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The Magnetohydrodynamic stability of a streaming cylindrical model penetrated by varying
transverse magnetic field has been discussed. The problem is formulated, the basic equations are
solved, upon appropriate boundary conditions the eigenvalue relation is derived and discussed
analytically, and the results are verified numerically. The capillary force is destabilizing in a small
axisymmetric domain 0 < x < 1 and stabilizing otherwise. The streaming has a strong destabilizing
effect in all kinds of perturbation. The toroidal varying magnetic field interior the fluid has no
direct effect at all on the stability of the fluid column. The axial exterior field has strong stabilizing
effect on the model. The effect of all acting forces altogether could be identified via the numerical
analysis of the stability theory of the present model.

1. Introduction

The classical stability analysis of a full fluid jet has been extensively studied (cf. Rayleigh
[1], Chandrasekhar [2], Robert [3], Chenng [4], Kendall [5], and Drazin and Reid) [6]
and documented by Radwan [7]. The latter author studied the hydromagnetic stability of
a fluid jet pervaded by uniform magnetic field for axisymmetric perturbation. Radwan et
al. [8] developed the magnetohydrodynamic stability of that model for all axisymmetric
and nonaxisymmetric modes subject to electromagnetic forces generated due to constant
magnetic field. The stability of different models under the action of self-gravitating force
in addition to other forces has been elaborated by Radwan and Hasan [9, 10]. Hasan
[11] has discussed the stability of oscillating streaming fluid cylinder subject to combined
effect of the capillary, self-gravitating, and electrodynamic forces for all axisymmetric and
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nonaxisymmetric perturbation modes. The purpose of the present work is to investigate the
magnetodynamic stability of a fluid jet pervaded by transverse varying magnetic field while
its surrounding tenuous medium is penetrated by uniform magnetic field.

2. Basic State

We consider an incompressible, inviscid, and conducting fluid column of radius Ro in the
basic state.

A transverse varying magnetic field is assumed to be pervaded interior the fluid,
namely,

Ho =
(

0,
Hor

Ro
, 0
)
. (2.1)

The surrounding tenuous medium of the fluid jet is penetrated by the axial homogenous
magnetic field:

Htn
o = (0, 0, αHo), (2.2)

where α is parameter while Ho is the intensity of the transverse magnetic field across the fluid
surface at r = Ro. The fluid streams in the initial state with velocity:

u = (0, 0, Uo), (2.3)

where Uo is (uniform) the amplitude of the velocity u. The components of Ho and Htn
o are

considered along the utilizing cylindrical coordinates (r, ϕ, z) with the Z-axis coinciding with
the axis of the cylinder (see Figure 1).

The basic magnetodynamic equations appropriate for studying such a problem may
be formulated as follows interior the fluid cylinder:

ρ
du

dt
= −∇P + μ

(∇ ∧H
) ∧H, (2.4)

∇ · u = 0, (2.5)

∂H

∂t
= ∇ ∧ (

u ∧H
)
, (2.6)

∇ ·H = 0, (2.7)

Ps = T

(
1
r1

+
1
r2

)
= T

(
∇·

∧
N

)
, (2.8)
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Figure 1: Sketch for MHD fluid jet.

where r1 and r2 are the principle radii of curvature and T is the surface tension coefficient.
Ns is, the unit outward vector normal to the surface, given by

∧
Ns

=
∇f

(
r, ϕ, z; t

)
∣∣∇f

(
r, ϕ, z; t

)∣∣ . (2.9)

The space ∇ and the time d/dt operators are given by

∇ ≡
(

∂

∂r
,

1
r

∂

∂ϕ
,
∂

∂z

)
,

d

dt
=

∂

∂t
+
(
u · ∇)

. (2.10)

Here ρ, u, and P are the fluid mass density, velocity vector and kinetic pressure, H and Htn

are the magnetic field intensity of fluid and of tenuous medium surrounding the fluid jet. μ
is the magnetic field permeability coefficient.

In the surrounding tenuous medium outside the fluid jet, the basic equations are

∇ ·Htn = 0, (2.11)

∇ ∧Htn = 0, there is no current. (2.12)

3. Unperturbed State

The unperturbed state is studied and the kinetic fluid pressure Po is identified.
From now on, the quantities with index o refer to equilibrium quantities.
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In such state, (2.4) gives

∇
(
Po +

μ

2
H2

or
2

R2
o

)
= 0. (3.1)

From which, we get

Po +
μ

2
H2

or
2

R2
o

= k(const.). (3.2)

By applying the balance of the pressure across the fluid tenuous interface at r = Ro, we finally
obtain

Po =
T

Ro
+
μH2

o

2

(
α2 − 1

)
, (3.3)

where α satisfies the restriction α ≥ 1 in order that the pressure Po must be positive as we
neglect the surface tension contribution in the unperturbed state.

4. Perturbation Analysis

For small departures from the initial state, every physical quantity could be expressed as

Q
(
r, ϕ, z; t

)
= Qo(r) + ε(t)Q1

(
r, ϕ, z

)
, (4.1)

where Q stands for u, P,H, and Htn while, ε(t) is the amplitude of the perturbation, (cf. [2])
being

ε(t) = εo exp(σt). (4.2)

Here σ is the growth rate at time t and εo(= ε at t = 0) that is the initial amplitude.
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By inserting the expansion (4.1) into (2.4)–(2.11), the linearized perturbation equations
are given by

∂u1

∂t
+
(
uo · ∇

)
u1 −

μ

ρ

((
H1 · ∇

)
Ho +

(
Ho · ∇

)
H1

)
= −∇

∏
1
, (4.3)

∇ · u1 = 0, (4.4)

∂H1

∂t
=
(
Ho · ∇

)
u1 −

(
u1 · ∇

)
Ho −

(
uo · ∇

)
H1, (4.5)

∇ ·H1 = 0, (4.6)

∇ ·Htn
1 = 0, (4.7)

∇ ∧Htn
1 = 0, (4.8)

P1s =
−T
R2

o

(
R1 +

∂2R1

∂ϕ2
+ R2

o

∂2R1

∂z2

)
, (4.9)

where ρ
∏

1(= Po + (μ/2)(H ·H)1) (see [3]) is the total magnetohydrodynamics pressure
which is the sum of kinetic and magnetic pressures.

Based on the expansion (4.1), the perturbed fluid-tenuous interface may be expressed
as

r = Ro + R1
(
ϕ, z, t

)
, (4.10)

with

R1 = εo exp
(
i
(
kz +mϕ

)
+ σt

)
. (4.11)

Here R1 is the elevation of the surface wave measured from the unperturbed position, where
k is the longitudinal wavenumber and m is the azimuthal wavenumber. By an appeal to the
perturbation technique, we may write

Q1
(
r, ϕ, z

)
= Q∗

1(r) exp
(
i
(
kz +mϕ

))
. (4.12)

Consequently, the linearized system of (4.3)–(4.8) is solved and the fluctuation parts are
determined.

In the radial direction, we obtain

(σ + ikUo)u1r =
μHo

ρRo
(imH1r) −

∂
∏

1

∂r
,

(σ + ikUo)H1r =
imHo

Ro
(u1r).

(4.13)
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In the transverse direction, we have

(σ + ikUo)u1ϕ =
−im∏

1

r
+

μ

ρRo

(
imH1ϕ +H1r

)
Ho,

(σ + ikUo)H1ϕ =
imHo

Ro
u1ϕ − Ho

Ro
u1r .

(4.14)

In the longitudinal z-direction, we get

(σ + ikUo)u1z = −ik
∏

1
+
iμHom

ρRo
H1z,

(σ + ikUo)H1z =
imHo

Ro
u1z.

(4.15)

From (4.13)–(4.15), we obtain

u1r =
−(σ + ikUo)(

(σ + ikUo)
2 + μH2

om2/ρR2
o

) ∂
∏

1

∂r
,

u1ϕ =
−im(σ + ikUo)(

(σ + ikUo)
2 + μH2

om2/ρR2
o

)
∏

1

r
,

u1r =
−i k(σ + ikUo)(

(σ + ikUo)
2 + μH2

om2/ρR2
o

)∏1.

(4.16)

By taking the divergence of (4.3) and using (4.4), we obtain

∇2
∏

1
= 0. (4.17)

Apart from the singular solution, the finite solution (as r → 0) of this equation is given by

∏
1
= AIm(kr) exp

(
σt + i

(
kz +mϕ

))
. (4.18)

Now (4.8) means that Htn
1 could be derived from a scalar function, say φ1, such that

Htn
1 = −∇φ1. (4.19)

Combining (4.19) with (4.7), we get

∇2φ1 = 0. (4.20)

The nonsingular solution of (4.20) is identified and given by

Htn
1 = ∇[

BKm(kr) exp
(
σt + i

(
kz +mϕ

))]
. (4.21)
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Here Im(kr) and Km(kr) are the modified Bessel functions, respectively, of the first and
second kind of order m while A and B are constants of integration.

5. Eigenvalue Relation

The solutions which are given by (3.3) and (4.13)–(4.21) of the basic equations (2.4)–(2.12)
must satisfy certain boundary conditions. Under the present circumstances, these boundary
conditions are the following.

(i) The normal component of the velocity vector u of the fluid must be compatible with
the velocity of the perturbed fluid across the fluid-tenuous interface at r = Ro. This condition
gives

A =
−(σ + ikUo)

2 + μH2
om

2/ρR2
o

kI ′m(x)
, (5.1)

where x(= kRo) is the nondimension longitudinal wave number.
(ii) The normal component of the magnetic field must be continuous across the fluid-

tenuous interface at r = Ro. This condition yields

B =
iα Ho

K′
m(x)

. (5.2)

(iii) The total magnetohydrodynamic pressure (ρ
∏

1) interior the fluid must be
discontinuous with magnetic pressure due to the electromagnetic force in the tenuous
medium surrounding the fluid jet across the interface (4.10) at r = Ro by the contribution
of the capillary force. This condition reads

P1+R1
∂Po

∂r
+μ

(
Ho ·H1

)
+ R1

∂

∂r

(μ
2
(
Ho ·Ho

))−μ(Ho ·H1

)tn−R1
∂

∂r

(μ
2
(
Ho ·Ho

)tn) = P1s.

(5.3)

Upon substitution from (3.3)–(5.2) into (5.3), following eigenvalue relation is derived

(σ + ikUo)
2 =

μH2
o

ρR2
o

[
−m2 + α2x2 Km(x)I ′m(x)

K′
m(x)Im(x)

]
+

(
T

ρR3
o

)(
xI ′m(x)
Im(x)

)(
1 −m2 − x2

)
. (5.4)

6. Discussions

Equation (5.4) is the desired capillary dispersion relation of a streaming fluid column
pervaded by varying transverse magnetic field (cf. (2.1)) and surrounded by uniform
magnetic field. This relation is valid for all axisymmetric and nonaxisymmetric perturbation
modes. It relates the growth rate σ with the wavenumbers k and m, the problem parameters
μ, Ho, ρ, Ro and the speed Uo of the streaming fluid and with the modified Bessel functions
Im and Km and their derivatives.
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For axisymmetric perturbation (m = 0), the general dispersion (5.4) reduces to

(σ + ikUo)
2 =

(
−μH2

o

ρR2
o

)(
α2x2

)K0(x)I1(x)
K1(x)I0(x)

+

(
T

ρR3
o

)(
x I1(x)
I0(x)

)(
1 − x2

)
. (6.1)

For the lowest non-symmetric perturbation mode (m = 1), the dispersion relation (5.4)
yields

(σ + ikUo)
2 =

μH2
o

ρR2
o

[
−1 + α2x2 K1(x)I ′1(x)

K′
1(x)I1(x)

]
−
(

T

ρR3
o

)(
x3 I ′1(x)
I1(x)

)
. (6.2)

For the higher nonaxisymmetric perturbation m ≥ 2, the eigenvalue relation of such
case may be easily obtained from (5.4) as m ≥ 2.

By the use of the recurrence relations (cf. [12])

2I ′m(x) = −Im+1(x) + Im−1(x),

2K′
m(x) = −Km−1(x) −Km+1(x) ,

(6.3)

and that Im(x) is monotonically increasing and positive definite for every nonzero value of x,
we have

Im(x) > 0. (6.4)

The function Km(x) is monotonically decreasing but never negative for since x /= 0 values

Km(x) > 0. (6.5)

Upon using (6.4) and (6.5) for the relations (6.3), we get

I ′m(x) > 0, K′
m(x) < 0, (6.6)

for all axisymmetric and nonaxisymmetric perturbation modes m ≥ 0. By an appeal to the
recurrence relations (6.3) and the inequalities (6.6) for the stability criterion (5.4), we deduce
the following.

(1) The toroidal varying magnetic field interior the fluid has no influence at all on the
stability of the fluid column.

(2) The uniform exterior magnetic field is stabilizing for all short and long wavelengths
in all kinds of perturbation m ≥ 0.

(3) The streaming is strongly destabilizing.

Therefore, the magnetohydrodynamic streaming fluid column is not completely stable in the
axisymmetric mode m = 0, but there will be exist some unstable domains.



Mathematical Problems in Engineering 9

The stability discussions for the case of the lowest nonaxisymmetric mode (m = 1),
may be carried out by utilizing the relation (6.2). It is found that both the interior toroidal
and exterior axial magnetic fields are stabilizing. Note that the streaming has a strong
destabilizing effect.

Therefore, the present model is (MHD) unstable in the lowest nonaxisymmetric mode
(m = 1) of perturbation.

In a similar way, one may show that the fluid column is MHD unstable for any higher
nonaxisymmetric mode m ≥ 2 of perturbation.

Physically, the stabilizing effect of the exterior magnetic field is expected because it has
been assumed that the pervading magnetic field is uniform.

Moreover, the stabilizing effect of the toroidal magnetic field in the fluid region is
due to the influence of Lorentz force that comes out from the interaction of the magnetic
induction and the electric current produced due to the pervading magnetic field. Indeed such
electromagnetic force causes the following stresses [7].

The magnetic pressure (μ/2)(H · H) per unit area acting in all directions of the fluid
(resistivity is neglected here) and an equal magnetic tension (μ/2)(H ·H) per unit area acting
along the magnetic lines of force. Due to these stresses the lines of force are able to endow
the fluid with a sort of rigidity. The magnetic fields exert strong influence not only to the
axisymmetric mode (m = 0) that causes only the bending of the magnetic lines of force but
also to nonaxisymmetric modes that lead to twisting of the lines of force.

7. Numerical Analysis

The numerical analysis has been carried out in order to identify and examine the magnetic
field influence and surface tension and also the effect of the streaming on stability of the
model. In addition to that the oscillation states and the transition points from these states to
those of instability may be also determined for given values of the magnetic field intensity.

This has been elaborated by computing the nondimension dispersion relation

σ√
T/σR3

o

=

√(
Ho

Hs

)(
m2 + α2x2 Km(x)I ′m(x)

K′
m(x)Im(x)

)
+
(
xI ′m(x)
Im(x)

)
(1 −m2 − x2) +U∗ (7.1)

in the computer simulation for the most dangerous sausage mode m = 0 for the different
values of (α) and (Ho/Hs), where Hs(= (T/μRo)) has the dimension of magnetic field while
σ(= iω) is the growth rate and ω is the oscillation frequency.

The numerical data associated with ω/(T/ρR3
o)

1/2 corresponding to the stable states
and those associated with σ/(T/ρR3

o)
1/2 corresponding to the unstable states are collected,

tabulated, and presented graphically. See Figures 2, 3, 4, and 5. There are many features of
interest in these numerical illustration. In the absence of the streaming effect it is found that
the domains of instability are decreasing with increasing (Ho/Hs) values even for different
values of α.

For α = 1 see Figure 2: corresponding to h = (Ho/Hs) = 0.1, 0.3, 0.7, 1.0, 1.5, and 3.5, it
is found that the unstable domains are 0 ≤ x < 0.9965, 0 ≤ x < 0.9693, 0 ≤ x < 0.8496, 0 ≤ x <
0.7307, 0 ≤ x < 0.5436, 0 ≤ x < 0.2083, while the neighboring stable domains, respectively,
are 0.9965 ≤ x < ∞, 0.9693 ≤ x < ∞, 0.8496 ≤ x < ∞, 0.7307 ≤ x < ∞, 0.5436 ≤ x < ∞, and
0.2083 ≤ x < ∞.
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Figure 2: MHD stable and unstable domains as α = 1, m = 0, U∗ = 0.
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Figure 3: MHD stable and unstable domains as α = 1, m = 0, U∗ = 0.3.

For (α,U∗) = (1, 0.3): corresponding to h = (Ho/Hs) = 0.1, 0.3, 0.7, 1.0, 1.5, and 3.5,
it is found that the unstable domains are 0 ≤ x < 1.0819, 0 ≤ x < 1.0561, 0 ≤ x < 0.9491, 0 ≤
x < 0.8464, 0 ≤ x < 0.6791, 0 ≤ x < 0.3678, while the neighboring stable domains,
respectively, are 1.0819 ≤ x < ∞, 1.0561 ≤ x < ∞, 0.9491 ≤ x < ∞, 0.8464 ≤ x < ∞, 0.6791 ≤
x < ∞, 0.3678 ≤ x < ∞, see Figure 3.
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Figure 4: MHD stable and unstable domains as α = 1, m = 0, U∗ = 0.7.
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Figure 5: MHD stable and unstable domains as α = 1, m = 0, U∗ = 1.0.

For (α,U∗) = (1, 0.7): corresponding to h = (Ho/Hs) = 0.1, 0.3, 0.7, 1.0, 1.5, and 3.5,
it is found that the unstable domains are 0 ≤ x < 1.2985, 0 ≤ x < 1.2769, 0 ≤ x < 1.1735, 0 ≤
x < 1.0867, 0 ≤ x < 0.9277, 0 ≤ x < 0.5519, while the neighboring stable domains,
respectively, are 1.2985 ≤ x < ∞, 1.2769 ≤ x < ∞, 1.1735 ≤ x < ∞, 1.0867 ≤ x < ∞, 0.9277 ≤
x < ∞, 0.5519 ≤ x < ∞, see Figure 4.
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For (α,U∗) = (1, 1.0): corresponding to h = (Ho/Hs) = 0.1, 0.3, 0.7, 1.0, 1.5, and 3.5,
it is found that the unstable domains are 0 ≤ x < 1.4661, 0 ≤ x < 1.4453, 0 ≤ x < 1.3455, 0 ≤
x < 1.2500, 0 ≤ x < 1.0882, 0 ≤ x < 0.6765, while the neighboring stable domains,
respectively, are 1.4661 ≤ x < ∞, 1.4453 ≤ x < ∞, 1.3455 ≤ x < ∞, 1.2500 ≤ x < ∞, 1.0882 ≤
x < ∞, 0.6765 ≤ x < ∞, see Figure 5.

8. Conclusion

From the presented numerical results, we may deduce the following. For the same value of U∗

it is found that the unstable domains are decreasing with increasing of h values. This means
that the influence of magnetic field has a stabilizing effect for all short and long wavelengths.
For the same value of h, it is found that the unstable domains are increasing with increasing
of U∗ values. This means that the streaming is strongly destabilizing.

References

[1] B. J. W. S. Rayleigh, The Theory of Sound, Dover, New York, NY, USA, 2nd edition, 1945.
[2] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, New York, NY, USA, 1981.
[3] P. H. Robert, An Introduction to MHD, Longman, London, UK, 1967.
[4] L. Chenng, “Instability of a gas jet in liquid,” Physics of Fluids, vol. 28, article 2614, 3 pages, 1985.
[5] J. M. Kendall, “Experiments on annular liquid jet instability and on the formation of liquid shells,”

Physics of Fluids, vol. 29, no. 7, pp. 2086–2094, 1986.
[6] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge Mathematical Library, Cambridge

University Press, Cambridge, Mass, USA, 2nd edition, 2004.
[7] A. E. Radwan, “Effect of magnetic fields on the capillary instability of an annular liquid jet,” Journal

of Magnetism and Magnetic Materials, vol. 72, no. 2, pp. 219–232, 1988.
[8] A. E. Radwan, M. A. Elogail, and N. E. Elazab, “Large hydromagnetic axisymmetric instability

of a streaming gas cylinder surrounded by bounded fluid with non uniform field,” Kyungpook
Mathematical Journal, vol. 47, no. 4, pp. 455–471, 2007.

[9] A. E. Radwan and A. A. Hasan, “Axisymmetric electrogravitational stability of fluid cylinder ambient
with transverse varying oscillating field,” IAENG International Journal of Applied Mathematics, vol. 38,
no. 3, pp. 113–120, 2008.

[10] A. E. Radwan and A. A. Hasan, “Magneto hydrodynamic stability of self-gravitational fluid cylinder,”
Applied Mathematical Modelling, vol. 33, no. 4, pp. 2121–2131, 2009.

[11] A. A. Hasan, “Electrogravitational stability of oscillating streaming fluid cylinder,” Physica B, vol. 406,
no. 2, pp. 234–240, 2011.

[12] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 1970.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


