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The Kudryashov-Sinelshchikov equation is studied by using the bifurcation method of dynamical
systems and the method of phase portraits analysis. We show that the limit forms of periodic loop
solutions contain loop soliton solutions, smooth periodic wave solutions, and periodic cusp wave
solutions. Also, some new exact travelling wave solutions are presented through some special
phase orbits.

1. Introduction

A mixture of liquid and gas bubbles of the same size may be considered as an example of
a classic nonlinear medium. In practice, analysis of propagation of the pressure waves in a
liquid with gas bubbles is important problem. We know that there are solitary and periodic
waves in a mixture of a liquid and gas bubbles and these waves can be described by nonlinear
partial differential equations. As for examples of nonlinear differential equations to describe
the pressure waves in bubbly liquids, we can point out the Burgers equation, the Korteweg-de
Vries equation, the Burgers-Korteweg-de Vries equation, and so on [1].

In 2010, Kudryashov and Sinelshchikov [1] obtained amore common nonlinear partial
differential equation for describing the pressure waves in a mixture liquid and gas bubbles
taking into consideration the viscosity of liquid and the heat transfer, and the equation reads
as follows:

ut + αuux + uxxx − (uuxx)x − βuxuxx = 0, (1.1)

where u is a density and which model heat transfer and viscosity, α, β are real parameters.
Equation (1.1) is called Kudryashov-Sinelshchikov equation, it is generalization of the
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KdV and the BKdV equation and similar but not identical to the Camassa-Holm equation.
Undistortedwaves are governed by a corresponding ordinary differential equationwhich, for
special values of some integration constant, is solved analytically in [1]. Ryabov [2] obtained
some exact solutions for β = −3 and β = −4 using a modification of the truncated expansion
method. Solutions are derived in amore straightforwardmanner and cast into a simpler form,
and some new types of solutions which contain solitary wave and periodic wave solutions
are presented in [3].

In this paper, we focus on the case β = 2 of (1.1) using the bifurcation theory and the
method of phase portraits analysis [4–6], we will investigate periodic loop solutions and their
limit forms and give some new exact travelling wave solutions.

2. Preliminary

In this paper, we always consider the case β = 2, so from now on we assume β = 2 in (1.1)
without mentioning it further.

Substituting u(x, t) = 1 − φ(x + αt) = 1 − φ(ξ) into (1.1) and integrating the resulting
equation once with respect to ξ, we obtain

g − 2αφ +
α

2
φ2 − φφ′′ − (φ′)2 = 0, (2.1)

where g is the integral constant.
Letting y = dφ/dξ, we get the following planar system:

dφ

dξ
= y,

dy

dξ
=
g − 2αφ + (α/2)φ2 − y2

φ
. (2.2)

Using the transformation dξ = φdτ , it carries (2.2) into the Hamiltonian system:

dφ

dτ
= φy,

dy

dτ
= g − 2αφ +

α

2
φ2 − y2. (2.3)

Since both system (2.2) and (2.3) have the same first integral:

φ2
(
y2 − g +

4
3
αφ − 1

4
αφ2
)

= h, (2.4)

then the two systems above have the same topological phase portraits except the line φ = 0.
Therefore, we can obtain the bifurcation phase portraits of system (2.2) from that of system
(2.3).

Write Δ = 2α(2α − g). Clearly, when Δ > 0, system (2.3) has two equilibrium points
at (φ1,2, 0) in φ-axis, where φ1,2 = (2α ±

√
Δ)/α. When Δ = 0, system (2.3) has only one

equilibrium point at (2, 0) in φ-axis. When Δ < 0, system (2.3) has no any equilibrium point
in φ-axis. When g > 0, there exist two equilibrium points of system (2.3) in line φ = 0 at
(0,±√g).

LetM(φe, ye) be the coefficient matrix of the linearized system of (2.3) at equilibrium
point (φe, ye), J = det(M(φe, ye)), and T = trace(M(φe, ye)). By the theory of planar
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dynamical systems, we know that for an equilibrium point (φe, ye) of a planar integrable
system, (φe, ye) is a saddle point if J < 0, a center point if J > 0 and T = 0, a cusp if J = 0
and the Poincaré index of (φe, ye) is zero. By using the properties of equilibrium points and
bifurcation method of dynamical systems, we can show that the bifurcation phase portraits
of systems (2.2) and (2.3) is as drawn in Figure 1.

From Figures 1(b), 1(c), 1(d), 1(e), and 1(l), we have the following results.

3. Main Results

Proposition 3.1. (i)When α < 0, g = 2α, for h = (−4/3)α defined by (2.4), (1.1) has a loop-soliton
solution.

(ii) When α < 0, g = 2α, for h ∈ (0, (−4/3)α), there exists a family of uncountably infinite
many periodic loop solutions of (1.1). Moreover, the periodic loop solutions converge to the loop-soliton
solution as h approaches (−4/3)α.

(iii) When α < 0, g = 2α, for h ∈ ((−4/3)α,+∞), there exists a family of uncountably
infinite many periodic loop solutions of (1.1). Moreover, the periodic loop solutions converge to the
loop-soliton solution as h approaches (−4/3)α.

Proposition 3.2. Denote that h1 = H(φ1, 0) and h2 = H(φ2, 0).
(i) When α < 0, 2α < g < 0, for h = h1 defined by (2.4), (1.1) has a loop-soliton solution and

has a solitary wave solution.
(ii) When α < 0, 2α < g < 0, for h ∈ (h2, h1), there exist a family of uncountably infinite

many periodic loop solutions and a family of uncountably infinite many smooth periodic wave solutions
of (1.1). Moreover, the periodic loop solutions converge to the loop-soliton solution and the smooth
periodic wave solutions converge to the solitary wave solution as h approaches h1.

(iii) When α < 0, 2α < g < 0, for h ∈ (h1,+∞), there exists a family of uncountably infinite
many periodic loop solutions of (1.1). Moreover, the periodic loop solutions converge to the loop-soliton
solution as h approaches h1.

(iv) When α < 0, 2α < g < 0, for h ∈ (0, h2], there exists a family of uncountably infinite
many periodic loop solutions of (1.1).

Proposition 3.3. (i) When α < 0, g = 0, for h = 0 defined by (2.4), (1.1) has a smooth periodic
wave solution.

(ii) When α < 0, g = 0, for h ∈ (0,+∞), there exists a family of uncountably infinite many
periodic loop solutions of (1.1). Moreover, the periodic loop solutions converge to the smooth periodic
wave solution as h approaches 0.

Proposition 3.4. (i) When α < 0, g > 0, for h = 0 defined by (2.4), (1.1) has two cusp periodic
wave solutions.

(ii) When α < 0, g > 0, for h ∈ (0,+∞), there exists a family of uncountably infinite many
periodic loop solutions of (1.1). Moreover, the periodic loop solutions converge to the cusp periodic
wave solutions as h approaches 0.

Proposition 3.5. Denote that h2 = H(φ2, 0).
(i)When α > 0, g < 0, for h = h2 defined by (2.4), (1.1) has a loop-soliton solution.
(ii) When α > 0, g < 0, for h ∈ (0, h2), there exists a family of uncountably infinite many

periodic loop solutions of (1.1). Moreover, the periodic loop solutions converge to the loop-soliton
solution as h approaches h2.
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Figure 1: The bifurcation phase portraits of systems (2.2) and (2.3).
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4. Exact Traveling Wave Solutions of
the Kudryashov-Sinelshchikov Equation

Corresponding to Figure 1(b), the graph defined by H(φ, y) = (−4/3)α consist of two
hyperbolic sectors of the cusp (2, 0) and an open-end curve Γ0 passing through the point
(−2/3, 0). It follows from (2.4) that

y = ±
(
2 − φ)

√
−α(2 − φ)(φ + 2/3

)

2φ
, −2

3
≤ φ < 2, φ /= 0. (4.1)

Substituting (4.1) into the dφ/dξ = y and integrating along the curve Γ0 and noting that
u(x, t) = 1 − φ(x + αt) = 1 − φ(ξ), we obtain the following representation of loop-soliton
solution:

u
(
χ
)
= 1 − 2sin2(χ

)
+
2
3
cos2

(
χ
)
,

ξ
(
χ
)
=

4√−α

(
3
4
tan
(
χ
) − χ

)
,

(4.2)

where χ is a new parametric variable.
Corresponding to Figure 1(c), the graph defined by H(φ, y) = H(φ1, 0) consists of an

open-end curve Γ1 passing through the point (φm, 0) and a homoclinic orbit connecting with

saddle point (φ1, 0) and passing point (φM, 0), where φm = (3
√
Δ− 2α− 2

√
2α(2α − 3

√
Δ))/−

3α, φM = (3
√
Δ − 2α + 2

√
2α(2α − 3

√
Δ))/ − 3α. It follows from (2.4) that

y = ±
(
φ1 − φ

)√−α(φM − φ)(φ − φm
)

2φ
, φm ≤ φ < φ1, φ /= 0, (4.3)

y = ±
(
φ − φ1

)√−α(φM − φ)(φ − φm
)

2φ
, φ1 ≤ φ ≤ φM. (4.4)

Substituting (4.3) into the dφ/dξ = y and integrating along the curve Γ1, we can obtain the
following representation of loop-soliton solution:

u
(
χ
)
= 1 −

φ1

[
φMsinh2(ωχ

) − φmcosh2(ωχ
)]

+ φmφM
[
φMcosh2(ωχ

) − φmsinh2(ωχ
)] − φ1

,

ξ
(
χ
)
=

2√−α

⎛

⎝χ − 2 arctan

⎛

⎝

√
φ1 − φm
φM − φ1

tanh
(
ωχ
)
⎞

⎠

⎞

⎠,

(4.5)

where ω =
√
(φ1 − φm)(φM − φ1)/2φ1.
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Substituting (4.4) into the dφ/dξ = y and integrating along the homoclinic orbit, we
can obtain the following representation of solitary wave solution:

u
(
χ
)
= 1 −

φ1

[
φMcosh2(ωχ

) − φmsinh2(ωχ
)] − φmφM

[
φMsinh2(ωχ

) − φmcosh2(ωχ
)]

+ φ1

,

ξ
(
χ
)
=

2√−α

⎛

⎝χ − 2 arctan

⎛

⎝

√
φM − φ1

φ1 − φm tanh
(
ωχ
)
⎞

⎠

⎞

⎠,

(4.6)

where ω =
√
(φ1 − φm)(φM − φ1)/2φ1.

Moreover, the graph defined byH(φ, y) = h, h ∈ (H(φ2, 0),H(φ1, 0)), consists of two
open-end curves Γ2,Γ3, and a periodic orbit, say Ψ, enclosing the center point (φ2, 0). The
curve Ψ passes through the points (γ1, 0) and (γ2, 0), while Γ2,Γ3 pass through the points
(γ3, 0) and (γ4, 0), respectively, where γ1, γ2, γ3, γ4(γ4 < 0 < γ3 < γ2 < γ1) are four real roots of
ψ4 − (16/3)ψ3 + (4g/α)ψ2 + (4h/α) = 0. It follows from (2.4) that

y = ±

√
−α(γ1 − φ

)(
γ2 − φ

)(
γ3 − φ

)(
φ − γ4

)

2φ
, γ4 ≤ φ ≤ γ3, φ /= 0, (4.7)

y = ±

√
−α(γ1 − φ

)(
φ − γ2

)(
φ − γ3

)(
φ − γ4

)

2φ
, γ2 ≤ φ ≤ γ1. (4.8)

Let us denote by F(·, k) andΠ(·, ·, k) the Legendre’s incomplete elliptic integrals of the
first and third kinds, respectively, with the modulus k (see [7]).

Substituting (4.7) into the dφ/dξ = y and integrating along the curve Γ2, we can obtain
the implicit representation of periodic loop solution for u ∈ [1 − γ3, 1 − γ4]:

4γ3

α21

√
−α(γ1 − γ3

)(
γ2 − γ4

)

×
⎡

⎣
(
α21−α22

)
Π

⎛

⎝arcsin

⎛

⎝

√√√
√
(
γ2−γ4

)(
γ3+u−1

)

(
γ3−γ4

)(
γ2+u −1)

⎞

⎠, α21, k

⎞

⎠

+α22F

⎛

⎝arcsin

⎛

⎝

√√√
√
(
γ2−γ4

)(
γ3+u−1

)

(
γ3−γ4

)(
γ2+u−1

)

⎞

⎠, k

⎞

⎠

⎤

⎦ = ±ξ,

(4.9)

where α21 = (γ3 − γ4)/(γ2 − γ4), α22 = γ2(γ3 − γ4)/γ3(γ2 − γ4), k =√
(γ1 − γ2)(γ3 − γ4)/(γ1 − γ3)(γ2 − γ4).
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Substituting (4.8) into the dφ/dξ = y and integrating along the periodic orbit, we can
obtain the implicit representation of smooth periodic wave solution for u ∈ [1 − γ1, 1 − γ2]:

4γ2

α21

√
−α(γ1 − γ3

)(
γ2 − γ4

)

×
⎡

⎣
(
α21 − α22

)
Π

⎛

⎝arcsin

⎛

⎝

√√
√
√
(
γ1 − γ3

)(
1 − u − γ2

)

(
γ1 − γ2

)(
1 − u − γ3

)

⎞

⎠, α21, k

⎞

⎠

+α22F

⎛

⎝arcsin

⎛

⎝

√√
√
√
(
γ1 − γ3

)(
1 − u − γ2

)

(
γ1 − γ2

)(
1 − u − γ3

)

⎞

⎠, k

⎞

⎠

⎤

⎦ = ±ξ,

(4.10)

where α21 = (γ1 − γ2)/(γ1 − γ3), α22 = γ3(γ1 − γ2)/γ2(γ1 − γ3), k =√
(γ1 − γ2)(γ3 − γ4)/(γ1 − γ3)(γ2 − γ4).

Corresponding to Figure 1(d), the graph defined by H(φ, y) = 0 is a periodic
orbit enclosing the center point (2(α −

√
α(α − 1))/α, 0) and passing through the points

(0, 0), (16/3, 0). It follows from (2.4) that

y = ±1
2

√

−αφ
(
16
3

− φ
)
, 0 ≤ φ ≤ 16

3
. (4.11)

Substituting (4.11) into the dφ/dξ = y and integrating along the periodic orbit, we can obtain
the following representation of smooth periodic wave solution:

u(x, t) = 1 − 16
3
cos2(ω(x + αt)), (4.12)

where ω = (1/4)
√−α.

Corresponding to Figure 1(e), the graph defined by H(φ, y) = 0 consists of four
heteroclinic orbits: two of them connecting the saddle points (0,±√g) with (φm, 0), and the
others connecting saddle points (0,±√g)with (φM, 0), where φm = 2(4α+

√
α(16α − 9g))/3α,

φM = 2(4α −√α(16α − 9g))/3α. It follows from (2.4) that

y = ±1
2

√
−α(φ − φm

)(
φM − φ), φm ≤ φ ≤ 0, (4.13)

y = ±1
2

√
−α(φ − φm

)(
φM − φ), 0 ≤ φ ≤ φM. (4.14)

Substituting (4.13) into the dφ/dξ = y and integrating along the heteroclinic orbit, we can
obtain the following representation of cusp periodic wave solution:

u(x, t) = 1 − φMsin2(Ω −ω|x + αt − 2nT |) − φmcos2(Ω −ω|x + αt − 2nT |), (4.15)

whereω = (1/4)
√−α,Ω = arctan(

√−φm/φM), T = 2|Ω|, n = 0,±1,±2, . . . , (2n−1)T ≤ x+αt ≤
(2n + 1)T .
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Substituting (4.14) into the dφ/dξ = y and integrating along the heteroclinic orbit, we
can obtain the following representation of cusp periodic wave solution:

u(x, t) = 1 − φMcos2(Ω −ω|x + αt − 2nT |) − φmsin2(Ω −ω|x + αt − 2nT |), (4.16)

where ω = (1/4)
√−α, Ω = arctan(

√−φM/φm), T = 2|Ω|, n = 0,±1,±2, . . ., (2n − 1)T ≤ x + αt ≤
(2n + 1)T .

Moreover, the graph defined by H(φ, y) = h, h ∈ (0,+∞) consists of two open-end
curves Γ4,Γ5 passing through the points (φm, 0) and (φM, 0), respectively, where (φM −φ)(φ−
φm)[(φ − b1)2 + a21] = −φ4 + (16/3)φ3 − (4g/α)φ2 − 4h/α. It follows from (2.4) that

y = ±

√
−α(φM − φ)(φ − φm

)[(
φ − b1

)2 + a21
]

2φ
, φm ≤ φ ≤ φM, φ /= 0.

(4.17)

Substituting (4.17) into the dφ/dξ = y and integrating along the curve Γ4, we can obtain the
implicit representation of periodic loop solution for u ∈ [1 − φM, 1 − φm]:

2
(
φmA + φMB

)

(A − B)
√
AB

{

α2F
(
ϕ, k
)
+
α1 − α2
1 − α21

[

Π

(

ϕ,
α21

α21 − 1
, k

)

− α1f1
]

− η0
}

= ±ξ, (4.18)

whereA =
√
(φM − b1)2 + a21, B =

√
(φm − b1)2 + a21, α1 = (A−B)/(A+B), α2 = (φmA−φMB)/

(φmA+φMB), k =
√
((φM − φm)2 − (A − B)2)/4AB, k1 =

√
1 − k2, η0 = [α22F(ϕ, k) + ((α1 −α2)/

(1 − α21))(Π(ϕ, α21/(α
2
1 − 1), k) − α1f1)]|u=1−φM , ϕ = arccos(((φM + u −

1)B + (φm + u − 1)A)/((φM + u − 1)B − (φm + u − 1)A)), f1 =√
(1 − α21)/(k2 + k21α21) arctan(

√
(sin2ϕ(k2 + k21α

2
1))/(1 − k2sin2ϕ)(1 − α21)).

Corresponding to Figure 1(l), the graph defined byH(φ, y) = H(φ2, 0) consists of two
hyperbolic sectors of the saddle point (φ2, 0) and two open-end curves Γ6,Γ7 passing through

the points (φm, 0), (φM, 0), respectively, where φm = (2α+3
√
Δ−2

√
2α(2α + 3

√
Δ))/3α, φM =

(2α + 3
√
Δ + 2

√
2α(2α + 3

√
Δ))/3α. It follows from (2.4) that

y = ±
(
φ − φ2

)√
α
(
φm − φ)(φM − φ)

2φ
, φ2 < φ ≤ φm, φ /= 0. (4.19)

Substituting (4.19) into the dφ/dξ = y and integrating along the curve Γ6, we can obtain the
following representation of loop-soliton solution:

u
(
χ
)
= 1 −

φ2

[
φMsinh2(ωχ

) − φmcosh2(ωχ
)]

+ φmφM
[
φMcosh2(ωχ

) − φmsinh2(ωχ
)] − φ2

,

ξ
(
χ
)
=

2√
α

⎛

⎝χ − 2 tan h−1
⎛

⎝

√
φm − φ2

φM − φ2
tanh

(
ωχ
)
⎞

⎠

⎞

⎠,

(4.20)
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where ω =
√
(φm − φ2)(φM − φ2)/2φ2, tan h

−1(·) is the inverse function of the hyperbolic
function tanh(·), see [7].

Moreover, the graph defined by H(φ, y) = h, h ∈ (0,H(φ2, 0)) consist of four
open-end curves Γ8, Γ9, Γ10 and Γ11 passing through the points (γ4, 0), (γ3, 0), (γ2, 0), (γ1, 0)
respectively, where γ1, γ2, γ3, γ4 (γ4 < γ3 < 0 < γ2 < γ1) are four real roots of ψ4 − (16/3)ψ3 +
(4g/α)ψ2 + (4h/α) = 0. It follows from (2.4) that

y = ±

√
α
(
γ1 − φ

)(
γ2 − φ

)(
φ − γ3

)(
φ − γ4

)

2φ
, γ3 ≤ φ ≤ γ2, φ /= 0. (4.21)

Substituting (4.21) into dφ/dξ = y and integrating along the curve Γ10, we can obtain the
implicit representation of periodic loop solution for u ∈ [1 − γ2, 1 − γ3]:

4γ2

α21

√
α
(
γ1 − γ3

)(
γ2 − γ4

)

×
⎡

⎣
(
α21 − α22

)
Π

⎛

⎝arcsin

⎛

⎝

√√√
√
(
γ1 − γ3

)(
γ2 + u − 1

)

(
γ2 − γ3

)(
γ1 + u − 1

)

⎞

⎠, α21, k

⎞

⎠

+α22F

⎛

⎝arcsin

⎛

⎝

√√√
√
(
γ1 − γ3

)(
γ2 + u − 1

)

(
γ2 − γ3

)(
γ1 + u − 1

)

⎞

⎠, k

⎞

⎠

⎤

⎦ = ±ξ,

(4.22)

where α21 = (γ2 − γ3)/(γ1 − γ3), α22 = γ1(γ2 − γ3)/γ2(γ1 − γ3), k =√
(γ2 − γ3)(γ1 − γ4)/(γ1 − γ3)(γ2 − γ4).

Remark 4.1. Denote that (i) α < 0, g = 2α, h ∈ (0, (−4/3)α), (ii)α < 0, g = 2α, h ∈
((−4/3)α,+∞), (iii)α < 0, 2α < g < 0, h ∈ (0,H(φ2, 0)], (iv)α < 0, 2α < g < 0, h ∈
(H(φ1, 0),+∞), (v)α < 0, g = 0, h ∈ (0,+∞), we can obtain the implicit representation of
periodic loop solution similar to (4.18) when β, α, g, and h satisfy one and only one of above
conditions, we omit it for brevity.

Example 4.2. Taking α = −1, g = 1 and h = 1, we get the approximations of
A,B, φm, φM, a1, b1, α1, α2, k, k1 in the formula (4.18), where A

.= 5.846662930, B
.=

1.525667184, φm
.= −1.117067993, φM .= 6.016534182, a1

.= 0.7403378831, b1
.= 0.2169335722,

α1
.= 0.586109911, α2

.= −5.932667554, k .= 0.9502338139, k1
.= 0.3115376364.

5. Conclusion

In this paper, using the bifurcation theory and the method of phase portraits analysis, we
investigated periodic loop solutions and their limit forms of the Kudryashov-Sinelshchikov
equation and show that the limit forms contain loop soliton solutions, smooth periodic
wave solutions, and periodic cusp wave solutions. We also obtain the exact parametric
representations above travelling wave solutions. The results of this paper have enriched
results of [1–3]. We would like to study the Kudryashov-Sinelshchikov equation further.
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