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This paper derives the directional derivative expression of Taylor formula for two-variable
function from Taylor formula of one-variable function. Further, it proposes a new concept,
fractional directional differentiation (FDD), and corresponding theories. To achieve the numerical
calculation, the paper deduces power series expression of FDD. Moreover, the paper discusses the
construction of FDD mask in the four quadrants, respectively, for digital image. The differential
coefficients of every direction are not the same along the eight directions in the four quadrants,
which is the biggest difference by contrast to general fractional differentiation and can reflect
different fractional change rates along different directions, and this benefits to enlarge the
differences among the image textures. Experiments show that, for texture-rich digital images, the
capability of nonlinearly enhancing comprehensive texture details by FDD is better than those
by the general fractional differentiation and Butterworth filter. By quantity analysis, it shows that
state-of-the-art effect of texture enhancement is obtained by FDD.

1. Introduction

Fractional differentiation, also called noninteger differentiation, is not a new concept: it dates
back to Cauchy, Riemann, Liouville, and Letnikov in the 19th century. Then, several theoret-
ical physicists and mathematicians have studied fractional differential equations, especially
fractional-order linear differential equations and fractional differential equations with delay
[1–5], also fractional equations of fractional variational problems [6, 7]. In comparison with
integer-order differentiation, the fractional differentiation of direct current or low frequency
signal is often nonzero. Fractional differential processing is not only nonlinearly keeping
signal’s low-frequency and direct current components, but also nonlinearly enhancing the
signal’s high-frequency and middle-frequency components [8]. Therefore, special Mach’s
phenomenon appears in fractional differentiation of image. Moreover, it has a special bionic
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vision receptive field model for fractional differential antagonism characteristics [9, 10].
Based on the special characteristics of fractional differentiation, in the last two decades,
fractional differentiation has played a very important role in various physical sciences fields,
such as mechanics, electricity, chemistry, biology, economics, time and frequency domains,
system identification, notably control theory, mechatronics, and robotics [9, 11, 12]. Recently,
fractal theory has already been used in fractal image processing [13–16].

In image processing, texture enhancement is an important issue in many areas like
pattern recognition, image restoration, medical imaging processing, robotics, interpretation
of image data, and remote sensing. But, to our knowledge, only a few reliable methods focus
on texture enhancing. Texture enhancement often makes use of integer-order differential
operators, especially 1-order used by the gradient and 2-order by the Laplacian. In [13–
16], the principles of fractional differential operators in image processing are introduced
with implementation of fractional differential masks. But these fractional differential masks
have a common flaw which the fractional differential coefficients of every direction are
always the same along the eight directions in the image plane, which is not conducive to
reflect the different change rates of the image along different directions and is not benefitial
to enlarge the differences among textures. Based on this, we introduce the concept of
directional derivative to fractional differentiation and propose a new mathematical method,
fractional directional differentiation (FDD), and then try to employ it to image processing,
particularly to comprehensive fractal-like texture-details enhancement. Furthermore, by
taking the approximations of power series expression of FDD, we propose four novel FDD
masks and corresponding numerical calculation rules. The fractional differential coefficients
along the eight directions in the image plane are not the same, which can reflect different
fractional change rates along different directions and is benefit to enlarge the differences
among the image textures. Thus, this can lead to texture enhancement. Experiments show
that FDD can effectively enhance texture details of image and has a greater calculation range
than that of fractional differential for texture-enhancing.

This paper is organized as follows. Section 2 first recalls on the necessary theoretical
background of directional derivative and the main definitions of Riemann-Liouville in
Euclidean space. According to Taylor formula of one-variable function, we deduce the
directional derivative expression of Taylor formula for two-variable function, give the
definition of FDD, and further deduce power series expression of FDD. Section 3 deals with
and gives four FDD masks and their calculation rules. Section 4 reports the nonlinearly
enhancing capability of texture details based on FDD. By calculating five classical parameters
from gray-level cooccurrence matrix in particular, information entropy, average gradient and
projection of gray-level, we implement quantity analysis.

2. Theory of FDD

2.1. Directional Derivative

Assume that z = f(x, y) is defined in the neighborhoodD. Find the line which passes through
M0(x0, y0) and parallels to l as follows:

x − x0

cosα
=

y − y0

sinα
= t, l = (cosα, sinα), (2.1)
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where α is the direction angle. LetM(x0+Δx, y0+Δy) satisfy (2.1) and h = sgn(t)·M0M. If we
take the direction of the vector M0M the same as l, then t > 0, h > 0, otherwise, t < 0, h < 0,
that is to say, h changes along the positive or negative direction of l. If the limit

lim
h→ 0

f(M) − f(M0)
h

(2.2)

exists, then (2.2) is called the directional derivative of f(x, y) along the direction l at M0,
write ∂f(M0)/∂l, which denotes the slope of tangent line at M0 for the plane curve

⎧
⎨

⎩

z = f
(
x, y
)

x − x0

cosα
=

y − y0

sinα
(2.3)

and the geometric meaning is the same as general derivative.
It is well known, the sufficient condition which (2.2) exists is that f(x, y) has

continuous partial derivatives of first order in the neighborhood D at the point M0 and

∂f(M0)
∂l

=
∂f(M0)

∂x
cosα +

∂f(M0)
∂y

sinα. (2.4)

Clearly, for any M0(x0, y0) in D, ∂f(M0)/∂l is the function with respect to x and y, that is,

∂f
(
x, y
)

∂l
=

∂f
(
x, y
)

∂x
cosα +

∂f
(
x, y
)

∂y
sinα. (2.5)

If f(x, y) exists continuous partial derivatives of second order in the neighborhoodD, making
the direction l fixed and by (2.5), we obtain

∂2f

∂l2
=

∂2f

∂x2
cos2α + 2

∂2f

∂x∂y
sinα cosα +

∂2f

∂y2
sin2α �

(

cosα
∂

∂x
+ sinα

∂

∂y

)2

f
(
x, y
)
. (2.6)

Thus (2.6) is called the second order directional derivative of f(x, y) along the direction l at
M.

Similarly, if f(x, y) exists n+1 order continuous partial derivatives inD, we can define
the k-order directional derivative of f(x, y) along the direction l at M as follows:

∂kf

∂lk
=
(

cosα
∂

∂x
+ sinα

∂

∂y

)k

f
(
x, y
)
, k = 1, 2, . . . , n, n + 1. (2.7)

2.2. Directional Derivative Expression of Taylor Formula for
Two-Variable Function

In [17], the author deduced the Taylor series expansion of multivariable function and gave
its conditions of convergence. On this basis, we will further derive the directional derivative
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expression of Taylor formula for multi-variable function. In this paper, we only discuss two-
variable function. Actually, for multi-variable function, it is similar to two-variable function.

Let f(x, y) have n + 1 order continuous partial derivatives in D, then (2.7) holds and
we call that

dkf =
(

Δx
∂

∂x
+ Δy

∂

∂y

)k

f
(
x, y
)
, k = 1, . . . , n + 1, (2.8)

is the k-order (k ∈ Z) differentiation of f(x, y), thus the Taylor formula of f(x, y) can be
expressed as follows:

f
(
x, y
)
= f
(
x0, y0

)
+ df +

1
2!
d2f + · · · + 1

n!
dnf +

1
(n + 1)!

dn+1f
(
x0 + θΔx, y0 + θΔy

)
, (2.9)

where 0 < θ < 1. Now let cosα = Δx/h, sinα = Δy/h, h = sgn(t) ·M0M, that is, when t > 0,
h = M0M, and when t < 0, h = −M0M. Clearly, (2.8) becomes

dkf = hk

(
Δx

h

∂

∂x
+
Δy

h

∂

∂y

)k

f
(
x, y
)
= hk ∂

kf

∂lk
, k = 1, 2, . . . , n + 1. (2.10)

Taking (2.10) into (2.9), we get

f
(
x, y
)
= f
(
x0, y0

)
+ h

∂f

∂l
+
h2

2!
∂2f

∂l2
+ · · · + hn

n!
∂nf

∂ln

+
hn+1

(n + 1)!
∂n+1f

(
x0 + θΔx, y0 + θΔy

)

∂ln+1
, 0 < θ < 1.

(2.11)

Equation (2.11) is called the directional derivative expression of Taylor formula for f(x, y).
Compared with Taylor formula of one-variable function, they have a unified form.

2.3. Fractional Differentiation

If the signal f(t) has n + 1 order continuous derivatives and n is at least [v] = m − 1 (v ∈
R,m ∈ Z), where [v] denotes the greatest integer and is less than or equal to v, then the
definitions of fractional calculus based on Grumwald-letnikov and Riemann-Liouville [4] are
equivalent. Otherwise, the latter is an expansion of the former with wider applications [10].
Though the definition of fractional calculus based on Riemann-Liouville is more common,
few studies involve in its numerical solution. Currently, more researches still focus on the
numerical solution of fractional calculus based on Grumwald-Letnikov [10, 13–15, 18]. It is
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well-known that v-order fractional integral based on Riemann-Liouville can be expressed as
follows [1]:

R
0 I

v
xf(x) =

1
Γ(v)

∫x

0
(x − t)v−1f(t)dt, (2.12)

where f(x) is continuous in [0, x), and v is a positive real number.
On the basis of fractional integral, v-order fractional differentiation based on Riemann-

Liouville, write R
0D

v
x , can be defined. In fact, the v-order differential operator R

0D
v
x can be

viewed as R
0 I

−v
x . Let −v = −k + r, where k = [v] + 1, r = [v] + 1 − v. Obviously, 0 < r < 1 and

k − 1 < v < k. Thus, v-order differentiation of f(x) is

R
0D

v
xf(x) =

R
0 I

−v
x f(x) = R

0 I
−k+r
x f(x) = R

0 I
−k
x · R

0 I
r
xf(x)

=
(

d

dx

)k[ 1
Γ(r)

∫x

0
(x − t)r−1f(t)dt

]

.
(2.13)

Equation (2.13) shows obviously that the calculation of v-order fractional differentiation
based on Riemann-Liouville need to first find r-order fractional integral, and then seek
general k-order derivative. Note that R

0 I
−k
x and R

0 I
r
x must keep their order, which means that

we must first find integral, then do derivative.

2.4. FDD of Two-Variable Function

In (2.11), when the direction l is fixed at any point M(x, y), h is a variable number along l.
Thus, (2.11) can be seen as a function with respect to the variable h and denotes the variety
of f(x, y) along the direction l at M(x, y). With the change of direction l, (2.11) denotes the
variety of f(x, y) along different directions at M(x, y). In order to quantify the variety of
f(x, y) in a certain direction l at the pointM(x, y), find fractional differentiation (v-order) of
(2.11) as follows:

R
0D

v
hf
(
x, y
)
=

n∑

k=0

1
k!

∂kf

∂lk
R
0D

v
h h

k +
1

(n + 1)!
∂n+1f

(
x0 + θΔx, y0 + θΔy

)

∂ln+1
R
0D

v
h h

n+1, (2.14)

where 0 < θ < 1. Equation (2.14) denotes just the fractional measurement of the variety
of f(x, y) along the direction l at M0(x0, y0). Equation (2.14) is called fractional directional
differentiation (FDD) of f(x, y) along the direction l at M0(x0, y0). Thus, the FDD depicts a
fractional change rate of f(x, y) along the direction l at any point M(x, y).

3. FDD Mask and Algorithm

There are many studies on numerical calculation of fractional differentiation [1, 13, 16, 18].
Similarly, we need to discuss numerical calculation of FDD. To implement numerical
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calculation of (2.14), we first seek its power series expression. According to [18], R
0D

v
hh

u(u >
−1) can be induced as follows:

R
0D

v
h(h

u) = R

0 I
−v
h (hu) =

R

0 I
−k
h

R
0 I

r
h(h

u) =
(

d

dh

)k
[

1
Γ(r)

∫h

0
(h − t)r−1tudt

]

y=t/h
=
(

d

dh

)k
[
hu+r

Γ(r)

∫1

0

(
1 − y

)r−1
yudy

]

=
(

d

dh

)k[hu+r

Γ(r)
B(r, u + 1)

]

=
(

d

dh

)k[hu+r

Γ(r)
Γ(r)Γ(u + 1)
Γ(u + r + 1)

]

=
Γ(u + 1)

Γ(u + r + 1)

(
d

dh

)k

hu+r

=
Γ(u + 1)

Γ(u + r + 1)
Γ(u + r + 1)

Γ(u + r − k + 1)
hu+r−k

=
Γ(u + 1)

Γ(u − v + 1)
hu−v,

(3.1)

where B(x, y) is the Beta function, and n − 1 < v < n, n is an integer. Taking (3.1) into (2.14),
we obtain

R
0D

v
hf
(
x, y
)
=

∞∑

n=0

1
Γ(n − v + 1)

∂nf

∂ln
hn−v. (3.2)

Thus, (3.2) is the power series expression of FDD for f(x, y).
Since the processing data of computer or digital filter is digital and finite, the

maximum variety of image’s grayscale is also finite. The shortest neighborhood distance
between pixels can achieve only one pixel [13, 16]. Therefore, the measurement for duration
of two-dimensional digital image on x-coordinate or y-coordinate must take pixel as unit,
and the minimum division must be Δx = 1,Δy = 1, and since cosα = Δx/h or sinα = Δy/h,
it has

Δx = h cosα, Δy = h sinα. (3.3)

Next, we will implement numerical calculation and seek the masks of FDD in four
quadrants, respectively. In the first quadrant, the forward differences of ∂f/∂x, ∂f/∂y,
∂2f/∂x2, ∂2f/∂y2, and ∂2f/∂x∂y can be expressed as:

∂f
(
x0, y0

)

∂x
≈ f
(
x0 + 1, y0

) − f
(
x0, y0

)
,

∂f
(
x0, y0

)

∂y
≈ f
(
x0, y0 + 1

) − f
(
x0, y0

)
,

∂2f
(
x0, y0

)

∂x2
≈ f
(
x0 + 2, y0

) − 2f
(
x0 + 1, y0

)
+ f
(
x0, y0

)
,
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∂2f
(
x0, y0

)

∂y2
≈ f
(
x0, y0 + 2

) − 2f
(
x0, y0 + 1

)
+ f
(
x0, y0

)
,

∂2f
(
x0, y0

)

∂x∂y
≈ f
(
x0 + 1, y0 + 1

) − f
(
x0 + 1, y0

) − f
(
x0, y0 + 1

)
+ f
(
x0, y0

)
.

(3.4)

Taking (3.4) into (3.2) and by (2.7), (3.3), when n = 2 in (3.2), we get

R
0D

v
hf
(
x0, y0

)

≈ h−v

Γ(1 − v)
f
(
x0, y0

)
+

h1−v

Γ(2 − v)

(
∂f
(
x0, y0

)

∂x
cosα +

∂f
(
x0, y0

)

∂y
sinα

)

+
h2−v

Γ(3 − v)

(
∂2f
(
x0, y0

)

∂x2
cos2α + 2

∂2f
(
x0, y0

)

∂x∂y
sinα cosα +

∂2f
(
x0, y0

)

∂y2
sin2α

)

=
h−v

Γ(1 − v)
f
(
x0, y0

)
+

h1−v

Γ(2 − v)
f
(
x0 + 1, y0

)
cosα − h1−v

Γ(2 − v)
f
(
x0, y0

)
cosα

+
h1−v

Γ(2 − v)
f
(
x0, y0 + 1

)
sinα − h1−v

Γ(2 − v)
f
(
x0, y0

)
sinα

+
h2−v

Γ(3 − v)
f
(
x0 + 2, y0

)
cos2α − 2

h2−v

Γ(3 − v)
f
(
x0 + 1, y0

)
cos2α

+
h2−v

Γ(3 − v)
f
(
x0, y0

)
cos2α + 2

h2−v

Γ(3 − v)
f
(
x0 + 1, y0 + 1

)
sinα cosα

− 2
h2−v

Γ(3 − v)
f
(
x0 + 1, y0

)
sinα cosα − 2

h2−v

Γ(3 − v)
f
(
x0, y0 + 1

)
sinα cosα

+ 2
h2−v

Γ(3 − v)
f
(
x0, y0

)
sinα cosα +

h2−v

Γ(3 − v)
f
(
x0, y0 + 2

)
sin2α

− 2
h2−v

Γ(3 − v)
f
(
x0, y0 + 1

)
sin2α +

h2−v

Γ(3 − v)
f
(
x0, y0

)
sin2α

=

[
h−v

Γ(1 − v)
− h1−v cosα + h1−v sinα

Γ(2 − v)
+
h2−vcos2α + 2h2−v sinα cosα + h2−vsin2α

Γ(3 − v)

]

× f
(
x0, y0

)
+

[
h1−v cosα
Γ(2 − v)

− 2h2−vcos2α + 2h2−v sinα cosα
Γ(3 − v)

]

f
(
x0 + 1, y0

)

+

[
h2−vcos2α
Γ(3 − v)

]

f
(
x0 + 2, y0

)
+

[
h1−v sinα
Γ(2 − v)

− 2h2−v sinα cosα + 2h2−vsin2α

Γ(3 − v)

]

× f
(
x0, y0 + 1

)
+

[
2h2−v sinα cosα

Γ(3 − v)

]

f
(
x0 + 1, y0 + 1

)
+

[
h2−vsin2α

Γ(3 − v)

]

f
(
x0, y0 + 2

)
.

(3.5)
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a10 a13 a15

a11 a14

a12 0 0

0

Figure 1: Mask FDD-1.

Let

a10 =
h−v

Γ(1 − v)
− h1−v cosα + h1−v sinα

Γ(2 − v)
+
h2−vcos2α + 2h2−v sinα cosα + h2−vsin2α

Γ(3 − v)
,

a11 =
h1−v cosα
Γ(2 − v)

− 2h2−vcos2α + 2h2−v sinα cosα
Γ(3 − v)

,

a12 =
h2−vcos2α
Γ(3 − v)

,

a13 =
h1−v sinα
Γ(2 − v)

− 2h2−v sinα cosα + 2h2−vsin2α

Γ(3 − v)
,

a14 =
2h2−v sinα cosα

Γ(3 − v)
,

a15 =
h2−vsin2α

Γ(3 − v)
.

(3.6)

Then, (3.5) becomes

R
0D

v
hf
(
x0, y0

) ≈ a10f
(
x0, y0

)
+ a11f

(
x0 + 1, y0

)
+ a12f

(
x0 + 2, y0

)

+ a13f
(
x0, y0 + 1

)
+ a14f

(
x0 + 1, y0 + 1

)
+ a15f

(
x0, y0 + 2

)
.

(3.7)

Equation (3.7) indicates that it has a 3 × 3 mask when n = 2, write FDD-1, shown in Figure 1.
In the first quadrant, we choose three direction angles α = 0, π/4, and π/2 to calculate

the coefficients (3.6) of the mask FDD-1.

(i) For α = 0, let h change strictly along the positive direction of l = (1, 0) in the image
plane, therefore h > 0 and we can find the FDD at h = 1. By (3.3), we have h cosα =
1, h sinα = 0. Thus, the coefficients (3.6) of the mask FDD-1 becomes

a10 =
1

Γ(1 − v)
− 1
Γ(2 − v)

+
1

Γ(3 − v)
, a11 =

1
Γ(2 − v)

− 2
Γ(3 − v)

,

a12 =
1

Γ(3 − v)
, a13 = 0, a14 = 0, a15 = 0.

(3.8)
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(ii) For α = π/4, let h change always along the positive direction of l = (
√
2/2,

√
2/2) in

the image plane, therefore h > 0 and FDD can be found at h =
√
2. By (3.3), we have

h cosα = 1, h sinα = 1. Thus the coefficients (3.6) of the mask FDD-1 are as follows:

a10 =

√
2
−v

Γ(1 − v)
− 2

√
2
−v

Γ(2 − v)
+

4
√
2
−v

Γ(3 − v)
, a11 =

√
2
−v

Γ(2 − v)
− 4

√
2
−v

Γ(3 − v)
,

a12 =
√
2
−v

Γ(3 − v)
, a13 =

√
2
−v

Γ(2 − v)
− 4

√
2
−v

Γ(3 − v)
, a14 =

2
√
2
−v

Γ(3 − v)
,

a15 =
√
2
−v

Γ(3 − v)
.

(3.9)

(iii) For α = π/2, let h change always along the positive direction of l = (0, 1) in the
image plane, therefore h > 0 and we can find the FDD at h = 1. By (3.3), we have
h cosα = 0, h sinα = 1. Thus the coefficients (3.6) of the mask FDD-1 are equal to

a10 =
1

Γ(1 − v)
− 1
Γ(2 − v)

+
1

Γ(3 − v)
, a11 = 0, a12 = 0,

a13 =
1

Γ(2 − v)
− 2
Γ(3 − v)

, a14 = 0, a15 =
1

Γ(3 − v)
.

(3.10)

Similarly, in the second quadrant, the backward difference on the negative x-
coordinate and forward difference on the positive y-coordinate of ∂f/∂x, ∂f/∂y, ∂2f/∂x2,
∂2f/∂y2, and ∂2f/∂x∂y are expressed as follows:

∂f
(
x0, y0

)

∂x
≈ f
(
x0, y0

) − f
(
x0 − 1, y0

)
,

∂f
(
x0, y0

)

∂y
≈ f
(
x0, y0 + 1

) − f
(
x0, y0

)
,

∂2f
(
x0, y0

)

∂x2
≈ f
(
x0, y0

) − 2f
(
x0 − 1, y0

)
+ f
(
x0 − 2, y0

)
,

∂2f
(
x0, y0

)

∂x∂y
≈ f
(
x0, y0 + 1

) − f
(
x0 − 1, y0 + 1

) − f
(
x0, y0

)
+ f
(
x0 − 1, y0

)
,

∂2f
(
x0, y0

)

∂y2
≈ f
(
x0, y0 + 2

) − 2f
(
x0, y0 + 1

)
+ f
(
x0, y0

)
.

(3.11)

Taking (3.11) into (3.2) and by (2.7), (3.3), where n = 2 in (3.2), after simplification, we get

R
0D

v
hf
(
x0, y0

) ≈ h−v

Γ(1 − v)
f
(
x0, y0

)
+

h1−v

Γ(2 − v)

(
∂f
(
x0, y0

)

∂x
cosα +

∂f
(
x0, y0

)

∂y
sinα

)

+
h2−v

Γ(3 − v)

(
∂2f

∂x2
cos2α + 2

∂2f

∂x∂y
sinα cosα +

∂2f

∂y2
sin2α

)
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=

⎛

⎜
⎝

h−v

Γ(1 − v)
+
h1−v cosα − h1−v sinα

Γ(2 − v)
+
h2−v

(
cos2α − 2 sinα cosα + sin2α

)

Γ(3 − v)

⎞

⎟
⎠

× f
(
x0, y0

)
+

(

−h
1−v cosα
Γ(2 − v)

− 2h2−vcos2α − 2h2−v sinα cosα
Γ(3 − v)

)

f
(
x0 − 1, y0

)

+
h2−vcos2α
Γ(3 − v)

f
(
x0 − 2, y0

)

+

(
h1−v sinα
Γ(2 − v)

+
2h2−v sinα cosα − 2h2−vsin2α

Γ(3 − v)

)

f
(
x0, y0 + 1

)

− 2h2−v sinα cosα
Γ(3 − v)

f
(
x0 − 1, y0 + 1

)
+
h2−vsin2α

Γ(3 − v)
f
(
x0, y0 + 2

)
.

(3.12)

Let

a20 =
h−v

Γ(1 − v)
+
h1−v(cosα − sinα)

Γ(2 − v)
+
h2−v(cosα − sinα)2

Γ(3 − v)
,

a21 = −h
1−v cosα
Γ(2 − v)

− 2h2−v(cos2α − sinα cosα
)

Γ(3 − v)
,

a22 =
h2−vcos2α
Γ(3 − v)

,

a23 =
h1−v sinα
Γ(2 − v)

+
2h2−v

(
sinα cosα − sin2α

)

Γ(3 − v)
,

a24 = −2h
2−v sinα cosα
Γ(3 − v)

,

a25 =
h2−vsin2α

Γ(3 − v)
.

(3.13)

Then (3.12) can be expressed as

R
0D

v
hf
(
x0, y0

) ≈ a20f
(
x0, y0

)
+ a21f

(
x0 − 1, y0

)
+ a22f

(
x0 − 2, y0

)

+ a23f
(
x0, y0 + 1

)
+ a24f

(
x0 − 1, y0 + 1

)
+ a25f

(
x0, y0 + 2

)
.

(3.14)

Equation (3.14) indicates that it has a 3× 3 mask when n = 2, write FDD-2, shown in Figure 2.
Since the mask FDD-2 in Figure 2 denotes the algorithm of FDD along different

directions in the second quadrant, we can also take three direction angles α = 0, π/4, and π/2
to calculate the coefficients (3.13). In fact, the three direction angles in the second quadrant
can show the direction angles α = π/2, 3π/4, and π in the image plane. Similar to the
calculation of the mask FDD-1’s coefficients, the calculation of (3.13) is as follows:
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a22

a24

a25

a21

a23a20

0 0

0

Figure 2: Mask FDD-2.

(i) When α = 0, we have

a20 =
1

Γ(1 − v)
+

1
Γ(2 − v)

+
1

Γ(3 − v)
, a21 = − 1

Γ(2 − v)
− 2
Γ(3 − v)

,

a22 =
1

Γ(3 − v)
, a23 = 0, a24 = 0, a25 = 0.

(3.15)

(ii) When α = π/4 and by (3.3), we obtain

a20 =

√
2
−v

Γ(1 − v)
, a21 = −

√
2
−v

Γ(2 − v)
, a22 =

√
2
−v

Γ(3 − v)
,

a23 =
√
2
−v

Γ(2 − v)
, a24 = − 2

√
2
−v

Γ(3 − v)
, a25 =

√
2
−v

Γ(3 − v)
.

(3.16)

(iii) When α = π/2 and by (3.3), it has

a20 =
1

Γ(1 − v)
− 1
Γ(2 − v)

+
1

Γ(3 − v)
, a21 = 0, a22 = 0,

a23 =
1

Γ(2 − v)
− 2
Γ(3 − v)

, a24 = 0, a25 =
1

Γ(3 − v)
.

(3.17)

In the same way, the backward differences of ∂f/∂x, ∂f/∂y, ∂2f/∂x2, ∂2f/∂y2, and
∂2f/∂x∂y in the third quadrant can be expressed as follows:

∂f
(
x0, y0

)

∂x
≈ f
(
x0, y0

) − f
(
x0 − 1, y0

)
,

∂f
(
x0, y0

)

∂y
≈ f
(
x0, y0

) − f
(
x0, y0 − 1

)
,

∂2f
(
x0, y0

)

∂x2
≈ f
(
x0, y0

) − 2f
(
x0 − 1, y0

)
+ f
(
x0 − 2, y0

)
,
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∂2f
(
x0, y0

)

∂x∂y
≈ f
(
x0, y0

) − f
(
x0 − 1, y0

) − f
(
x0, y0 − 1

)
+ f
(
x0 − 1, y0 − 1

)
,

∂2f
(
x0, y0

)

∂y2
≈ f
(
x0, y0

) − 2f
(
x0, y0 − 1

)
+ f
(
x0, y0 − 2

)
.

(3.18)

Taking (3.18) into (3.2) and by (2.7), (3.3), when n = 2 in (3.2), after simplification, we get its
approximation

R
0D

v
hf
(
x0, y0

) ≈ h−v

Γ(1 − v)
f
(
x0, y0

)
+

h1−v

Γ(2 − v)

(
∂f
(
x0, y0

)

∂x
cosα +

∂f
(
x0, y0

)

∂y
sinα

)

+
h2−v

Γ(3 − v)

(
∂2f

∂x2
cos2α + 2

∂2f

∂x∂y
sinα cosα +

∂2f

∂y2
sin2α

)

=

(
h−v

Γ(1 − v)
+
h1−v(cosα + sinα)

Γ(2 − v)
+
h2−v(cosα + sinα)2

Γ(3 − v)

)

f
(
x0, y0

)

+

(

−h
1−v cosα
Γ(2 − v)

− 2h2−v(cos2α + sinα cosα
)

Γ(3 − v)

)

f
(
x0 − 1, y0

)

+
h2−vcos2α
Γ(3 − v)

f
(
x0 − 2, y0

)

+

⎛

⎜
⎝−h

1−v sinα
Γ(2 − v)

−
2h2−v

(
sinα cosα + sin2α

)

Γ(3 − v)

⎞

⎟
⎠f
(
x0, y0 − 1

)

+
2h2−v sinα cosα

Γ(3 − v)
f
(
x0 − 1, y0 − 1

)

+
h2−vsin2α

Γ(3 − v)
f
(
x0, y0 − 2

)
.

(3.19)

Let

a30 =
h−v

Γ(1 − v)
+
h1−v(cosα + sinα)

Γ(2 − v)
+
h2−v(cosα + sinα)2

Γ(3 − v)
,

a31 = −h
1−v cosα
Γ(2 − v)

− 2h2−v(cos2α + sinα cosα
)

Γ(3 − v)
,

a32 =
h2−vcos2α
Γ(3 − v)

,

a33 = −h
1−v sinα
Γ(2 − v)

−
2h2−v

(
sinα cosα + sin2α

)

Γ(3 − v)
,
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a30

a31

a32

a33

a340

a35

0 0

Figure 3: Mask FDD-3.

a34 =
2h2−v sinα cosα

Γ(3 − v)
,

a35 =
h2−vsin2α

Γ(3 − v)
.

(3.20)

Thus, (3.19) can be rewritten as

R
0D

v
h
f
(
x0, y0

) ≈ a30f
(
x0, y0

)
+ a31f

(
x0 − 1, y0

)
+ a32f

(
x0 − 2, y0

)

+ a33f
(
x0, y0 − 1

)
+ a34f

(
x0 − 1, y0 − 1

)
+ a35f

(
x0, y0 − 2

)
.

(3.21)

Equation (3.21) indicates that it has a 3× 3 mask when n = 2, write FDD-3, shown in Figure 3.
The same as the first and the second quadrants, because the mask in Figure 3 denotes

the algorithm of FDD along different directions in the third quadrant, we can also take three-
directions angles α = 0, π/4, and π/2 into account for (3.20). Actually, the three-direction
angles in the third quadrant can denote the α = π, 5π/4, and 3π/2 in the image plane.

(i) For α = 0, we have

a30 =
1

Γ(1 − v)
+

1
Γ(2 − v)

+
1

Γ(3 − v)
, a31 = − 1

Γ(2 − v)
− 2
Γ(3 − v)

,

a32 =
1

Γ(3 − v)
, a33 = 0, a34 = 0, a35 = 0.

(3.22)

(ii) For α = π/4 and by (3.3), we obtain

a30 =
√
2
−v

Γ(1 − v)
+

2
√
2
−v

Γ(2 − v)
+

4
√
2
2−v

Γ(3 − v)
, a31 = −

√
2
−v

Γ(2 − v)
− 4

√
2
−v

Γ(3 − v)
, a32 =

√
2
−v

Γ(3 − v)
,

a33 = −
√
2
−v

Γ(2 − v)
− 4

√
2
−v

Γ(3 − v)
, a34 =

2
√
2
−v

Γ(3 − v)
, a35 =

√
2
−v

Γ(3 − v)
.

(3.23)
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(iii) For α = π/2, one has

a30 =
h−v

Γ(1 − v)
+

h−v

Γ(2 − v)
+

h−v

Γ(3 − v)
, a31 = 0,

a32 = 0, a33 = − h−v

Γ(2 − v)
− 2h−v

Γ(3 − v)
, a34 = 0, a35 =

h−v

Γ(3 − v)
.

(3.24)

Finally, in the fourth quadrant, the forward difference on positive x-coordinate and
backward difference on negative y-coordinate of ∂f/∂x, ∂f/∂y, ∂2f/∂x2, ∂2f/∂y2, and
∂2f/∂x∂y are

∂f
(
x0, y0

)

∂x
≈ f
(
x0 + 1, y0

) − f
(
x0, y0

)
,

∂f
(
x0, y0

)

∂y
≈ f
(
x0, y0

) − f
(
x0, y0 − 1

)
,

∂2f
(
x0, y0

)

∂x2
≈ f
(
x0 + 2, y0

) − 2f
(
x0 + 1, y0

)
+ f
(
x0, y0

)
,

∂2f
(
x0, y0

)

∂y2
≈ f
(
x0, y0

) − 2f
(
x0, y0 − 1

)
+ f
(
x0, y0 − 2

)
.

∂2f
(
x0, y0

)

∂x∂y
≈ f
(
x0 + 1, y0

) − f
(
x0, y0

) − f
(
x0 + 1, y0 − 1

)
+ f
(
x0, y0 − 1

)
.

(3.25)

Taking (3.25) into (3.2) and by (2.7), (3.3), when n = 2 in (3.2), we obtain

R
0D

v
hf
(
x0, y0

) ≈ h−v

Γ(1 − v)
f
(
x0, y0

)
+

h1−v

Γ(2 − v)

(
∂f
(
x0, y0

)

∂x
cosα +

∂f
(
x0, y0

)

∂y
sinα

)

+
h2−v

Γ(3 − v)

(
∂2f

∂x2
cos2α + 2

∂2f

∂x∂y
sinα cosα +

∂2f

∂y2
sin2α

)

=

(
h−v

Γ(1 − v)
− h1−v(cosα − sinα)

Γ(2 − v)
+
h2−v(cosα − sinα)2

Γ(3 − v)

)

f
(
x0, y0

)

+

(
h1−v cosα
Γ(2 − v)

+
2h2−v(sinα cosα − cos2α

)

Γ(3 − v)

)

f
(
x0 + 1, y0

)

+
h2−vcos2α
Γ(3 − v)

f
(
x0 + 2, y0

)
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+

⎛

⎜
⎝−h

1−v sinα
Γ(2 − v)

−
2h2−v

(
sin2α − sinα cosα

)

Γ(3 − v)

⎞

⎟
⎠f
(
x0, y0 − 1

)

+

(

−2h
2−v sinα cosα
Γ(3 − v)

)

f
(
x0 + 1, y0 − 1

)

+
h2−vsin2α

Γ(3 − v)
f
(
x0, y0 − 2

)
.

(3.26)

Let

a40 =
h−v

Γ(1 − v)
− h1−v(cosα − sinα)

Γ(2 − v)
+
h2−v(cosα − sinα)2

Γ(3 − v)
,

a41 =
h1−v cosα
Γ(2 − v)

+
2h2−v(sinα cosα − cos2α

)

Γ(3 − v)
,

a42 =
h2−vcos2α
Γ(3 − v)

,

a43 = −h
1−v sinα
Γ(2 − v)

−
2h2−v

(
sin2α − sinα cosα

)

Γ(3 − v)
,

a44 = −2h
2−v sinα cosα
Γ(3 − v)

,

a45 =
h2−vsin2α

Γ(3 − v)
.

(3.27)

Then (3.26) becomes

R
0D

v
h
f
(
x0, y0

) ≈ a40f
(
x0, y0

)
+ a41f

(
x0 + 1, y0

)
+ a42f

(
x0, y0 − 1

)

+ a43f
(
x0 + 2, y0

)
+ a44f

(
x0 + 1, y0 − 1

)
+ a45f

(
x0, y0 − 2

)
.

(3.28)

Equation (3.28) denotes that it has a 3 × 3 mask when n = 2, write FDD-4, shown in Figure 4.
Since the mask FDD-4 in Figure 4 denotes the algorithm of FDD along different

directions in fourth quadrant, we can also take the three direction angles α = 0, π/4, and
π/2 into account for (3.27). Similarly, the three direction angles in the fourth quadrant can
denote the α = 3π/2, 7π/4, and 2π in the image plane.



16 Mathematical Problems in Engineering

a45 a43 a40

a41a44

a4200

0

Figure 4: Mask FDD-4.

(i) When α = 0, it has

a40 =
1

Γ(1 − v)
− 1
Γ(2 − v)

+
1

Γ(3 − v)
, a41 =

1
Γ(2 − v)

− 2
Γ(3 − v)

,

a42 =
1

Γ(3 − v)
, a43 = 0, a44 = 0, a45 = 0.

(3.29)

(ii) When α = π/4 and by (3.3), we have

a40 =

√
2
−v

Γ(1 − v)
, a41 =

√
2
−v

Γ(2 − v)
, a42 =

√
2
−v

Γ(3 − v)
,

a43 = −
√
2
−v

Γ(2 − v)
, a44 = − 2

√
2
−v

Γ(3 − v)
, a45 =

√
2
−v

Γ(3 − v)
.

(3.30)

(iii) When α = π/2 and by (3.3), we get

a40 =
1

Γ(1 − v)
+

1
Γ(2 − v)

+
1

Γ(3 − v)
, a41 = 0, a42 = 0,

a43 = − 1
Γ(2 − v)

− 2
Γ(3 − v)

, a44 = 0, a45 =
1

Γ(3 − v)
.

(3.31)

From the mask FDD-i (i = 1, 2, 3, 4), we take three direction angles α = 0, π/4, π/2
in every quadrant, respectively, thus the v-order FDD at any point along twelve directions
can implement in [0, 2π] in an image S(x, y), which can enhance its anti-rotation capability.
But note that the coefficients (3.8), (3.10), (3.15), and (3.24) are same as (3.29), (3.17), (3.22),
and (3.31) respectively. Therefore, the mask FDD-i (i = 1, 2, 3, 4) can actually achieve FDD
along the eight directions in four quadrants, where the coefficients of the masks are (3.8),
(3.9), (3.16), (3.17), (3.22), (3.23), (3.30), and (3.31), respectively. These fractional differential
coefficients of the eight directions are different. This is the biggest difference between FDD
and general fractional differentiation. Generally, FDD-1, FDD-2, FDD-3, and FDD-4 are
collectively called FDD operator.

Digital image processing is based on direct processing discrete pixels, while the
numerical calculation of FDD is to implement fractional space filter by FDD operator
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convolution. The principle of space filter is to move the operator point by point. In digital
image S(x, y), FDD operator is used to filter with the convolution algorithms of FDD-1, FDD-
2, FDD-3, and FDD-4, respectively

S
(v)
1

(
x, y
)
=

2∑

i=0

2∑

j=0
(FDD-1)

(
i, j
)
S
(
x + i, y + j

)
, (3.32)

S
(v)
2

(
x, y
)
=

2∑

i=0

0∑

j=−2
(FDD-2)

(
i, j
)
S
(
x + i, y + j

)
, (3.33)

S
(v)
3

(
x, y
)
=

0∑

i=−2

0∑

j=−2
(FDD-3)

(
i, j
)
S
(
x + i, y + j

)
, (3.34)

S
(v)
4

(
x, y
)
=

0∑

i=−2

2∑

j=0
(FDD-4)

(
i, j
)
S
(
x + i, y + j

)
. (3.35)

Since the coefficients of FDD along the eight directions are different and it can
effectively enlarge the differences among image textures, FDD can enhance not only the
contour features in the smooth area nonlinearly, but the high-frequency edge feature in those
areas where gray changes remarkably as well. To simplify the operation, according to the
outputs comparison of the eight directions in four quadrants, the biggest one is selected as
FDD grayscale. FDD algorithm for digital color image is similar to that for gray image, while
the difference lies in that R, G, B components should do FDD, respectively, as the algorithm
for gray image before composing the RGB color image. In other words, the calculation of
mask convolution for color image is three times of that for gray image. there are strong
interrelation among the RGB components, and the gray range is [0, 255]. Thus, when the
order v ∈ [−1, 1] is big or small, the interrelations can be broken especially in the case of
nonlinearly enhancing the components, and the enhancement image may be distorted. For
digital color image, it is better to take the format of YCrCb and HSV.

4. Experiments and Results Analysis

This section will demonstrate that FDD operator has better capability of texture enhancing
for texture rich image. FDD is required in advance for an image by FDD-1, FDD-2, FDD-
3, and FDD-4 masks, respectively, along eight directions. In four quadrants, the direction
angles and coefficients of FDD operator are taken and found according to (3.8), (3.9), (3.16),
(3.17), (3.22), (3.23), (3.30), and (3.31), respectively. And we can see that the differential
coefficients along these eight directions in the image plane are not the same, which can reflect
different fractional change rates along different directions and is benefiting to enlarge the
differences among the image textures. The calculation rules of every mask FDD-i refer to
(3.32)–(3.35). Finally, we select the maximum output value of the eight directions in four
quadrants as grayscale of the point. Note that FDD has a greater calculation range [−1, 1] than
the transition width of general fractional differential order (0, 1). Clearly, when −1 ≤ v < 0,
FDD is equivalent to the fractional directional integral operator. Some experimental results
are shown in Figure 5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Texture information enhancement by FDD operator. (a) original image, (b) v = −0.2, (c) v = −0.1,
(d) v = 0.1, (e) v = 0.3, (f) v = 0.5, (g) v = 0.6, and (h) v = 0.7.

For quantity analysis, we calculate gray level cooccurrence matrix to describe the
comprehensive information of the texture details like direction, neighboring distance,
changing range, and the background. We pick up from gray level cooccurrence matrix five
classical parameters of angle matrix, contrast, correlation, energy and homogeneity. The
corresponding testing values of each parameter in the four angles can be obtained by taking
0◦, 45◦,90◦, and 135◦, respectively. So, there are 16 testing values of parameters of gray level
cooccurrence matrix. For the lunar surface in Figure 5, the parameters values of gray level
cooccurrence matrix in 1-pixel distance are shown in Tables 1 and 2.

The visual analysis of the above data and discussion of the relationship between order
v and texture-enhancing details in the directions of 0◦, 45◦, 90◦, and 135◦ are integrated as
nonlinear curves by four parameters: contrast, correlation, energy, and homogeneity, shown
in Figure 6.

Tables 1 and 2 and Figure 6 show that, no matter what the angle is, the change of
texture-enhancement has some relations with the order v. From (a) in Figure 6, we see that
four contrast curves of enhancement image are above that of the original image. Image
contrast can be interpreted as image clarity, that is, the clarity of image texture. The deeper the
texture channels become, the greater the contrast is, as a result, the image looks clearer. The
(b) in Figure 6 shows that the correlation of gray level cooccurrence matrix is always below
that of the original image and becomes weaker with the increasing of v when −1 ≤ v ≤ 1,
that is to say, when the correlation decreases, the texture details become clearer. From (c)
in Figure 6, we observe that the energy curve first decreases and then increases during
−1 ≤ v ≤ 1. Particularly, when v ∈ [−1,−0.5], the energy decreases and is above that of
the original image; when v ∈ (−0.5, 0.5], the energy continues to decrease and is less than
that of the original image; when v ∈ [0.5, 1], the energy increases with the increasing of
v and is still below that of the original image. Since the energy is the sum of square of gray
level cooccurrence matrix element and reflects the uniformity of image gray level distribution
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Table 1: Gray level cooccurrence matrix in 0◦ and 45◦ directions.

GLCM
order

0◦ 45◦

Contrast Correlation Energy Homogeneity Contrast Correlation Energy Homogeneity

Original 1.5065 0.8804 0.0334 0.6722 1.8104 0.8564 0.0296 0.6405

−1.0 2.5271 0.8677 0.0493 0.6490 3.1893 0.8331 0.0449 0.6145

−0.9 2.5316 0.8679 0.0462 0.6464 3.2058 0.8327 0.0419 0.6113

−0.8 2.5437 0.8677 0.0430 0.6434 3.2350 0.8318 0.0389 0.6077

−0.7 2.5595 0.8674 0.0400 0.6402 3.2609 0.8311 0.0360 0.6044

−0.6 2.5777 0.8667 0.0370 0.6367 3.2866 0.8301 0.0332 0.6001

−0.5 2.5996 0.8658 0.0343 0.6336 3.3257 0.8283 0.0306 0.5972

−0.4 2.6249 0.8646 0.0318 0.6303 3.3585 0.8268 0.0283 0.5930

−0.3 2.6435 0.8635 0.0294 0.6265 3.3724 0.8259 0.0262 11.5895

−0.2 2.6568 0.8626 0.0275 0.6231 3.3845 0.8250 0.0244 n.586.3

−0.1 2.6742 0.8612 0.0258 0.6192 3.3938 0.8239 0.0229 0.5836

0 2.6799 0.8601 0.0245 0.6172 3.3945 0.8228 0.0217 0.5817

0.1 2.6893 0.8586 0.0235 0.6167 3.3918 0.8217 0.0207 0.5805

0.2 2.6962 0.8569 0.0226 0.6150 3.3955 0.8198 0.0199 0.5787

0.3 2.6966 0.8550 0.0219 0.6143 3.3830 0.8182 0.0192 0.5773

0.4 2.7052 0.8522 0.0214 0.6120 3.3831 0.8152 0.0188 0.5762

0.5 2.7125 0.8485 0.0211 0.6112 3.3922 0.8106 0.0184 0.5741

0.6 2.6820 0.8444 0.0214 0.6116 3.3610 0.8050 0.0186 0.5736

0.7 2.5951 0.8398 0.0222 0.6140 3.2601 0.7988 0.0192 0.5761

0.8 2.5032 0.8351 0.0231 0.6167 3.1603 0.7918 0.0200 0.5783

0.9 2.3749 0.8301 0.0246 0.6228 3.0257 0.7835 0.0212 0.5824

1.0 2.2807 0.8250 0.0257 0.6260 2.9306 0.7751 0.0221 0.5852

and the texture coarseness, which means that the more concentrated on the distribution the
gray level cooccurrence matrix elements are, the greater the energy is. On the contrary, when
the energy is smaller, the texture changing becomes more inhomogeneous and irregular,
and texture details are clearer. So, from the energy, texture details by FDD operator are
better when v ∈ (−0.5, 1] in general. The Figure 6(d) shows that the homogeneity of gray
level coccurrence matrix is almost always below that of the original image and the trend
is down then up. When v ∈ [−1, 0.5], the homogeneity decreases with the increasing of v,
which means that the texture in different sections changes more dramatic and the texture
details are clearer. When v ∈ [0.5, 1], the homogeneity correspondingly increases, that is, it
changes little in different sections when v ∈ [0.5, 1]. In summary, once one takes all the four
parameters of gray-level cooccurrence matrix into account, the strongest points of FDD for
texture-enhancing should focus on the range of v ∈ (−0.5, 1) in general. Here note that it is
different from general fractional differential when v = 0, the result by FDD operator does
not denote the original image, but the image of series expression of directional derivative to
original image by (2.11), and it does not do fractional differentiation with respect to direction
variable h.

To further observe the texture-enhancing capability of FDD, we did a set of com-
parisons with the two algorithms, the general fractional differentiation, and the nonlinearly
enhancing high-frequency components by Butterworth filter, for different kinds of textures.
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Table 2: Gray level cooccurrence matrix in 90◦ and 135◦ directions.

GLCM
order

90◦ 135◦

Contrast Correlation Energy Homogeneity Contrast Correlation Energy Homogeneity

Original 1.5431 0.8775 0.0329 0.6698 3.0958 0.7544 0.0251 0.5918

−l.0 2.6409 0.8618 0.0489 0.6466 4.7323 0.7523 0.0386 0.5777

−0.9 2.6503 0.8617 0.0457 0.6434 4.7236 0.7535 0.0360 0.5755

−0.8 2.6629 0.8616 0.0425 0.6397 4.7278 0.7542 0.0334 0.5722

−0.7 2.6768 0.8613 0.0394 0.6365 4.7347 0.7547 0.0309 0.5691

−0.6 2.6884 0.8611 0.0366 0.6336 4.7340 0.7553 0.0285 0.5659

−0.5 2.7100 0.8601 0.0338 0.6299 4.7431 0.7552 0.0263 0.5628

−0.4 2.7361 0.8589 0.0314 0.6264 4.7569 0.7548 0.0244 0.5594

−0.3 2.7491 0.8581 0.0292 0.6234 4.7631 0.7541 0.0226 0.5564

−0.2 2.7569 0.8574 0.0274 0.6204 4.7642 0.7536 0.0211 0.5537

−0.1 2.7694 0.8563 0.0258 0.6180 4.7842 0.7517 0.0197 0.5505

0 2.7745 0.8552 0.0244 0.6158 4.7784 0.7506 0.0187 0.5480

0.1 2.7834 0.8537 0.0234 0.6139 4.7820 0.7486 0.0178 0.5448

0.2 2.7848 0.8522 0.0225 0.6129 4.7626 0.7472 0.0171 0.5418

0.3 2.7821 0.8505 0.0218 0.6117 4.7337 0.7456 0.0165 0.5400

0.4 2.7845 0.8479 0.0213 0.6113 4.6981 0.7434 0.0162 0.5378

0.5 2.7918 0.8441 0.0210 0.6089 4.6405 0.7409 0.0161 0.5362

0.6 2.7606 0.8398 0.0212 0.6088 4.5055 0.7386 0.0164 0.5382

0.7 2.6631 0.8356 0.0221 0.6126 4.2504 0.7376 0.0172 0.5434

0.8 2.5679 0.8308 0.0229 0.6151 3.9849 0.7375 0.0181 0.5496

0.9 2.4407 0.8254 0.0244 0.6205 3.6609 0.7381 0.0196 0.5592

1.0 2.3475 0.8199 0.0256 0.6252 3.3956 0.7395 0.0208 0.5663

The results are shown in Figure 7. In addition, for easy comparison of its enhancing results,
the results of experiments are the iteration of corresponding pixels of original image and FDD
image.

From Figure 7, we could find that the nonlinearly enhancing the high-frequency com-
ponents by Butterworth filter suffers from one serious drawback when large structures are
strongly enhanced. By contrast, the FDD allows the smooth enhancement of large structures.
For the enhancement of small texture details, the FDD may have some advantages over
Butterworth filter. And since the coefficients of general fractional differentiation are always
the same along the eight directions in the image plane, which is not conducive to reflect
the different change rates of the image along different directions. While the FDD coefficients
along the eight directions in the image plane are not the same, which can reflect sufficiently
different fractional change rates along different directions and is benefiting to enlarge the
differences among the image textures. So the enhancement results by FDD are better than
those by general fractional differential. FDD operator cannot only maintain the most energy
of image on the low frequency, but also nonlinearly enhance its energy over intermediate
and high frequencies, which leads to a richer texture details. For quantity analysis, we take
information entropy [19] and average gradient [20, 21] as parameters that are shown in
Table 3. The entropy denotes a measure of the amount of image information. Certainly,
texture information is also one of image information. If an image has no texture, the gray level
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Figure 6: Curves of parameters of gray level cooccurrence matrix. (a) Contrast, (b) correlation, (c) energy,
and (d) homogeneity.

cooccurrence matrix is almost a zero matrix and its entropy is close to zero. Otherwise, if an
image has a great number of comprehensive texture details, its entropy is also greater. The
average gradient can be sensitive to reflect the ability of contrast expression of small details,
which can be used to evaluate image clarity. The experiment data of Figure 7 are shown in
Table 3.

From Figure 7 and Table 3, we can see that, although the algorithm of the nonlinearly
enhancing the high-frequency components by Butterworth filter can increase the average
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(e) (f) (g) (h)
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Figure 7: Texture-enhancement capability comparison. (a) original image, (b) the nonlinearly enhancing
the high-frequency components by Butterworth filter, (c) general fractional differentiation of 0.6 order,
(d) enhanced image by FDD operator of 0.8 order, (e) original image, (f) the nonlinearly enhancing the
high-frequency components by Butterworth filter, (g) general fractional differentiation of 0.8 order, (h)
enhanced image by FDD operator of 0.8 order, (i) original image, (j) the nonlinearly enhancing the high-
frequency components by Butterworth filter, (k) general fractional differentiation of 0.7 order, (l) enhanced
image by FDD operator of 0.3 order, (m) original image, (n) the nonlinearly enhancing the high-frequency
components by Butterworth filter, (o) general fractional differentiation of 0.6 order, and (p) enhanced
image by FDD operator of 0.9 order.

gradient, it only enhances the margin and losses a lot of texture details, thus it only has the
minimum information entropy. Comparing with general fractional differential, the average
gradient by FDD is slightly lower than it, however, the enhanced images by FDD have
the biggest information entropy, which means FDD can enhance both the margins and the
textures. Therefore, FDD could nonlinearly preserve the low-frequency contour feature in the
smooth area to the furthest degree, nonlinearly enhance high-frequencymarginal information
in those areas where gray scale changes frequently, and nonlinearly enhance texture details in
those areas where gray scale does not change evidently. Thus FDD could nonlinearly enhance
the comprehensive texture details.
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Table 3: Information entropy and average gradient in Figure 7.

Quantity figure Information entropy Average gradient

(a) 7.1169 12.7524
(b) 7.0527 18.5745
(c) 7.5542 24.2284
(d) 7.7479 21.3413
(e) 6.7022 8.1590
(f) 6.5945 9.9940
(g) 6.9191 14.3697
(h) 7.0042 12.3686
(i) 7.0699 20.1335
(j) 6.7949 21.9897
(k) 7.2170 31.1642
(l) 7.7158 28.0974
(m) 7.0124 4.7013
(n) 6.5731 4.9414
(o) 7.1646 7.1624
(P) 7.4953 5.5328

(a) (b) (c) (d)

Figure 8: Color texture information enhanced by FDD operator. (a) original image, (b) v = −0.1, (c) v = 0.1,
(d) v = 0.2.

For an RGB color image, the algorithm is similar to that for gray image. We do FDD for
R, G, B component, respectively, then compose the RGB color image. The results are shown
in Figure 8.

Observing carefully Figure 8, we see that the texture channels become deeper and the
texture details are clearer by FDD operator. FDD operator not only maintains the most energy
of image on the low frequency, but also nonlinearly enhance its energy over intermediate and
high frequencies, which leads to a richer texture details. For the purpose of directly observing
the change of grayscale, without losing generality, we take vertical projection (x-coordinate)
of gray level of (a) and (d) in Figure 8 as examples, to compare the change of gray-level
values. The results are shown in Figure 9.

From Figure 9, we know that, the same as general fractional differential, FDD
operator also enhances the high-frequency edge information with obvious enhancement
effect. Moreover, comparing to integer-order differentiation, FDD keeps the envelope of
gray level histogram distribution to some degree, and reserves the low-frequency contour
information of the original image. After FDD to the original image, the result shows that
the change magnitude of each point in the original image along eight directions in the four
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Figure 9: The vertical projections of gray scale of (a) and (d) in Figure 8. (a) the vertical projection of gray
level of original image (a) in Figure 8, (b) part of (a), (c) the vertical projection of gray level of original
image (d) in Figure 8, (d) part of (c).

quadrants. Therefore, FDD adds some burrs in the envelope curve of gray-level projection of
the original image, which just denotes that the texture details are richer than the original
image in these locations where there are many burrs and FDD can nonlinearly enhance
texture details in those areas that gray levels have little changed, but integer-order differential
is near to zero in those areas. In short, FDD not only nonlinearly preserves the contour feature
in the smooth area, but also keeps high-frequency edge feature in those areas where gray
changes remarkably and high-frequency texture detail feature in those areas where gray does
not change evidently.

5. Conclusion

Fractional differentiation has played a very important role in digital image processing fields
and more and more researchers begin to study it. This paper intends to propose a new
mathematic approach (FDD) and deduce a new operator (FDD operator) obtained though
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the generalization of the Taylor formula for one-variable function to two-variable function
and deduced though the power series expression of two-variable function. The particularity
of FDD operator is that a directional derivative order between −1 and 1 favours detection
selectivity, which expands the transition width of fractional differential order 0 < v < 1.
Since the FDD coefficients along the eight directions in the image plane are not the same,
which can reflect sufficiently different fractional change rates along different directions and is
benefiting to enlarge the differences among the image textures. So the enhancement results by
FDD are better than those by general fractional differential. Experiments show that the FDD
operator has excellent textural details enhancing capabilities for rich-grained digital images.
For quantity analysis, from the different quantitative criteria, gray-level cooccurrence matrix,
vertical projection (x-coordinate) of gray-level, information entropy and average gradient, all
show that FDD can nonlinearly enhance comprehensive texture details. FDD is a newmethod
and technology for image-texture enhancement.
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