0, ũh 〉. Besides, these sequences converge rapidly (in five iterations). More numerical results
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Table 1: Solutions u∗
h
(xi) and u(xi) of Example 6.1.

xi u∗
h
(xi) u(xi)

1/16 0.40721072351325 0.40721042904564
1/8 0.65088888830290 0.65088834764832
3/16 0.84986064600007 0.84985994156391
1/4 1.00000076215892 1
5/16 1.09986064798991 1.09985994156391
3/8 1.15088889437534 1.15088834764832
7/16 1.15721073688765 1.15721042904564
1/2 1.12500002623603 1.12500000000000

Table 2: The accuracy of the numerical solution u∗
h
(xi) of Example 6.1.

Scheme (6.9) SFD scheme
h error∞(h) order∞(h) error∞(h) order∞(h)

1/4 3.43422969288754e − 03 4.10451040194224 2.82813777940529e−02 2.12179230623150
1/8 1.99640473104834e − 04 4.02647493758726 6.49796599949681e−03 2.03066791458431
1/16 1.22506422453039e − 05 4.00662171813206 1.59032351665434e−03 2.00765985597618
1/32 7.62158923750533e − 07 4.00165559258019 3.95475554192615e−04 2.00191427472146
1/64 4.75802997002006e − 08 4.00040916222332 9.87377889736241e−05 2.00047851945960
1/128 2.97292546136418e − 09 4.00024505190767 2.46762611546547e−05 2.00011961094792
1/256 1.85776283245787e − 10 4.03319325068531 6.16855384505399e−06 2.00002977942424
1/512 1.13469234008790e − 11 1.54210662950405e−06

of u∗
h
(xi) at various xi are explicitly given in Table 1. We also list the values of the analytic

solution u(xi). Clearly, the numerical solution u∗
h(xi)meets the analytic solution u(xi) closely.

To further demonstrate the accuracy of the numerical solution u∗
h
(xi), we list the

maximum error error∞(h) and the order order∞(h) in the first three columns of Table 2 for
various values of h. The data demonstrate that the numerical solution u∗

h(xi) has the fourth-
order accuracy. This coincides with the analysis very well.

For comparison, we also solve (6.6) by the standard finite difference (SFD) method.
This method leads to a difference scheme in the form (6.9) with Ph = I (an identical
operator). Thus, a similar iterative scheme as (5.1) can be used in actual computations. The
corresponding maximum error error∞(h) and the order order∞(h) are listed in the last two
columns of Table 2. We see that the standard finite difference method possesses only the
second-order accuracy.

Example 6.2. Our second example is for the following five-point boundary value problem:

−u′′(x) =
θu(x)
1 + u(x)

+ q(x), 0 < x < 1,

u(0) =
√
3
6

u

(
1
4

)
+
1
4
u

(
1
2

)
, u(1) =

1
4
u

(
1
2

)
+
√
3
6

u

(
3
4

)
,

(6.10)
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Figure 2: The monotone convergence of ({u(m)
h

(xi)}, {u(m)
h

(xi)}) at xi = 0.5 for Example 6.2.

where θ is a positive constant and q(x) is a nonnegative continuous function. The
corresponding Numerov’s scheme (2.5) for this example is given by

−δ2
huh(xi) = Phf(xi, uh(xi)), 1 ≤ i ≤ L − 1,

uh(0) =
√
3
6

uh

(
1
4

)
+
1
4
uh

(
1
2

)
, uh(1) =

1
4
uh

(
1
2

)
+
√
3
6

uh

(
3
4

)
,

(6.11)

where

f(xi, uh(xi)) =
θuh(xi)
1 + uh(xi)

+ q(xi), 0 ≤ i ≤ L. (6.12)

Let

q(x) =
(
κ2 − θ

1 + sin(κx + π/6)

)
sin
(
κx +

π

6

)
, κ =

2π
3
. (6.13)

Then q(x) ≥ 0 in [0, 1] if θ ≤ 3κ2/2, and u(x) = sin(κx + π/6) is a solution of (6.10).
Clearly, ûh(xi) ≡ 0 is a lower solution of (6.11). On the other hand, the condition (6.2) is
satisfied for the present problem with a = θ and b = κ2. Therefore, the solution ũh(xi) of (6.3)
(corresponding to (6.11)) with a = θ and b = κ2 is a nonnegative upper solution of (6.11) if
θ < 2(9 − 2

√
3)/3.

Let θ = κ. Using u
(0)
h
(xi) = ũh(xi) and u

(0)
h
(xi) = 0, we compute the sequences

{u(m)
h

(xi)} and {u(m)
h

(xi)} from the iterative scheme (5.1) for (6.11). Let h = 1/32. Some
numerical results of these sequences at xi = 0.5 are plotted in Figure 2, where the
solid line denotes the sequence {u(m)

h (xi)} and the dashed-dotted line stands for the seq-
uence {u(m)

h
(xi)}. We see that the sequences possess the monotone convergence given in
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Table 3: The accuracy of the numerical solution u∗
h
(xi) of Example 6.2.

Scheme (6.11) SFD scheme
h error∞(h) order∞(h) error∞(h) order∞(h)

1/4 3.64212838788403e−04 4.01156400486606 2.66151346177448e−02 2.01341045503011
1/8 2.25815711794031e−05 4.00292832787037 6.59222051766362e − 03 2.00338885776990
1/16 1.40848640284297e−06 4.00073477910484 1.64418842865244e−03 2.00084988143279
1/32 8.79855768243232e −08 4.00018946428474 4.10805033531858e−04 2.00021264456991
1/64 5.49837642083162e−09 3.99948214984524 1.02686121950857e−04 2.00005317293630
1/128 3.43771899835588e−10 3.99684542351672 2.56705843380001e−05 2.00001326834657
1/256 2.15327755626049e−11 4.03735960917218 6.41758706221296e−06 2.00000333671353
1/512 1.31139543668724e−12 1.60439305485482e−06

Theorem 5.2 and converge rapidly (in five iterations) to the unique solution u∗
h
(xi) of (6.11)

in 〈0, ũh〉. The maximum error error∞(h) and the order order∞(h) of the numerical solution
u∗
h(xi) by the scheme (6.11) and the SFD scheme are presented in Table 3. The numerical

results clearly indicate that the proposed scheme (6.11) is more efficient than the SFD scheme.

Example 6.3. Our last example is given by

−u′′(x) = θ
(
q4(x) − u4(x)

)
, 0 < x < 1,

u(0) =
√
2
8

u

(
1
8

)
+
√
3

12
u

(
1
4

)
+
1
4
u

(
1
2

)
,

u(1) =
√
3

12
u

(
1
4

)
+
1
4
u

(
1
2

)
+
√
3

12
u

(
3
4

)
,

(6.14)

where θ is a positive constant and q(x) is a continuous function. For this example, the
corresponding Numerov scheme (2.5) is reduced to

−δ2
huh(xi) = Phf(xi, uh(xi)), 1 ≤ i ≤ L − 1,

uh(0) =
√
2
8

uh

(
1
8

)
+
√
3

12
uh

(
1
4

)
+
1
4
uh

(
1
2

)
,

uh(1) =
√
3

12
uh

(
1
4

)
+
1
4
uh

(
1
2

)
+
√
3

12
uh

(
3
4

)
,

(6.15)

where

f(xi, uh(xi)) = θ
(
q4(xi) − u4

h(xi)
)
, 0 ≤ i ≤ L. (6.16)
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Figure 3: The monotone convergence of ({u(m)
h

(xi)}, {u(m)
h

(xi)}) at xi = 0.5 for Example 6.3

Table 4: Table 1 The accuracy of the numerical solution u∗
h
(xi) of Example 6.3.

Scheme (6.15) SFD scheme
h error∞(h) order∞(h) error∞(h) order∞(h)

1/8 4.16044850615194e−06 4.00262945151917 1.20005715017424e−03 1.99011955907584
1/16 2.59554536974349e−07 4.00071651350112 3.02076017246300e−04 1.99756596363740
1/32 1.62141038373420e−08 4.00019299964688 7.56465233968662e−05 1.99939372559153
1/64 1.01324593160257e−09 4.00017895476307 1.89195798938613e−05 1.99984571226086
1/128 6.33200158972613e−11 4.00592116975355 4.73040083492915e−06 1.99995314107427
1/256 3.94129173741931e−12 4.06977174278409 1.18263862036727e−06 1.99999043828107
1/512 2.34701147405758e−13 2.95661614635456e−07

To accommodate the analytical solution of u(x) = sin(κx + π/6) where κ = 2π/3, we let

q(x) =

(
κ2

θ
sin
(
κx +

π

6

)
+ sin4

(
κx +

π

6

))1/4

. (6.17)

As in the previous examples, ûh(xi) ≡ 0 is a lower solution of (6.15) and the solution ũh(xi)
of (6.3) (corresponding to (6.15))with a = 0 and b = κ2 + θ is a nonnegative upper solution.

Let θ = π2/2. We compute the corresponding sequences {u(m)
h

(xi)} and {u(m)
h

(xi)}
from the iterative scheme (5.1)with the initial iterations u(0)

h
(xi) = ũh(xi) and u

(0)
h
(xi) = 0. Let

h = 1/32. Figure 3 shows the monotone and rapid convergence of these sequences at xi = 0.5,
where the solid line denotes the sequence {u(m)

h (xi)} and the dashed-dotted line stands for
the sequence {u(m)

h
(xi)} as before. The data in Table 4 show the maximum error error∞(h)

and the order order∞(h) of the numerical solution u∗
h
(xi) by the scheme (6.15) and the SFD

scheme for various values of h. The fourth-order accuracy of the numerical solution u∗
h(xi) by

the present Numerov scheme is demonstrated in this table.
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7. Conclusions

In this paper, we have given a numerical treatment for a class of nonlinear multipoint bound-
ary value problems by the fourth-order Numerov method. The existence and uniqueness
of the numerical solution and the convergence of the method have been discussed. An
accelerated monotone iterative algorithm with the quadratic rate of convergence has been
developed for solving the resulting nonlinear discrete problem. The proposed Numerov
method is more attractive due to its fourth-order accuracy, compared to the standard finite
difference method.

In this work, we have generalized the method of upper and lower solutions to
nonlinear multipoint boundary value problems. We have also developed a technique
for designing and analyzing compact and monotone finite difference schemes with high
accuracy. They are very useful for accurate numerical simulations of many other nonlinear
problems, such as those related to integrodifferential equations (e.g., [55, 56]) and those in
information modeling (e.g., [57–60]).

Appendix

A. Proofs of Lemmas 2.2 and 2.3

Lemmas 2.2 and 2.3 are the special cases of Lemmas 2.2 and 2.3 in [61]. We include their
proofs here in order to make the paper self-contained. Define

α∗
i =

⎧
⎨

⎩
αi′ , xi = ξi′ for some i′,

0, otherwise,
β∗i =

⎧
⎨

⎩
βi′ , xi = ηi′ for some i′,

0, otherwise,
1 ≤ i ≤ L − 1. (A.1)

Let A = (ai,j), B = (bi,j), and D = (di,j) be the (L − 1)th-order matrices with

ai,j = 2δi,j − δi,j−1 − δi,j+1, bi,j =
5
6
δi,j +

1
12

δi,j−1 +
1
12

δi,j+1, di,j = δi,1α
∗
j + δi,L−1β∗j ,

(A.2)

where δi,j = 1 if i = j and δi,j = 0 if i /= j.

Lemma A.1. Let the condition (2.9) be satisfied. Then the inverse (A −D)−1 > 0, and

∥∥∥(A −D)−1
∥∥∥
∞
≤ 1

8(1 − σ)h2
. (A.3)

Proof. It can be checked by Corollary 3.20 on Page 91 of [62] that the inverse (A −D)−1 > 0.
Let E = (1, 1, . . . , 1)T ∈ RL−1 and let S = (A −D)−1E. Then ‖(A −D)−1‖∞ = ‖S‖∞. It is known
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that the inverse A−1 = (Ji,j) exists, and its elements Ji,j are given by

Ji,j =

⎧
⎪⎪⎨

⎪⎪⎩

(
L − j

)
i

L
, i ≤ j,

(L − i)j
L

, i > j.

(A.4)

A simple calculation shows that ‖A−1‖∞ ≤ L2/8 = 1/(8h2) and Ji,1 + Ji,L−1 = 1 for each 1 ≤ i ≤
L − 1. This implies

S = A−1E +A−1DS ≤
∥∥∥A−1

∥∥∥
∞
E + σ‖S‖∞E ≤

(
1
8h2

)
E + σ‖S‖∞E. (A.5)

Thus the estimate (A.3) follows immediately.

Proof of Lemma 2.2. Define the following (L − 1)th-order matrices or vectors:

Uh = (uh(x1), uh(x2), . . . , uh(xL−1))T ,

M = diag(M1,M2, . . . ,ML−1), Mb = diag(M0, 0, . . . , 0,ML),

Gb =

((
1 − h2

12
M0

)
uh(0), 0, . . . , 0,

(
1 − h2

12
ML

)
uh(1)

)T

.

(A.6)

Using the matrices A and B defined by (A.2), we have from (2.11) that

(
A + h2BM

)
Uh ≥ Gb. (A.7)

Since M > −8(1 − σ) and h < h(M,M), it is easy to check that 1 − (h2/12)Mi ≥ 0(i = 0, L).
Thus by the boundary condition in (2.11),

Gb ≥ DUh − h2

12
MbDUh, (A.8)

where D is the (L − 1)th-order matrix defined by (A.2). This leads to

(
A −D + h2BM +

h2

12
MbD

)
Uh ≥ 0. (A.9)

LetQ ≡ A−D +h2BM + (h2/12)MbD. To prove uh(xi) ≥ 0 for all 0 ≤ i ≤ L, it suffices to show
that the inverse of Q exists and is nonnegative.

Case 1 (M ≥ 0). In this case, the matrix Q satisfies the condition of Corollary 3.20 on Page 91
of [62], and, therefore, its inverse Q−1 exists and is positive.
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Case 2 (0 > M > −8(1 − σ)). For this case, we define

M+ = diag
(
M+

1 ,M
+
2 , . . . ,M

+
L−1
)
, M+

i = max{Mi, 0}, M− = M −M+. (A.10)

The matrices M+
b and M−

b can be similarly defined. Let Q = A −D + h2BM+ + (h2/12)M+
bD.

We know from Case 1 that Q
−1

exists and is positive. Since

Q = Q + h2BM− +
h2

12
M−

bD = Q

(
I + h2Q

−1
(
BM− +

1
12

M−
bD

))
, (A.11)

we need only to prove that the inverse (I + h2Q
−1
(BM− + (1/12)M−

bD))−1 exists and is
nonnegative. By Theorem 3 on Page 298 of [63], this is true if

∥∥∥∥h
2Q

−1
(
BM− +

1
12

M−
bD

)∥∥∥∥
∞
< 1. (A.12)

Since Q ≥ A −D which implies 0 ≤ Q
−1 ≤ (A −D)−1, we have from Lemma A.1 that

∥∥∥Q
−1∥∥∥

∞
≤
∥∥∥(A −D)−1

∥∥∥
∞
≤ 1

8(1 − σ)h2
. (A.13)

It is clear that ‖B + (1/12)D‖∞ = 1, ‖M−‖∞ ≤ −M and ‖M−
b
‖∞ ≤ −M. Thus, we have

∥∥∥∥h
2Q

−1
(
BM− +

1
12

M−
bD

)∥∥∥∥
∞
≤ −M

8(1 − σ)
. (A.14)

The estimate (A.12) follows from M > −8(1 − σ).

Proof of Lemma 2.3. Using the same notation as before, the system (2.12) can be written as

QUh = G, (A.15)

where G = (g(x1), g(x2), . . . , g(xL−1))
T .

Case 1 (M ≥ 0). Since the inverse Q−1 exists and is positive, we have 0 < Q−1 ≤ (A −D)−1.
This shows

∥∥∥Q−1
∥∥∥
∞
≤
∥∥∥(A −D)−1

∥∥∥
∞
≤ 1

8(1 − σ)h2
. (A.16)

Thus, by (A.15), ‖Uh‖∞ ≤ ‖G‖∞/(8(1 − σ)h2) which implies the desired estimate (2.13).
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Case 2 (0 > M > −8(1 − σ)). It follows from (A.11) that

∥∥∥Q−1
∥∥∥
∞
≤
∥∥∥Q

−1∥∥∥
∞

∥∥∥∥∥

(
I + h2Q

−1
(
BM− +

1
12

M−
bD

))−1∥∥∥∥∥
∞
. (A.17)

By (A.13) and (A.14),

∥∥∥Q−1
∥∥∥
∞
≤ 1

8(1 − σ)h2
· 8(1 − σ)
8(1 − σ) +M

=
1

(
8(1 − σ) +M

)
h2

. (A.18)

This together with (A.15) leads to the estimate (2.13).
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