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This paper presents a joint discrete-continuousmodel for activity-travel time allocation by employ-
ing the ordered probit model for departure time choice and the hazard model for travel time pre-
diction. Genetic algorithm (GA) is employed for optimizing the parameters in the hazard model.
The joint model is estimated using data collected in Beijing, 2005. With the developed model,
departure and travel times for the daily commute trips are predicted and the influence of socio-
demographic variables on activity-travel timing decisions is analyzed. Then the whole time alloca-
tion for the typical daily commute activities and trips is derived. The results indicate that the
discrete choice model and the continuous model match well in the calculation of activity-travel
schedule. The results also show that the genetic algorithm contributes to the optimization and
thus the high accuracy of the hazard model. The developed joint discrete-continuous model can
be used to predict the agenda of a simple daily activity-travel pattern containing only work, and it
provides potential for transportation demand management policy analysis.

1. Introduction

The time allocation of individuals for trip making is an important determinant of the tem-
poral pattern of traffic demand on a transportation network. An analysis of individual time
allocation decision is, therefore, important for the practical work of transportation planning
andmanagement aswell as the theoretical work about travel behavior analysis andmodeling.
Practically, understanding individuals’ time allocation decisions is essential for (a) planning
the development and construction of new transportation infrastructure by providing
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predicted temporal travel demands, (b) examining the potential responses to improved
operational measures (such as real-time information), (c) assessing the effectiveness of time-
specific transportation demand management policies, such as compressed working week [1],
staggered shift [2], road tolling [3], and other similar strategies [4, 5]. Theoretically, under-
standing time allocation decisions will not only facilitate the efforts toward developing a com-
prehensive full-scale model of daily activity patterns but also provide useful insights into the
nature of the impact of sociodemographic variables and time-space constraints on individual
dimensions of activity behavior. Therefore, time allocation has been a focused issue for re-
gional and transportation science since the 1970s [6].

In the time dimension, a daily activity-travel pattern includes all the timing and dura-
tion of all the activities and trips in a day. The need to analyze the daily activity pattern makes
it essential to consider time of day and activity-travel durations together. However, to date,
timing and duration have been largely treated separately in the literature [7], andmany exist-
ing studies only considered part of daily activity agenda. For example, Vovsha and Bradley
[8] focused on the departure-from-home and arrival-back-home time decisions. Fujii and
Kitamura [9] and Hamed and Mannering [10] examined the time allocation of postwork
activities. Bhat and Singh [11] and Habib et al. [12] modeled the departure time of daily
commute trips, without involving the commute travel time. This study is aimed at addressing
this issue by developing a joint daily time allocation model to predict a typical daily activity-
travel schedule.

One important objective of transportation planning is to relief congestion by improv-
ing the level of service during the peak hours on the transportation network. Peak periods’
traffic demands, or the source of congestion, are largely contributed by commute trips. For
example, based on one survey conducted in Beijing, China, in 2005, over 32% of all the trips
in both morning and evening peak periods are commute trips. Therefore, commute trips are
at the core of many recent studies, such as Habib et al. [12], Zhang et al. [13], and Bhat and
Singh [11].

As stressed above, the study on commute trips and daily time allocation is of great
importance for learning the travel behavior during the peak hours as well as obtaining the
daily activity pattern, both of which are essential component of for transportation planning
and management. However, to the authors’ knowledge, there is no study that considered the
overall daily time allocation of commute activity-travel pattern as a whole and developed a
model system to predict it. Therefore, this paper focuses on predicting timing and duration
of daily commute trips, expecting that commuter’s typical travel schedule can be obtained
based on the developed model. Using data from a 2.5% sample household survey in Beijing,
China, a joint discrete-continuous model system for prediction of daily commute time
allocation was developed and estimated, including ordered probit models for departure time
analyzing and hazard models for travel time forecasting.

The choice of parameters is of great importance for the estimation efficiency and pre-
diction accuracy of the models. As there are a lot of potential factors affecting traveler’s deci-
sion about time allocation, genetic algorithms (GAs) will be employed in parameters opti-
mization. Being one of the heuristic algorithms, GA has been successfully applied in various
optimization problems [14, 15].

The remainder of this paper is organized as follows: Section 2 presents the literature
review on activity-travel time allocation in general. In Section 3, the joint discrete-continuous
time allocation model is built, in which the ordered probit method, AFT model, and GA
are employed. Section 4 predicts the commute activity-travel agenda by using the developed
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model. The paper closes with some overall conclusions and a discussion of future research
directions.

2. Relevant Literature

With respect to the two dimensions of time allocation, timing and duration, existing studies
can be classified into three categories: those only looked at departure time, those only looked
at travel time, and those looked at both.

For the first direction, timing, themajormethod employed is discrete choicemodel. For
example, Bowman and Ben-Akiva [16]modeled the departure and arrival time of daily trips
using the multinomial logit (MNL) model. Small [17] built an MNL model for home-work
morning departure time choice. Vovsha and Bradley [8] and Ettema et al. [7] also employed
the MNL model but specified a continuous time variable in its utility function. Bhat [18] and
Small [19] derived the ordered generalized extreme value (OGEV)model for departure time
choice and time of day analysis, respectively. Habib et al. [12] introduced OGEV model into
analysis of work start time and work duration because it allows for the accommodation of
correlation among time period alternatives. In this way, it resolves the IIA (independence
of irrelevant alternatives) problem of MNL model, which assumes zero correlation among
different time periods.

For the second aspect (duration analysis), the most widely used model is the hazard
model. The hazard model recognizes the dynamics of travel or activity durations by con-
sidering the conditional probability of event termination, usually as a function of covariates
(explanatory variables) [12]. Bhat [20, 21] applied hazard modeling framework to analyze
after-work activity duration. Juan and Xianyu [22] considered daily travel time using hazard-
based duration model. Bhat [20, 21] analyzed the duration of shopping activity by employing
hazard-based duration model. As a matter of fact, a few studies also used hazard model in
timing analysis. Examples include research by Habib et al. [12] on investigation of trip timing
and by Bhat and Steed [23] on departure time choice for shopping trip.

Comparingwith the first two categories of studies, those using the joint analysis of tim-
ing and duration are more helpful for the modeling of daily activity schedule, by contribut-
ing to an insight into the influence and connection among duration and time of day choice
as well as activities and trips. The examples include the study done by Janssens et al. [24]
on time allocation of daily activity-travel patterns, by Fujii and Kitamura [9] on timing and
duration of commuters’ daily activity patterns after work hours, by Habib [25] on work start
time and work duration, by Raux et al. [6] on daily time allocation of travel and out-of-home
activity, by Schwanen andDijst [26] on relationship between commuting time andwork dura-
tion, and by Vovsha and Bradley [8] on departure-time and duration of home-based trips.
Similar studies also include Ettema et al. [7], Pendyala and Bhat [27], and Habib et al. [28].
The models involved in these studies include reinforcement machine learning technique [24],
structural equations model [9], hazard model [6, 25, 28], and MNL model with a continuous
time variable in the utility of its function [7, 8].

There is also a kind of conjunct model that was used in the analysis of timing and dura-
tion, which is the discrete-continuous choice model. Pendyala and Bhat [27] examined the
relationship between time of day choice and activity episode duration using discrete-contin-
uous simultaneous equations, but it was neither on daily time allocation simulation nor
the commute trips. Similar discrete-continuous models were employed by Habib et al. [12],
Habib [25], and Hamed and Mannering [10]. Both of the first two studies modeled the joint
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Figure 1: Basic time allocation of daily commute activity-travel pattern.

mode and commute timing choice with discrete choice model and continuous model, but
not focusing on daily activity-travel schedule particularly. Concerning the research byHamed
andMannering [10], the discrete-continuous models are used to predict the travelers activity-
type preference (discrete choice model), the travel time to the activity and back home (con-
tinuous model), and activity duration (continuous model). For modeling of time allocation,
only continuous model was employed. However, the results of these four studies mentioned
above all confirmed that the discrete-continuous choice models work well for the activity-
travel behavior related study.

Moreover, the study of Pendyala and Bhat [27] suggests that time of day and activity
duration is only loosely related for the commuter sample. Therefore, travel departure time
and travel duration will be modeled in this paper, instead of activity duration. In this case, the
work duration can be calculated according to the arrival time at work location and departure
time of the next activity after work.

3. Modeling Time Allocation of Daily Commute Trips

3.1. Analysis of the Commute Activity-Travel Agenda

In this paper, work location refers to the usual work location for aworker and the usual school
location for a student. As shown in Figure 1, a typical daily commute activity-travel pattern
is home-to-work commute—work activity—work-to-home commute. Key time and duration
values in this pattern include home-to-work morning departure time (Dt1)—home-to-work
travel time (T1)—arrival time at work location (A1)—duration of work (D1)—work-to-home
evening departure time (Dt2)—work-to-home travel time (T2)—arrival time at home (A2).
Within this pattern, the departure times Dt1 and Dt2 and the travel times T1 and T2 are most
important. Known their values, one can easily derive the other three times (A1, D1, and A2)
using the following equations:

A1 = Dt1 + T1,

D1 = Dt2 −A1,

A2 = Dt2 + T2.

(3.1)

This study employs the ordered probit model (belonging to the discrete choicemodels)
for departure time forecasting and the hazard model (belonging to the continuous models)
for travel time analysis. Four models, home-to-work departure time choice model, home-to-
work travel time estimation model, work-to-home departure time choice model, and work-
to-home travel time estimation model will be developed and the values of Dt1, T1, Dt2, and
T2 will be predicted. Values of A1,D1, and A2 are then calculated based on (3.1). Figure 2 is a
schematic representation of the entire modeling process.
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Figure 2: Modeling process of the commute activity-travel time allocation.

3.2. Data

This study uses data from a large-scale daily travel survey conducted in Beijing, China, in
2005. A face-to-face interviewwas given to a sample of 54,398 households, and activity/travel
information of all household members on one particular working day is collected. The study
area is 1,368 km2 (covering all 18 districts of Beijing) and had more than 30 millions’ popula-
tion in 2005. In addition to weekday OD information, the survey also collected information
regarding household (size, car ownership, home location, monthly income, and mobility),
people (age, gender, driving license, and occupation), and trips (departure time, arrival time,
purpose, mode, transit path, etc.). With records containing missing values eliminated, our
final sample consists of 37,842 commute trips of 37,842 individual workers/students from
28,382.

Based on a preliminary correlation test, 15 sociodemographic and trip characteristics
variables were selected from the survey, shown in Table 1.

The statistics of the variables based on the sample data are shown in Table 2.

3.3. Departure Time Choice Model

The reported home-to-work morning departure time and the work-to-home evening depar-
ture time cover the time period of 4:00 am–12:00 am and 15:00 pm–22:00 pm, respectively, in
our sample. Moreover, we observed that the home-to-work morning and the work-to-home
evening peak hours in Beijing are 6:00 am–9:00 am and 16:00 pm–19:00 pm using our sample
data. In order to reduce the number of alternatives in the models’ choice set, we divided
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Table 1: Variables in the departure time choice models.

Factors Variables Values

Gender Gender Male: 1, female: 0

Age Age Continuous values
Below 1500RMB: 1

1501–2500RMB: 2

2501–3500RMB: 3

Month income Income 3501–5500RMB: 4
5501–10000RMB: 5

10001–20000RMB: 6

20001–30000RMB: 7

Over 30001RMB: 8

Vocation
Blue-collar worker (manufacture,
construction, maintenance, etc.)

Occu-b Yes: 1, No: 0

Administration Occu-a Yes: 1, No: 0

Education Occu-e Yes: 1, No: 0

Services Occu-s Yes: 1, No: 0

Health care Occu-h Yes: 1, No: 0

Travel mode
Walk Mode-w Yes: 1, No: 0

Bike Mode-bi Yes: 1, No: 0

Bus Mode-bu Yes: 1, No: 0

Auto Mode-a Yes: 1, No: 0

Travel distance Distance Continuous value (meter)

Dummy variable of going to work Work Yes: 1, no: 0 (going to school)

departure times into one-hour segments in peak periods and segments of two or three hours
in off-peak periods. Table 3 shows the discrete alternatives for the home-to-work and work-
to-home departure time choices.

As shown in Table 2, the alternatives of the departure time choice models are naturally
ordered time periods. MNL model, which is commonly used in departure time modeling,
would fail to account for the ordinal nature of the dependent variable and have the problem of
IIA. This study will employ the ordered multiple choice model for departure time modeling
instead.

The ordered multiple choice model assumes the following relationship:

J∑

j=1

Pn

(
j
)
= F

(
αj − βjXn, θ

)
, j = 1, . . . , J − 1,

Pn(J) = 1 −
J∑

j=1

Pn

(
j
)
,

(3.2)

where Pn(j) is the probability that alternative j is chosen as departure time of trip n (n = 1,. . .,
N), αj is an alternative specific constant, Xn is a vector of attributes of trip n, βj is a vector of
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Table 2: Statistics index of the variables.

Variables Percentage of each value
1 0

Gender 50.96% 49.04%
Occu-b 42.44% 57.56%
Occu-a 3.48% 96.52%
Occu-e 30.29% 69.71%
Occu-s 9.19% 90.81%
Occu-h 2.49% 97.51%
Mode-w 42.51% 57.49%
Mode-bi 43.89% 56.11%
Mode-bu 0.31% 99.69%
Mode-a 4.67% 95.33%
Work 72.79% 27.21%

1: 13.46% 5: 11.86%

Income 2: 24.90% 6: 1.41%
3: 24.18% 7: 0.16%
4: 23.92% 8: 0.10%

Continuous variables
Variables Mean Standard deviation
Distance 2806.1 3416.91
Age 32.93 15.32

Table 3: Alternatives in the departure time choice models.

Home-to-work departure time Work-to-home departure time Coded value
(4:00, 6:00] (15:00, 16:00] 1
(6:00, 7:00] (16:00, 17:00] 2
(7:00, 8:00] (17:00, 18:00] 3
(8:00, 9:00] (18:00, 19:00] 4
(9:00, 12:00] (19:00, 22:00] 5

estimable coefficients, and θ is a parameter that controls the shape of probability distribution
F. Therefore, F can have various shapes of distribution based on a different value of θ.

The ordered probit model, which assumes standard normal distribution for F, is the
most commonly used. The ordered probit model has the following form:

Pn(1) = Φ
(
α1 − βjXn

)
,

Pn

(
j
)
= Φ

(
αj − βjXn

) −Φ
(
αj−1 − βjXn

)
, j = 2, . . . , j − 1,

Pn(J) = 1 −
J−1∑

j=1

Pn

(
j
)
,

(3.3)

where Pn(j) is the cumulative standard normal distribution function. For all the probabilities
to be positive, we must have α1 < α2 < · · · < αJ−1. The estimation results of the home-to-work
and the work-to-home departure time choice models are shown in Table 4.
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The estimation results indicate that high-income travelers are more likely to depart
from home or work location later than travelers with low income. Older persons tend to have
earlier departure times than younger ones. Commuters whose occupations are administra-
tion or health care are more likely to depart from home earlier but back to home (from work
location) later than those with other occupations. The probability that students or teachers
have early departure times both from home and school is high. Workers and servers tend to
depart fromworkplace late. Concerning gender, men aremore likely to leave home earlier but
leave work later than women. Regarding travel modes, commuters choosing walk or auto
have late home-to-work and work-to-home departure times. Bikers tend to leave home ear-
lier, while commuters taking bus depart from workplace later. Long-distance trips tend to be
made later from home while earlier from work location. Workers are more likely to leave
home later than students.

3.4. Travel Time Estimation Models

3.4.1. AFT Model and KM Estimator

According to the travel survey data in Beijing, the average travel time for the home-to-work
commute is 19.36 minutes, with a maximum of 205 minutes and a minimum of 1 minute; the
average duration for the work-to-home commute is 18.36 minutes, with a maximum and a
minimum of 168 minutes and 1 minute, respectively.

Treating travel times as natural continuous variables, one can use the hazard model to
predict both the home-to-work and the work-to-home travel times. Hazard-based duration
models are ideally suited to modeling duration data [20, 21], such as travel time and activity
duration. The hazard (also called a hazard rate) represents a termination rate of the duration.

Let T be a nonnegative random variable representing the travel time. The hazard at
time t on the continuous time-scale h(t) is defined as the instantaneous probability that the
travel duration under study will end in an infinitesimal time periodΔt after time t, given that
the duration has not elapsed until time t. A mathematical definition for the hazard function
is as follows:

h(t) = lim
Δ→ 0+

P(t ≤ T < t + Δ | T > t)
Δ

. (3.4)

Let f(·) and F(·) be the density and cumulative distribution function for T , respec-
tively. Then the probability of ending in an infinitesimal interval of range Δt, after time t, is
f(t)Δt. And the probability that the process lasts for at least t is given by the survival equation
(3.5):

S(t) = P(T > t) = 1 − F(t). (3.5)

Thus, the hazard function can be further expressed as

h(t) =
f(t)
S(t)

=
dF(t)/dt

S(t)
=

−dS(t)/dt
S(t)

=
−d lnS(t)

dt
. (3.6)

The distribution of the hazard can be assumed to be one of many parametric forms
or to be nonparametric. Because the distribution of the travel time is unknown, one of
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Table 4: Estimation results of the departure time choice models.

Variables Home-to-work departure time choice model Work-to-home departure time choice model
Coef. t-stat. Coef. t-stat.

Income 0.09 19.14∗ 0.06 16.18∗

Age −0.01 −10.49∗ −0.01 −29.41∗
Occu-w — — 0.43 32.00∗

Occu-a −0.14 −4.60∗ 0.35 11.44∗

Occu-e −0.72 −27.09∗ −0.25 −12.96∗
Occu-s — — 0.27 11.68∗

Occu-h −0.48 −12.96∗ 0.33 9.24∗

Gender −0.11 −9.34∗ 0.08 8.36∗

Mode-w 0.18 7.89∗ 0.42 35.49∗

Mode-bi −0.41 −19.30∗ — —
Mode-bu — — 0.59 4.76∗

Mode-a 0.10 3.12∗ 0.41 15.29∗

Distance 0.000067 −32.89∗ −6.26e − 06 −3.11∗
Work 0.39 12.92∗ — —
α1 −2.42 — −1.30 —
α2 −0.98 — 0.01 —
α3 0.58 — 0.97 —
α4 1.60 — 2.07 —
Hit ratio 64.36% 61.00%
P value 0.0000 0.0000
N 37842
∗Significant at 1% level.

the nonparametric methods, the Kaplan-Meier (KM) product limit estimator, is conducted
to explore the covariate effects and the potential distribution.

As a nonparametric method, the KM estimator produces an empirical approximation
of survival and hazard but hardly takes any covariate effects into consideration. It is similar
to an exploratory data analysis. Denoting the distinct failure times of individuals n as t1 < t2 <
· · · < tm, the KM estimator of survival at time ti is computed as the product of the conditional
survival proportions:

SKM(ti) =
i∏

k=1

r(tk) − d(tk)
r(tk)

, (3.7)

where r(tk) is the total trips at risk for ending at tk and d(tk) is the number of trips stopping
at tk.

By using the KM estimator, the survival function curves of the home-to-work and the
work-to-home travel time are estimated, which are shown in Figures 3 and 4, respectively.
The results indicate that the survival probability decreases with travel time, which implies
an accelerated failure time (AFT) model with Weibull or Exponential distribution should be
employed. Therefore, the AFT model is developed to examine the linkages between travel
time and covariates relative to individual and household.

The AFT model is one of the popular parametric forms of hazard model. It permits the
covariates to affect the duration dependence. The survival function of AFT model is given as

S(t) = S0
[
t · exp(−β′X)]

, (3.8)
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Figure 3: Survival curve of the home-to-work travel time.
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Figure 4: Survival curve of work-to-home travel time.

where S0(·) is the baseline survival function. The corresponding hazard function is

h(t) =
−∂S(t)/∂t

S(t)
= h0

[
t · exp(−β′X)]

exp
(−β′X)

. (3.9)

The AFT model can be expressed as a log-linear model:

ln t = β′X + ε. (3.10)

Assuming the random error ε follows either a Weibull distribution or an Exponential
distribution, one can get two kinds of AFT models, and both of them are often used in dura-
tion analysis.
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3.4.2. GA for Parameter Optimization

The parameters in the AFT models will influence the estimation efficiency and prediction
accuracy of the models greatly, especially for large-scale or real-time feature practice applica-
tion. Therefore, this paper attempts to find the appropriate parameters in AFT models by
using GA. GA is a part of evolutionary computing, which is a rapidly growing area of artif-
icial intelligence. The process of GA is as follows.

Encoding of Chromosome

GA is started with a set of solutions (represented by chromosomes) called population. The
individuals comprising the population are known as chromosomes. In most GA applications,
the chromosomes are coded as a series of zeroes and ones, or a binary bit string. For the
travel time forecasting models, some parameters are continuous valued (like distance and
age) while some are discrete valued (such as the variables about mode and occupation).
Therefore, the real encodingswere adopted for continuous-valued parameters, and the binary
bit string was adopted for discrete-valued parameters. Thus, each chromosome consists of n
“genes”, gent

1, gen
t
2,. . ., gen

t
n, which represents n parameters, respectively.

Crossover

Crossover is a reproduction technique that takes two parent chromosomes and produces two
child chromosomes. A commonly used method for crossover called one-point crossover [29,
30] will be employed in this study. In this method, both parent chromosomes are split into
left and right subchromosomes, where the left subchromosomes of each parent are the same
length, and the right subchromosomes of each parent are the same length. Then each child
gets the left subchromosome of one parent and the right subchromosome of the other parent,
as shown in Figure 5. The split position (between two successive genes) is called the crossover
point. For example, if the parent chromosomes are 011 10010 and 100 11110 and the crossover
point is between bits 3 and 4 (where bits are numbered from left to right starting at 1), then
the children are 01111110 and 100 10010. We will call crossover applied at the bit level to bit
strings binary crossover, and crossover applied at the real parameter level real crossover.

Mutation

Mutation is a common reproduction operator used for finding new points in the search space
to evaluate. A genetic mutation operation [31] is used in this paper.

Assume a chromosome isG = (gent
1,gen

t
2, . . . ,gen

t
n) if the gen

t
i (i = 1, . . . , n) is selected

for the mutation, the mutation can be shown in

G′ =
(
gent−1

1 ,gent−1
2 , . . . ,gent−1

n

)
,

gent
i =

⎧
⎨

⎩
gent−1

i + Δ
(
t,gent

i,max − gent−1
i

)
if random (0, 1) = 0,

gent−1
i + Δ

(
t,gent−1

i − gent
i,min

)
if random (0, 1) = 1,

(3.11)

where n is the total number of the parameters.
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Figure 5: Crossover diagram.

The function Δ(t, y) returns a value between [0, y] given in

Δ
(
t, y

)
= y ×

(
1 − r(1−t/Tmax)n

)
, (3.12)

where r is a random number between [0, 1]; Tmax is a maximum number of generations. This
property causes this operation to make a uniform search in the initial space when t is small
and a very local one in later stages.

To deal with the problem that the mutation may violate the parameters constraints,
we will assign a relatively high weight to reduce their probability of being selected in the
following search [31].

Termination

There are four GA parameters, namely, pc, pm, psize, and Tmax, that need to be predetermined.
Considering the features of this problem and our experiences in GA, the values of four GA
parameters are set to be 0.6, 0.05, 80, and 5000, respectively.

3.4.3. Estimation Results

Home-To-Work Travel Time Estimation Model

Figure 6 illustrates the survival curves for the home-to-work travel time influenced by several
major variables. It shows that factors of departure time, travel mode, income, gender, and
going to work have influences on home-to-work travel time.

Two AFT models are estimated, each of which assumes the random error in (3.10)
follows a Weibull distribution, and an Exponential distribution, respectively. The parameters
are optimized using GA and then estimated using maximum likelihood estimation (MLE).
The estimation results are shown in Table 5.

The mean absolute percentage error (MAPE), which looks at the average percentage
difference between predicted values and observed ones, is adopted to examine the accuracy
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Table 5: Estimation results of the home-to-work travel time model.

Variables
Weibull distribution Exponential distribution

Coef. z-stat. Coef. z-stat.
Constant 3.11 163.26 2.84 73.09
Income −0.01 −4.82 −0.01 −2.65
Age 0.01 22.49 0.00 7.00
Occu-e −0.20 −19.86 −0.10 −4.49
Gender −0.04 −7.38 −0.04 −3.72
Mode-w −0.18 −17.28 −0.14 −7.65
Mode-bi 0.07 7.04 0.15 8.93
Mode-bu 0.20 4.28 — —
Mode-a −0.04 −2.97 — —
Distance 0.00013 100.58 0.00012 57.51
Departure time −0.09 −29.84 −0.09 −13.06
Work −0.32 −29.82 −0.19 −7.36
γ 0.50 — 1 —
Prob > chi2 0.0000 0.0000
N 37842

Table 6: Goodness of fit index and estimated distribution statistics of the home-to-work travel time model.

Model statistics Weibull distribution Exponential distribution
MAPE value 0.4449 0.3882
Mean (min) 18.46 13.66
Maximum (min) 6.02 5.09
Minimum (min) 158.64 114.08

of the developed home-to-work travel time model. MAPE is calculated as

MAPE =
1
n

n∑

i−1

∣∣∣∣
Ai − Pi

Ai

∣∣∣∣, (3.13)

where Ai is the observed value and Pi is the predicted value for observation i. The MAPE
values of the two AFT models are shown in Table 6.

According to the results shown in Table 5, theMAPE value of the Exponential distribu-
tion is less than that of the Weibull distribution, indicating that the values predicted by the
AFT model with the Exponential distribution is more close to the actual travel time. There-
fore, the Exponential distribution function is chosen. The hazard function and survival func-
tion are shown as follows:

h(t) = exp (2.84 − 0.01 Income + 0.0098 Age − 0.1 Occue − 0.04 Gender − 0.14 Modew

+ 0.15 Modebi + 0.00012 Distance − 0.09 Departure time − 0.19 Work),

s(t) = exp ( − exp(2.84 − 0.01 Income + 0.0098 Age − 0.1 Occue − 0.04 Gender − 0.14 Modew

+ 0.15 Modebi + 0.00012 Distance − 0.09 Departure time − 0.19 Work)).

(3.14)
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(f) Occupation

Figure 6: Survival curves of the home-to-work travel time impacted by several factors.

The estimation results indicate that the most essential factor of travel time is distance.
The longer the distance from home to work is, the more time it will take. Comparing with
other travel modes, the travel times of walk are 14% lower while those of bike are 15% higher.
The reason is that, at first short distance encourages short travel time according to the estima-
tion results, and then distance has influence on mode decisions, that is, walking usually
belongs to short-distance travel comparing to biking. As for the factor of departure time,
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the results show that the later the departure times are, the longer the travel times will be. In
the above three parameters, the factors of distance and mode are related to the transportation
network, while the real traffic condition is considered by using departure time as a factor,
because the traffic condition depends regularly on departure time. For instance, if a traveler
departs from home in the morning peak time, the probability that he/she encounters traffic
congestion is much larger than that in the nonpeak time. The results also show that the higher
travelers’ income is, the less their travel time will be. The travel times of students or teachers
are about 10% less than those of other travelers. The older the travelers are, the longer the
travel time will be. Women have longer travel time than men. The travel times of travelers
whose occupation is administration are 19% longer than that of education.

Work-To-Home Travel Time Estimation Model

Figure 7 illustrates the survival curves for the work-to-home travel time influenced by several
variables of the interest. The AFT models with both Weibull distribution and Exponential
distribution are employed for the work-to-home travel time modeling. The estimation results
and the MAPE values of the two AFT models are shown in Tables 7 and 8, respectively.

Same as the home-to-work model, the AFT model of work-to-home travel times with
Exponential distribution is better than that with Weibull distribution. Therefore, the former
is selected. The hazard function and survival function are as follows:

h(t) = exp (2.53 − 0.01 Income + 0.0033 Age − 0.03Occuw + 0.07 Occue − 0.06 Modew

+ 0.08 Modebi + 0.00015 ∗Distance − 0.06 Departure time),

s(t) = exp( − exp(2.53 − 0.01 Income + 0.0033 Age − 0.03 Occuw + 0.07 Occue

− 0.06Modew + 0.08Modebi + 0.00015 ∗Distance − 0.06 Departure time)).
(3.15)

The estimation results indicate that the travel time of high-income travelers is 1% lower
than that of low-income travelers. Moreover, old persons are likely to spend longer time in
work-home trip. Regarding commuter’s occupation, blue-collar workers are likely to spend
shorter time for evening commute trip, while the travel times for teachers or students are
longer. Comparing with other modes, walking trips have shorter time, while cycling trips
have longer time. Long-distance trip takes longer travel time. The later the commuters depart
from work, the longer the travel times will be.

4. Prediction of the Commute Activity-Travel Agenda

As explained in Section 3.1, the key timings and durations A1, D1, and A2 can be calculated
once the values of Dt1, T1, Dt2, and T2 are predicted. Here is an example: the first member
in the family with ID number 010104065 in our sample, Mr. Chen, is 45 years old, has an
occupation of services, and earns 0–1500RMB every month. His commute mode is walk, and
the distance of one-way commute trip is 1500 meters. He had a typical commute activity-
travel pattern on the survey day, which is shown in Figure 8.

Based on the developed models, his daily commute time allocation is predicted and
shown in Figure 9.



16 Mathematical Problems in Engineering

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

Walk
Bike

Bus
Auto

Travel time (min)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

(a) Travel mode

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

Departure time = 1 Departure time = 2
Departure time = 3 Departure time = 4
Departure time = 5

Travel time (min)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

(b) Departure time

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

Travel time (min)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Month income = 1 Month income = 2
Month income = 3 Month income = 4
Month income = 5 Month income = 6
Month income = 7 Month income = 8

(c) Income

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

Travel time (min)

Worker
Administration
Education

Services
Health care

Su
rv

iv
al

 p
ro

ba
bi

lit
y

(d) Occupation

Figure 7: Survival curves of the work-to-home travel time impacted by several factors.

Table 7: Estimation results of the work-to-home travel time model.

Variables Weibull distribution Exponential distribution
Coef. z-stat. Coef. z-stat.

Constant 2.65 164.15 2.53 79.98
Income −0.01 −8.13 −0.01 −3.57
Age 0.0034 19.23 0.0033 8.80
Occu-w −0.03 −6.20 −0.03 −2.22
Occu-e 0.05 6.56 0.07 4.25
Mode-w −0.06 −5.53 −0.06 −3.51
Mode-bi 0.05 4.38 0.08 −3.51
Mode-a 0.05 3.33 — —
Distance 0.00015 119.81 0.00015 66.12
Departure time −0.06 −23.50 −0.06 −11.96
γ 0.4835 — 1 —
Prob > chi2 0.0000 0.0000
N 37842
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Table 8: Goodness of fit index and estimated distribution statistics of the work-to-home travel time model.

Model statistics Weibull distribution Exponential distribution
MAPE value 0.4541 0.3905
Mean (min) 18.50 13.36
Maximum (min) 8.44 6.17
Minimum (min) 269.11 172.80

7:45 8:00 17:00 17:15

Home
Work-to-home

commute Work activity Home

Home-to-work
commuteWork Work

15 minutes8:00–17:0015 minutes

Figure 8: Observed commute activity-travel pattern and time allocation.

7:00–8:00 7:09–8:09 16:00–17:007:09–17:00

Home

Work-to-home
commute Work activity Home

Home-to-work
commuteWork Work

9.13 minutes 10.31 minutes
16:10–17:10

Figure 9: Predicted commute time allocation.

Comparing with the observed values, the errors of the predicted results can be cal-
culated as follows.

(i) The errors of home-to-work departure time: the maximum error is 45 minutes, the
minimum error is 15 minutes.

(ii) The error of home-to-work travel time: 5.47 minutes.

(iii) The errors of arrival time at work location: the maximum error is 51 minutes, and
the minimum error is 0 minute.

(iv) The errors of work-to-home departure time: the maximum error is 60 minutes, and
the minimum error is 0 minute.

(v) The error of work-to-home travel time: 4.29 minutes.

(vi) The errors of arrival time at home: the maximum error is 65 minutes, and the mini-
mum error is 5 minutes.

By comparing the predicted values of the developed daily time allocation model with
the observed values of our sample, the maximum errors for all the departure times and the
activity-travel durations are as follows: error(Dt1) = 21.38 minutes; error(T1) = 7.40 minutes;
error(A1) = 28.78 minutes; error(D1) = 28.78 minutes; error(Dt2) = 23.40 minutes; error(T2) =
7.17 minutes; error(A2) = 30.57 minutes. These statistics indicate that the overall goodness of
fit of the model is rather satisfying.

Results also show that the errors of departure and arrival time are much larger than
that of the travel time. The main reason is that we divided the natural continuous departure
time into discrete time interval artificially, which reduces the predictive accuracy of the
model. It has been tested that the smaller the interval is, the higher the predictive accuracy
will be. However, as there are already five alternatives for both of the departure time choice
models, at least half-an-hour interval will make the number of the alternatives double. Then
the model will be more complex and the efficiency of the model will be lower.
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5. Conclusions

In this paper, we have formulated and estimated a joint model of departure time choice
and travel duration for commuters’ daily activity-travel time allocation. Two ordered probit
models have been employed to forecast the home-to-work and work-to-home commute
departure time. By doing so, we were able to recognize the natural temporal ordering among
the departure time alternatives and address the IIA limitation of the standard MNL model.
Furthermore, two AFT models were built and estimated to predict home-to-work and work-
to-home travel times by using GA as parameters optimization. Then timing choice of a simple
daily activity-travel pattern has been calculated.

Comparingwith the previous studies, this paper developed a joint discrete-continuous
model system to predict all the departure times and the activity-travel durations of a typical
daily commute activity pattern. Results of this study not only contribute to developing a full-
scale daily activity pattern forecasting model but also provide useful insights in the influence
of sociodemographic variables on activity-trip timing decisions as well as the time constraint
between daily activities and trips. Moreover, GA contributes to the optimization and thus the
high accuracy of the travel time prediction model. In addition, this analysis of daily commute
time allocation can be applied to awide range of TDMpolicies, especially themeasures aimed
at adjusting the commute times, such as flexible work and compressed working week. For
examining the effects of the traffic demand strategies, the developed model cannot only
describe the overall change of the daily activity schedule caused by the strategies but also
explore the time tradeoff between the connected trips as well as trips and activities. Besides
evaluating the effects of the transportation demand management strategies, this study is also
essential for planning the development and construction of new transportation infrastructure
as well as examining the potential responses to improved traffic operational measures.

The results of this paper confirm that the discrete choice models and the continuous
models can match well in the calculation of a whole-day activity-travel schedule, although
comparing with the continuous models, the predictive accuracies of the discrete choice
models are a little lower, as they divide the naturally continuous time into artificially defined
time periods. Similar studies were also found to employ the discrete-continuous methods to
model coupled mode and commute timing choice [12, 25]; joint activity-type preference,
travel time, and activity duration [10]; as well as other activity-travel behaviors [27].
Therefore, it can be expected that we can further employ the combination of the discrete and
continuous models to predict all the dimensions of the entire-day activities and trips. This
future study can providemore useful insights into the nature of travelers’ daily activity-travel
decision making.

It should be pointed out that only the typical commute activity-travel pattern, com-
prising two commute trips and one work activity, has been considered in this paper. In reality,
it is also common to observe other commute activity-travel patterns such as those including
work-based subtour or home-based nonwork trips, or those having stops during commute
travel. Further study may be done to model such daily activity-travel patterns. It will also be
very important to exam one’s activity-travel patterns overmultiple days if themultiday travel
survey data can be obtained.
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