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The financial time series model that can capture the nonlinearity and asymmetry of stochastic
process has been paid close attention for a long time. However, it is still open to completely
overcome the difficult problem that motivates our researches in this paper. An asymmetric and
nonlinear model with the change of local trend depending on local high-low turning point process
is first proposed in this paper. As the point process can be decomposed into the two different
processes, a high-low level process and an up-down duration process, we then establish the
so-called trend-switching model which depends on both level and duration (Trend-LD). The
proposed model can predict efficiently the direction and magnitude of the local trend of a time
series by incorporating the local high-low turning point information. The numerical results on six
indices in world stock markets show that the proposed Trend-LD model is suitable for fitting the
market data and able to outperform the traditional random walk model.

1. Introduction

The traditional Brownian motion [1] or random walk model [2] has rich applications in
physics, biology, and economics, especially in many classical financial theories for capturing
the uncertainty of financial data (e.g., efficient market hypothesis). However, the dynamic
behavior of Brownian motion is symmetrical and the probability of up and down at any time
is always 50%. This is not consistent with the dynamic of price of any risky asset. So Brownian
motion is not efficient in capturing the uncertainty for financial time series. To overcome
the shortcoming of Brownian motion and capture the uncertainty in financial market, some
sophisticated mean-reversion models are proposed, such as, arithmetic Ornstein-Uhlenbeck
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model [3], geometric Ornstein-Uhlenbeck [4], and autoregressive moving average (ARMA)
model [5]. In addition, Engle and Granger [6] developed an error correct model (ECM) in
which the short-term trend can be corrected by the deviation from the equilibrium of the long-
term cointegration. However, Granger and Engle’s model has a clear disadvantage: when the
process (e.g., prices or returns of financial securities) deviates from a long-term mean level
or equilibrium, the direction and magnitude of the local trend will immediately change and
it will go back to the long-term mean level or equilibrium. This makes that the change of
the trend is too frequent. However, in many time series, such as, sunspot numbers, Canada
lynx data, business cycle series, the change of local trend does not occur frequently in a small
amplitude or a short period due to the inertia of movement and these time series often present
the nonlinearity and asymmetry.

In the last two decades, in order to capture the properties of the real world time series,
some regime-switchingmodels, for instance, the threshold autoregressive (TAR)model [7, 8],
the smoothing transition autoregressive (STAR) model [9, 10], and the Markov-switching
autoregressive (MSAR) model [11, 12] are paid close attention. The switching between
different regimes is often determined by the lagged variables, exogenous variables, or latent
variables. For TAR model, the switching from one regime to another depends on the lagged
variables or the others in different fixed intervals, such that the threshold values are fixed
and the switch of the regimes is abrupt. STAR model is actually a weighted two-regime
TAR model, where the weight is a function of the lagged variable or the others such that the
transition between regimes is smooth. For MSARmodel, The choice of the regime is based on
a latent random variable which follows a Markov process. The regime-switching models are
more flexible and asymmetric and able to overcome the shortcomings of the mean-reversion
models and therefore are used widely in finance (see [13–18]). TAR and STAR models are
suitable for the fluctuation data with fixed thresholds or regular cycle, but not for the case that
the thresholds and durations of different regimes are time-varying or longer-term dependent,
since the change of the regime is still too frequent. While MSAR model characterizes that the
choice of regimes is random and only dependent on current state. Hence, in these regime-
switchingmodels, the change of the regime (trend) is always abrupt and does not incorporate
the longer-term historical information.

Generally speaking, in financial practice, the measure of the volatility of the returns
of risky assets is based on the range of daily price [19–23]. On one hand, for the local high
(low) level, technical analysts and investors often exploit the past local high-low levels or
resistant-support levels of financial data for predicting the next one. For example, when
investors forecast the direction of up-down regime, they often refer to the past local high
(low) levels of the technical indicators, for example, BIAS (the relative deviation from
the moving average), MACD (moving average convergence divergence), and RSI (relative
strength index); on the other hand, for the duration (the arrival time between consecutive
events), Engle and Russell [24] proposed an autoregressive conditional duration (ACD)
model, and then Bauwens and Giot [25] introduce the logarithmic-ACD model. Zhang et al.
[26] extended ACDmodel to a threshold autoregressive conditional duration (TACD)model.
The first two models allow the expected duration to depend linearly on the past ones, but
TACD model nonlinearly. Furthermore, Bauwens and Veredas [27] propose the stochastic
conditional duration (SCD) model that is more flexible. The applications of the ACD models
have been reported in numerous papers (see [28–38]); moreover, for both level and duration,
there are numerous empirical applications about cycle (e.g., business cycle, see [39–42] and
solar cycle, see [43]), and turning point [44–46]. Durland and McCurdy [47] proposed
a class of duration-dependent markov-switching model. The model can incorporate the new
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information (duration) into the transition probabilities of the choice of regimes; however, the
new information is not longer term.

In this paper, we introduce a two-regime model that depends on a local high and low
turning-point process (local peaks and troughs). This model can be transformed into two
processes, a high-low level process and an up-down duration process. The local high (low)
level and the up (down) duration of the current regime, which is widely used in many fields,
such as economics and finance, depend on those of the past ones. To exploit the past longer-
term key information, a new class of trend-switching model that incorporates both a local
high-low level process and an up-down duration process is discussed andwe call it the trend-
switching model which depends on both level and duration (Trend-LD). In fact, both the
high-low level process and the up-down duration process are threshold processes. Therefore,
Trend-LD model is also called a time-varying double-threshold regime-switching model.

The rest of the paper is organized as follows. In Section 2, we introduce the model
specifications. Section 3 gives the estimations of the parameters. In Section 4, we compare the
forecasting performances of the proposed model with that of random walk using six stocks
indices from different stock markets.

2. Model Specifications

In this section, we first provide the definition of local high-low turning point and derive a
local high-low level subseries and an up-down duration subseries by which the change in
the local trend is determined. And then the equations satisfied by the two subseries are put
forward. A nonlinear specifications of the Trend-LD model are proposed.

Let Pt denote stock index series at time t, and

Yt = log(Pt) −MA
(
log(Pt−1), m

)
, (2.1)

where MA(log(Pt−1), m) =
∑t−1

i=t−m log(Pi)/m. Clearly, MA(log(Pt−1), m) stands for the m-
order moving average of the logarithm of index from time t −m to t − 1, and Yt is the relative
bias of the daily stock index at time t. In the bias series Yt, the long-term trend is removed
from the time series of index. As a result, it is relative stable and fluctuate around zero, and
it can better represent the short-term relative gains or losses, but not absolute gains or losses,
than price Pt. Figures 1 and 2 give an intuitional example of DJI (US Dow Jones Industrial
Average index). In Figure 2, the solid line is the relative bias of the DJI (Yt); the circles and
squares are the local high and low turning-point series, respectively (window radiusw = 20).

Definition 2.1. For the relative bias series {Yt}Nt=1, Ytk is a local high (low) level, if it is
the maxima (minima) of all samples in [tk − w, tk + w] for a given window radius w,
Ytk = max(Ytk−w, . . . , Ytk , . . . , Ytk+w)(min(Ytk−w, . . . , Ytk , . . . , Ytk+w)) and we denote the high
(low) level Ytk byHk(Lk). The pair (tk,Hk)((tk, Lk)) is called a local high (low) turning point.

The local high (low) turning-point process (tk,Hk) can be obtained by scanning all
samples of {Yt}Nt=1. However, it may not be a strictly alternate high-low turning-point series
because two neighbor points may be all high (low). In this case, we delete a high (low)
point which is not greater (less) than the neighboring point. For simplicity, without loss of
generality, suppose the first and last are two local high points, we obtain a strictly alternate
local high-low turning-point series {(t0,H0), (t1, L1), (t2,H1), . . . , (t2n−1, Ln), (t2n,Hn)} (see the
circles and squares in Figure 2), where the subseries {t0, t1, . . . , t2n−1, t2n} is a series consisting
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Figure 1: The daily stock index DJI (1994.05.09–2010.08.18).
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Figure 2: The relative bias of the daily DJI level and its strictly local high-low turning-point series
(1994.05.09–2010.08.18).

of time and {H0, L1,H1, . . . , Ln,Hn} is another series consisting of the levels of the local high
and low points. Furthermore, we can obtain the difference series: letD−

1 = t1 − t0,D+
1 = t2 − t1,

D−
2 = t3 − t2,D+

2 = t4 − t3, . . .,D−
n = t2n−1 − t2n−2,D+

n = t2n − t2n−1. We callD±
i the strictly alternate

duration of the up-down trend and {D−
1 , D

+
1 , D

−
2 , D

+
2 , . . . , D

−
n,D

+
n} an up-down duration sub-

series. Subseries pair {(D−
1 , L1), (D+

1 ,H1), (D−
2 , L2),(D+

2 ,H2), . . . , (D−
n, Ln), (D+

n,Hn)} is called
Level-Duration (LD) series and will be considered as our main objective.

2.1. Level-Duration Equations

Clearly, LD series {(D−
1 , L1), (D+

1 ,H1), (D−
2 , L2),(D+

2 ,H2), . . . , (D−
n, Ln), (D+

n,Hn)} controls the
direction and magnitude of the local trend of index series {Yt}. Because the current local high
(low) level and the up (down) duration depend on the past ones. Then, each Hk, Lk can be
expressed as the linear combination of the past high and low level; that is, we have

Hk = πh
0 +

ph∑

i=1

πh
1,iHk−i +

qh∑

j=1

πh
2,jLk−j+1 + ηh

k,

Lk = πl
0 +

pl∑

i=1

πl
1,iLk−i +

ql∑

j=1

πl
2,jHk−j + ηl

k.

(2.2)
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Similarly, for no nonnegativity constraint on coefficients estimation, we use the logarithm of
durations rather than durations to make sure that the range of the logarithm of duration is
real R(−∞,+∞). the duration subseries {D−

1 , D
+
1 , D

−
2 , D

+
2 , . . . , D

−
n,D

+
n} can be specified by the

logarithmic-ACD model [25]

lnD+
k = πd+

0 +
pd

+
∑

i=1

πd+

1,i lnD
+
k−i +

qd
+

∑

j=1

πd+

2,j lnD
−
k−j+1 + ηd+

k ,

lnD−
k = πd−

0 +
pd

−
∑

i=1

πd−
1,i lnD

−
k−i +

qd
−

∑

j=1

πd−
2,j lnD

+
k−j + ηd−

k ,

(2.3)

where the error terms {ηh
k
}, {ηl

k
}, {ηd+

k
}, and {ηd−

k
} are independent normal distributions with

mean 0, variance σ2
h
, σ2

l
, σ2

d+ , and σ2
d− , respectively. ph, qh, pl, ql and pd

+
, qd

+
, pd

−
, qd

−
are the

number of lag order.
Let

Ωh
k−1 = {Lk,Hk−1, Lk−1,Hk−2, . . .}, Ωl

k−1 = {Hk−1, Lk−1,Hk−2, Lk−2, . . .},

Ωd+

k−1 =
{
D−

k ,D
+
k−1, D

−
k−1, D

+
k−2, . . .

}
, Ωd−

k−1 =
{
D+

k−1, D
−
k−1, D

+
k−2, D

−
k−2, . . .

}
,

(2.4)

be the information sets. Assume that conditional expectations hk = E(Hk | Ωh
k−1), lk = E(Lk |

Ωl
k−1), d

+
k = E(D+

k | Ωd+

k−1), and d−
k = E(D−

k | Ωd−
k−1). Then, we have

hk = πh
0 +

ph∑

i=1

πh
1,iHk−i +

qh∑

j=1

πh
2,jLk−j+1,

lk = πl
0 +

pl∑

i=1

πl
1,iLk−i +

ql∑

j=1

πl
2,jHk−j .

(2.5)

By straightforwardly computing, it follows from (2.3) that

d+
k = exp

⎧
⎨

⎩
πd+

0 +
pd

+
∑

i=1

πd+

1,i lnD
+
k−i +

qd
+

∑

j=1

πd+

2,j lnD
−
k−j+1 +

1
2
σ2
d+

⎫
⎬

⎭
,

d−
k = exp

⎧
⎨

⎩
πd−
0 +

pd
−

∑

i=1

πd−
1,i lnD

−
k−i +

qd
−

∑

j=1

πd−
2,j lnD

+
k−j +

1
2
σ2
d−

⎫
⎬

⎭
.

(2.6)

In the rest of this paper, we will denote the local high-low level (2.2) by L(ph, qh; pl, ql), and
the up-down duration (2.3) by D(pd

+
, qd

+
; pd

−
, qd

−
).
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2.2. Trend-Switching Model with LD Dependence

In this study, we derive the relative bias {Yt} by removing the middle-to-long term trend
(moving-average) from the price. {Yt} is relative stable and fluctuate around 0, so {Yt} is
better at reflecting the short-term relative profit or loss of investors, but not absolute profit
or loss, than the price {Pt}. Furthermore, in finance, researchers and practitioners often pay
closer attention to daily return than daily price itself. Similarly, We are interested in the
differences of the relative bias rather than the relative bias itself.

Let

rt = Yt − Yt−1. (2.7)

Then, the dynamic characteristics of the relative bias series {Yt} can be indirectly represented
by the difference sequences {rt}. And assume that the difference sequences {rt} have the
following expression:

rt =
(
μ+
t + ε+t

)
Ik,t +

(
μ−
t + ε−t

)
(1 − Ik,t), (2.8)

where Ik,t is an indicator function and satisfies

Ik,t =

{
1, t ∈ [t2k−1, t2k),
0, t ∈ [t2k−2, t2k−1).

(2.9)

This means that Ik,t = 1 if Yt is in the kth upward phase, and Ik,t = 0 if Yt is in the kth
downward phase. And

μ+
t = ϕ+

0 +
pμ

+
∑

i=1

ϕ+
1,irt−i + ϕ+

2m
+
k,t,

μ−
t = ϕ−

0 +
pμ

−
∑

i=1

ϕ−
1,irt−i + ϕ−

2m
−
k,t,

(2.10)

where m+
k,t

= (hk − Lk)/d+
k
and m−

k,t
= (lk −Hk−1)/d−

k
represent respectively the upward and

downward slope in the kth phase; ϕ±
0 , ϕ

±
1,i (i = 1, . . . , pμ

±
), and ϕ±

2 are the parameters that
need be estimated. The innovation {ε+t } and {ε−t } are mutual independent normal error terms
with mean 0, variance σ2

ε+ and σ2
ε− , respectively. We call (2.8) Trend(pμ

+
; pμ

−
).

It is not hard to find that the local trend (μ+
t , μ

−
t ) consists of three components,

that is, the constant term (ϕ+
0 , ϕ

−
0 ), the short-term (

∑pμ
+

i=1 ϕ
+
1,irt−i,

∑pμ
−

i=1 ϕ
−
1,irt−i), and the phase

term (ϕ+
2m

+
k,t, ϕ

−
2m

−
k,t). The direction and magnitude of the local trend incorporate the key

medium- and long-term information, for example, the local high-low levels and the up-
down durations. Therefore, the dynamic behavior of the equation Trend(pμ

+
; pμ

−
) depends

on both the level equation L(ph, qh; pl, ql) and the duration equation D(pd
+
, qd

+
; pd

−
, qd

−
). It is

integrally called Trend(pμ
+
; pμ

−
) − L(ph, qh; pl, ql) − D(pd

+
, qd

+
; pd

−
, qd

−
) model, that is, Trend-

LD model. In fact, the alternate local high-low turning points (the local high-low levels, the
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up-down durations) are the two-dimensional thresholds of the Trend-LD and therefore it is
also called the time-varying regime-switching model.

Interestingly, if the parameters of the Trend(pμ
+
; pμ

−
) model satisfy some constrain

conditions, such as, ϕ+
0 = ϕ−

0 , ϕ
+
1,i = ϕ−

1,i, i = 1, 2, . . . ,max(pμ
+
, pμ

−
), ϕ+

2 = ϕ−
2 = 0, σ2

ε+ = σ2
ε− . Then

Trend(pμ
+
; pμ

−
) model is a classical pure autoregressive (AR) model. In addition, if the local

high-low levels and up-down durations are substituted by some constants, Trend(pμ
+
; pμ

−
)

model is a periodically changing AR or a particular form of TAR.

3. Estimation of Parameters

In this section, we will estimate the parameters of the Trend-LD model using a two-stage
method. We first estimate the parameters of the local high-low level equation L(ph, qh; pl, ql)
and up-down duration equation D(pd

+
, qd

+
; pd

−
, qd

−
) by the method of ordinary least squares

(OLS) in the first stage. And then, in the second stage, we estimate the parameters of the
equation Trend(pμ

+
; pμ

−
) by maximum likelihood (ML). In fact, the ML is equivalent to the

OLS under the assumption that error terms are normally distributed. We use the ML in the
second stage because the statistical inferences of parameter estimations are similar to that in
[48].

The estimation in the first stage is straightforward. Let

{H0, L1,H1, . . . , Ln,Hn},
{
D−

1 , D
+
1 , D

−
2 , D

+
2 , . . . , D

−
n,D

+
n

}
, (3.1)

be the high-low levels and up-down durations series samples data. Then the parameters in
equation L(ph, qh; pl, ql) and equationD(pd

+
, qd

+
; pd

−
, qd

−
) can be estimated directly using OLS

method.
After the parameters in equation L(ph, qh; pl, ql) are estimated, we can estimate

{ĥk,t, l̂k,t} using (2.5) and forecast the next local high-low levels. Similarly, in terms of the
estimated parameters in equation D(pd

+
, qd

+
; pd

−
, qd

−
), {d̂+

k,t, d̂
−
k,t} can be obtained using (2.6),

and the next local up-down durations can be forecasted. Then, the next local high (low)
turning point (threshold point) can be obtained, which is helpful for predicting the change of
trend.

In the second stage, we can obtain the estimation of the slope of the up-down phase,
{m+

k,t
,m−

k,t
} in the equation Trend(pμ

+
; pμ

−
) using

m+
k,t =

ĥk,t − Lk,t

d̂+
k,t

, m−
k,t =

l̂k,t −Hk−1,t

d̂−
k,t

. (3.2)

For the purpose of our analysis, denote M̂ = M̂− ∪ M̂+ and M̂− = {m̂−
1 , m̂

−
2 , . . . , m̂

−
n},

M̂+ = {m̂+
1 , m̂

+
2 , . . . , m̂

+
n}. Next we estimate the parameters in equation Trend(pμ

+
; pμ

−
). To this

end, we denote the parameter set by Ω = Ω+ ∪Ω− with

Ω− =
{
ϕ−
0 , ϕ

−
1,1, ϕ

−
1,2, . . . , ϕ

+
1,pμ−

, ϕ−
2 , σ

2
ε−

}
,

Ω+ =
{
ϕ+
0 , ϕ

+
1,1, ϕ

+
1,2, . . . , ϕ

+
1,pμ+

, ϕ+
2 , σ

2
ε+

}
.

(3.3)
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For data set RT0 = {r1, r2, . . . , rT0}, R⊥
T0

= {rT0+1, rT0+2, . . . , rT2n}, note that ε+t and {ε−t } are normal
series. Then for the given indicator Ik,t, the conditional logarithm likelihood function can be
written as

l
(
R⊥

T0
| RT0 , M̂,Ω

)
= l

(
R⊥

T0
| RT0 , M̂

−,Ω−
)
+ l

(
R⊥

T0
| RT0 , M̂

+,Ω+
)
, (3.4)

where

l
(
R⊥

T0
| RT0 , M̂

−,Ω−
)

= −0.5
n∑

k=1

T2k−1∑

t=T2k−2+1

⎡

⎢⎢
⎣ln 2π + lnσ2

ε− +

(
rt − ϕ−

0 −
∑pμ

−

i=1 ϕ
−
1,irt−i − ϕ−

2m
−
k,t

)

σ2
ε−

⎤

⎥⎥
⎦,

l
(
R⊥

T0
| RT0 , M̂

+,Ω+
)

= −0.5
n∑

k=1

T2k∑

t=T2k−1+1

⎡

⎢⎢
⎣ln 2π + lnσ2

ε+ +

(
rt − ϕ+

0 −
∑pμ

+

i=1 ϕ
+
1,irt−i − ϕ+

2m
+
k,t

)

σ2
ε+

⎤

⎥⎥
⎦.

(3.5)

To obtain the maximum likelihood estimation (MLE) of the conditional logarithm likelihood
function l(R⊥

T0
| RT0 , M̂,Ω) on parameter setΩ, we only need to maximize l(R⊥

T0
| RT0 , M̂

−,Ω−)

and l(R⊥
T0

| RT0 , M̂
+,Ω+) on parameter set Ω− and Ω+, respectively. If the process rt is

stationary, the estimates fall within the boundaries of the allowable parameter space, then
the estimators are consistent [48].

4. Hypotheses of Asymmetry and Nonlinearity

In this section, we focus on the asymmetry and nonlinearity of Trend-LDmodel and consider
the following three hypotheses.

Hypothesis 1. The dynamic behavior of the high-low level process does not have asymmetric
effects on space (level), namely

H1
0 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

πh
0 = πl

0 = πhl
0 ,

πh
1,i = πl

1,i = πhl
1,i, i = 1, 2, . . . ,max

{
ph, pl

}
,

πh
2,j = πl

2,j = πhl
2,j , j = 1, 2, . . . ,max

{
qh, ql

}
,

σ2
h
= σ2

l
= σ2

hl
.

(4.1)
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Hypothesis 2. The dynamic behavior of the up-down duration process does not have
asymmetric effect on time (duration), namely

H2
0 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

πd+

0 = πd−
0 = πd

0 ,

πd+

1,i = πd−
1,i = πd

1,i, i = 1, 2, . . . ,max
{
pd

+
, pd

−
}
,

πd+

2,j = πd−
2,j = πd

2,j , j = 1, 2, . . . ,max
{
qd

+
, qd

−
}
,

σ2
d+ = σ2

d− = σ2
d
.

(4.2)

Hypothesis 3. The dynamic of the local trend is linear and does not depend on local high-low
turning point (level and duration), namely

H3
0 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ+
0 = ϕ−

0 = ϕ0,

ϕ+
1,i = ϕ−

1,i = ϕ1,i, i = 1, 2, . . . ,max
{
pμ

+
, pμ

−
}
,

ϕ+
2 = ϕ−

2 = ϕ2 = 0,
σ2
ε+ = σ2

ε− = σ2
ε .

(4.3)

If Hypothesis 1 is true, the local high-low level equation L(ph, qh; pl, ql) can be further
simplified to the equation L(p, q). The truth of Hypothesis 2 will show that the up-down
duration equation D(pd

+
, qd

+
; pd

−
, qd

−
) can be further simplified to the equation D(p, q).

Hypothesis 3 means that equation Trend(pμ
+
; pμ

−
) can be further simplified to a linear

autoregressive model AR(p). The three Hypotheses are tested by the likelihood ratio statistic
which is asymptotic Chi-square distribution and its degree of freedom is the number of the
constrained parameters.

5. Empirical Applications

Six stock indices with different degree of market development are used to test the
performance of ourmodels in this section. These indices are USDow Jones Industrial Average
(DJI), US Standard & Poor 500 Index (SP500), British Financial Times Stock Exchange 100
Index (FTSE), Singapore Straits Times Index (STI), Indian Bombay Stock Exchange Sensex
Index (BSE), and Chinese Shenzhen Component Index (SZCI).

5.1. Data

We collect the daily close prices of the above six indices from “http://www.finance.yahoo
.com.” Each complete data sample is divided into two subsamples, estimating subsample
(ES) and forecasting subsample (PS). The details about the data can be found in Table 1. It is
worth mentioning here that we preliminarily use 80% of training set for each index and then
select a local high point as the separating point which is nearest from the point that divided
the total daily index by 80% − 20% since the end of the local high-low turning-point series
{(t0,H0), (t1, L1), (t2,H1), . . . , (t2n−1, Ln), (t2n,Hn)}, is a local high point.

According to the definition of local high-low turning point, we computed its level
data Hk and Lk, duration data D+

k
and D−

k
for each index and provide their descriptive
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Table 1: The periods of estimating subsample (ES) and predicting subsample (PS).

Index ES Sizes PS Sizes
DJI 1928.10.01–1993.08.26 16286 1993.08.27–2010.08.18 4276
SP500 1950.01.03–1997.12.04 12062 1997.12.05–2010.08.18 3193
FTSE 1984.04.02–2005.07.07 5372 2005.07.08–2010.08.18 1293
STI 1987.12.28–2005.10.12 4445 2005.10.13–2010.08.18 1215
BSE 1990.01.01–2006.10.17 3932 2006.10.18–2010.08.18 943
SZCI 1991.04.03–2006.07.04 3757 2006.07.05–2010.08.18 1008

Table 2: Descriptive statistics of local high-low level and up-down duration.

statistic DJI SP500 FTSE STI BSE SZCI
high mean 0.041 0.036 0.041 0.049 0.078 0.097
level std 0.027 0.017 0.02 0.035 0.05 0.091
low mean −0.046 −0.037 −0.042 −0.055 −0.074 −0.091
level std 0.046 0.035 0.04 0.055 0.056 0.069

level range 0.087 0.073 0.083 0.104 0.152 0.188
up mean 24.489 23.427 23.349 23.464 25.653 23.685
duration std 13.438 12.452 12.934 12.225 13.637 12.466
up mean 27.817 27.073 28.287 27.071 25.221 27.88
duration std 14.511 15.079 15.762 16.309 13.017 13.871

duration cycle 52.306 50.5 51.636 50.535 50.874 51.565
Note: level range =mean of local high level −mean of local low level, duration cycle =mean of up duration +mean of down
duration.

statistics (mean and standard deviation) in Table 2, where moving average order m = 20,
window radius w = 20 (The choice of these two parameters is related to the commonly used
parameters of Dow’s trend theory and Elliott’s wave theory in technical analysis. This study
is to model the short-term trend and fluctuation of the stock index and to compare with the
random walk hypothesis. Therefore, we choose some short-term parameters). In terms of the
high-low level, the vibration amplitudes of the later three indices (STI, BSE, SZCI) are greater
than those of the first three indices (DJI, SP500, FTSE). Among 6 indices, the fluctuation
of the SP500 is the smallest and that of the SZCI is the largest. However, it seems that the
characteristics of the up-down durations are not significantly different. Therefore, the local
high-low level maybe have more informative than the up-down duration.

5.2. Estimates and Tests

For the convenience of comparisons, we preliminarily consider the simple case of the
proposed models, Trend(1; 1)-L(2, 2; 2, 2)D(1, 1; 1, 1), which are enough to capture the
dynamics of the data (in financial application, first- or second-order AR model is normally
used, especially in modeling stock returns. For our Trend-LD, we use second-order lag for
the level equation, first-order lag for the duration equation, and the autoregressive term of
the local trend equation. We did not provide concise explanation how we choose the orders.
In general, the choice of the order is based on AIC or BIC criteria. We believe that these
criteria are limited as the penalty on the number of parameters is somewhat arbitrary. We
estimated the results on different combinations of parameters in unreported tests. For the
local trend equation, we found the coefficients were not significantly different from 0 by t-test
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Table 3: OLE of high-low level equation.

Panel A: high level equation (Hk)
Index πh

0 πh
1,1 πh

1,2 πh
2,1 πh

2,2 σh R2 F-stat. P value

DJI 0.017∗∗∗ −0.171∗∗∗ −0.084 −0.236∗∗∗ 0.117∗∗ 0.022 0.230 22.868 <0.001
(6.44) (−4.838) (−1.582) (−6.346) (2.307)

STI 0.010 −0.137∗ −0.032 −0.291∗∗∗ 0.327∗∗∗ 0.029 0.316 9.387 <0.001
(1.550) (−1.765) (−0.321) (−3.594) (3.501)

Panel B: low level equation (Lk)
Index πl

0 πl
1,1 πl

1,2 πl
2,1 πl

2,2 σl R2 F-stat. P value

DJI −0.02∗∗∗ 0.039 0.175∗∗∗ −0.056 0.224∗∗∗ 0.035 0.099 8.400 <0.001
(−4.816) (0.436) (3.026) (−0.668) (3.586)

STI −0.029∗∗∗ 0.350∗∗ 0.442∗∗∗ −0.164 0.030 0.041 0.191 4.728 0.002
(−3.193) (2.342) (3.905) (−1.139) (0.251)

Panel C: level equation(H1
0 )

Index πhl
0 πhl

1,1 πhl
1,2 πhl

2,1 πhl
2,2 σhl R2 F-stat. P value

DJI −0.001 −0.209∗∗∗ 0.170∗∗∗ −0.256∗∗∗ 0.244∗∗∗ 0.030 0.560 195.946 <0.001
(−0.710) (−5.376) (4.409) (−6.658) (6.272)

STI −0.0004 −0.100 0.301∗∗∗ −0.279∗∗∗ 0.186∗∗ 0.039 0.538 48.248 <0.001
(−0.093) (−1.310) (4.116) (−3.824) (2.467)

Panel D: asymmetry test
χ2-stat. d.f. P value

DJI 121.701 6 <0.001
STI 46.604 6 <0.001
Note: Asterisks ∗∗∗, ∗∗, ∗ indicate significance at the 1%, 5%, and 10% level, respectively.
t-statistics are given in parentheses beneath the parameter estimates.
Panel A:Hk = πh

0 + πh
1,1Hk−1 + πh

1,2Hk−2 + πh
2,1Lk + πh

2,2Lk−1 + ηh
k
.

Panel B: Lk = πl
0 + πl

1,1Lk−1 + πl
1,2Lk−2 + πl

2,1Hk−1 + πl
2,2Hk−2 + ηl

k .
Panel C: πh

0 = πl
0 = πhl

0 ; πh
1,i = πl

1,i = πhl
1,i, i = 1, 2; πh

2,j = πl
2,j = πhl

2,j , j = 1, 2; σ2
h = σ2

l = σ2
hl(H

1
0 ).

when the order of autoregressive term was 2 or higher, and the conditional expectation of the
difference rt is mainly determined by the second term related to turning points. Therefore,
we only use the first order of the autoregressive term as well as the choice of lag order
of other parameters). Then we estimate the parameters and conduct the asymmetry and
nonlinearity tests for the proposed models. Ultimately, the structure of the model is chosen
as Trend(1; 1)-L(2, 2; 2, 2)D(1, 1) after the tests. For brevity, we consider two representative
indexes, the developed market index DJI and developing market index STI and focus our
discussion on results pertaining to the two indexes. The other four stock indexes have some
similar properties.

We first consider the OLS estimations (OLE) and asymmetric tests on high-low level
equation L(2, 2; 2, 2) and up-down duration equation D(1, 1; 1, 1). The results are presented
in Tables 3 and 4, respectively. We find (1) for equation L(2, 2; 2, 2) under the null hypothesis
H1

0 (in Panel C) and alternative hypothesis (in Panel A and B), the R2 statistics are very
large for L(2, 2; 2, 2), and its P values of F-statistics are very small. From the t statistics of
the coefficients, the current high-low level is significantly dependent on the past (lagged
first-order and second-order) high-low levels. (see Table 3). However, for duration equation
D(1, 1; 1, 1) under the null hypothesisH1

0 (in Panel C) and alternative hypothesis (in Panel A
and B), The R2 statistics are very small for duration equation, and its P values of F-statistcs
are comparatively large (see Table 4). From the t statistics of the coefficients, the current up-
down duration is weakly dependent on the past (lagged first-order) up-down durations.



12 Mathematical Problems in Engineering

Table 4: OLE of up-down duration equation.

Panel A: Up duration equation (D+
k
)

Index πd+

0 πd+

1,1 πd+

2,1 σd+ R2 F-stat. P value

DJI 3.029∗∗∗ 0.011 0.002 0.511 0.0001 0.021 0.979
(12.058) (0.203) (0.034)

STI 3.080∗∗∗ −0.021 0.0007 0.514 0.0001 0.025 0.975
(6.466) (−0.220) (0.006)

Panel B: Down duration equation (D−
k
)

Index πd−
0 πd−

1,1 πd−
2,1 σd− R2 F-stat. P value

DJI 2.824∗∗∗ −0.023 0.085∗∗ 0.536 0.023 3.620 0.028
(16.194) (−0.562) (2.107)

STI 3.988∗∗∗ −0.158 −0.130 0.593 0.035 1.485 0.233
(7.739) (−1.241) (−1.201)

Panel C: Duration equation (H2
0 )

Index πd
0 πd

1,1 πd
2,1 σd R2 F-stat. P value

DJI 2.924∗∗∗ −0.023 0.085∗∗ 0.116 0.008 2.413 0.090
(16.194) (−0.562) (2.107)

STI 3.555∗∗∗ −0.090 −0.071 0.553 0.012 1.041 0.355
(10.240) (−1.181) (−0.924)

Panel D: Asymmetry test
χ2-stat. d.f. P value

DJI 8.967 4 0.062
STI 4.340 4 0.362
Note: Asterisks ∗∗∗, ∗∗, ∗ indicate significance at the 1%, 5%, 10% level, respectively.
t-statistics are given in parentheses beneath the parameter estimates.
Panel A: lnD+

k
= πd+

0 + πd+

1,1lnD
+
k−1 + πd+

2,1lnD
−
k
+ ηd+

k
.

Panel B: lnD−
k = πd−

0 + πd−
1,1lnD

−
k−1 + πd−

2,1lnD
+
k + ηd−

k .
Panel C: πd+

0 = πd−
0 = πd

0 ; π
d+
1,1 = πd−

1,1 = πd
1,1; π

d+
2,1 = πd−

2,1 = πd
2,1; σ

2
d+ = σ2

d− = σ2
d
(H2

0 ).

The constant estimations (πd+

0 , πd−
0 ) are all significantly greater than zero. That means there is

inertia in the movement of the stock indices after each high (low) turning point. The findings
show that the dependency of the current up-down duration on the past ones is much weaker
than that of the current local high-low level on the past ones. The reasonmay be that the profit
of investors is more directly related to local high-low level of the relative bias of stock price
than to the up-down duration. (2) The nonsymmetry test in Panel D shows as follows: at the
5% significance level, the null hypothesisH1

0 should be rejected, namely, the level equation is
not symmetric L(2, 2), but asymmetric L(2, 2; 2, 2), it means that there is asymmetric effect on
high-low level process (space); however, the null hypothesis H2

0 fails to be rejected, namely,
the duration equation is not asymmetric D(1, 1; 1, 1), but symmetric D(1, 1), it means that
there is symmetric effect on up-down duration process (time).

Next, we consider the maximum likelihood estimate (MLE) and nonlinearity test on
equation Trend(1; 1). The results are presented in Table 5. From the t statistics and the P
value of the F-statistics in Panels A and B, the coefficient estimations ϕ̂2 of the up-down
phase slopes (m+

k
,m−

k
) are significant greater than zero under 1% significant level and are the

greatest among of ϕ̂0, ϕ̂1, ϕ̂2. This means that the local up-down trend is mainly affected
by the up-down phase trend (m+

k,m
−
k). By the non-symmetry test in Panel D, at the 1%

significance level, the null hypothesis H3
0 is rejected. It shows the dynamic of the local trend



Mathematical Problems in Engineering 13

Table 5:MLE of trend equation.

Panel A: up trend equation (r+t )
Index ϕ+

0 ϕ+
1 ϕ+

2 σμ+ R2 F-stat. P value

DJI 0.0007∗∗∗ −0.0080 0.671∗∗∗ 0.011 0.018 67.954 <0.001
(2.956) (−0.674) (11.606)

STI 0.0004 0.013 0.893∗∗∗ 0.012 0.040 42.387 <0.001
(0.097) (0.574) (8.840)

Panel B: down trend equation (r−t )
Index ϕ−

0 ϕ−
1 ϕ−

2 σμ− R2 F-stat. P value

DJI −0.001∗∗∗ −0.113∗∗∗ 0.538∗∗∗ 0.012 0.0150 64.694 <0.001
(−3.926) (−9.761) (6.605)

STI −0.002∗∗∗ 0.008 0.227∗ 0.013 0.0017 1.965 0.140
(−3.759) (0.389) (1.925)

Panel C: trend equation(H3
0 )

Index ϕ0 ϕ1 σμ R2 F-stat. P value

DJI −1.74E − 6 0.0265∗∗∗ 0.012 0.001 11.334 <0.001
(−0.019) (3.367)

STI −1.31E − 5 0.124 ∗∗∗
0.013 0.015 67.537 <0.001

(−0.067) (8.218)
Panel D: nonlinearity Test

χ2-stat. d.f. P value
DJI 1035.713 5 <0.001
STI 300.714 5 <0.001
Note: Asterisks ∗∗∗, ∗∗, ∗ indicate significance at the 1%, 5%, 10% level, respectively.
t-statistics are given in parentheses beneath the parameter estimates.
Panel A: rt = ϕ+

0 + ϕ+
1 rt−1 + ϕ+

2m
+
k,t

+ ε+t .
Panel B: rt = ϕ−

0 + ϕ−
1 rt−1 + ϕ−

2m
−
k,t

+ ε−t .
Panel C: ϕ+

0 = ϕ−
0 = ϕ0; ϕ+

1 = ϕ−
1 = ϕ1; ϕ+

2 = ϕ−
2 = ϕ2 = 0; σ2

μ+ = σ2
μ− = σ2

μ(H
3
0 ).

nonlinearly depends on local high-low turning point (level and duration). Thus, the structure
of trend part of the model is considered as Trend(1; 1), not first-order autoregressive model
AR(1).

In summary, the structure of the Trend-switching model for the indices is selected as
Trend(1; 1) − L(2, 2; 2, 2)D(1, 1).

5.3. Comparisons with Random Walk

In this section, we will consider the forecast performance of Trend-LD model and compare
our model with the traditional random walk model.

When the nonlinear model is used in predicting next day local trend (μ+
t+1, μ

−
t+1), it is

necessary to know whether the direction of next day local trend is up or down, I(k, t + 1) is 1
or 0. If the most recent turning point is high (low), next day local trend is down (up), It+1 =
1(It+1 = 0). In the definition, the high (low) turning point is the highest (lowest) points within
the window of 20 days in radius. However, the most recent local maximum or minimum
point is not necessarily a local high or low turning point, since number of the observations on
the right of the most recent local maximum or minimum point is less than 20. So we decide
whether to accept the most recent high (low) point based on the current available observation
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in two different cases. Denote the current observation by Yt. Note that the data on the right
side of Yt are unknown. The following gives two cases to decide whether a most recent local
maximum or minimum point is a local turning point.

(1) If the most recent observation Yt is a local maxima (minima) in a given window
[t−w, t]. From Definition 2.1, Yt is not seen as the local high (low) point in window
[t − w, t + w], since the observations between (t, t + w] are yet unknown. In this
case, we assume that the direction of the next observation Yt+1 will continue to go
up (down).

(2) If the current observation Yt is neither a local maxima nor minima in a given
window [t − w, t]. Denote the window distance between the current observation
Yt and the most recent local maxima or minima point (referred to asMt) by w̃. The
choice of a reference distance c0 is important for our comparison. For the relative
bias Yt and the window radius w (20 days), we take c0 = 4 days (one-fifth of
the window radius w) as the referent distance. If w̃ ≥ c0, then Mt is regarded
as a high or low turning point, and if w̃ < c0, we use the estimated local high-
low level and up-down duration equation to predict the next local high turning
point (ĥ, d̂+) or low turning point (l̂, d̂−), and then the direction of local trend is
determined by comparing the most recent observed local maxima (minima) point
with the predicted one. If the most recent observed local high (low) level is greater
(less) than the predicted one and the most recent up (down) duration greater the
predicted one, then Mt is viewed as a high (low) turning point, and vice versa.

Using the above rules, we estimate the direction of the local trend. Denote the return
of stock index by Rt+1 = log(Pt+1)− log(Pt) and the change of relative bias Yt by rt+1 = Yt+1−Yt.
Then, from Yt+1 = log(Pt+1) −MA(log(Pt), 20), we have

rt+1 =
[
log(Pt+1) −MA

(
log(Pt), 20

)] − [
log(Pt) −MA

(
log(Pt−1), 20

)]

=
[
log(Pt+1) − log(Pt)

] − [
MA

(
log(Pt), 20

) −MA
(
log(Pt−1), 20

)]

= Rt+1 −MA(Rt, 20).

(5.1)

Rearrange the above formula, we derive the relationship between the return of stock index
and the change of the relative bias as follows:

Rt+1 = rt+1 +MA(Rt, 20). (5.2)

Then, the one-step forecast of the return can be written as

R̂t(1) = r̂t(1) +MA(Rt, 20), (5.3)

where r̂t(1) is a predictor of rt+1, and R̂t(1) is a predictor of Rt+1 in (5.2).
The forecast performance can be measured by comparing the real return with

forecasted return on the direction and magnitude. It is well known that the daily return of
stock index is very uncertain and difficult to predict. However, in practice, due to transaction
costs, most investors do not trade frequently, but focus on the direction and magnitude of
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Table 6: 2 × 2 Contingent table.

Forecast R̂t(1)
Up Down Total

Up M11 M12 M10

Trend R̃t(1) Down M21 M22 M20

Total M01 M02 M

local trend, with which our Trend-LD model is capable of dealing. However, the direction
and magnitude of daily returns do not represent those of the local trend. In order to reduce
the impact of random shocks on the local trend, we use the three-day moving average of
the change of the bias (the real return can be seen as two parts: the unknown, deterministic
expected local trend part and random shock part. As the stock prices can be affected by
investors’ complicated behavior biases, their behavior is difficult to be predicted, and the
daily return does not reflect real trend. It is normal that the R-squared is very small in
regression on short-term stock return, because the variation generated by random shock is
responsible for most of the variation in stock return. When the time interval is smaller (daily),
the effects of random shock on real return is greater, the accuracy of the prediction is clearly
weaker, and the deterministic local trend part is relatively smaller or even submerged by the
random shock. To reduce the effects of random shock, we use 3-day moving average of the
real return as the proxy of the real local trend. Even the moving average is different from the
local trend of real return, it is a better local trend proxy than real return, as the random shock is
mostly averaged out. The purpose of our model is to predict the local trend of real return, not
the real return that is easily affected by the random shock. The reason to use 3-day is that if the
longer the moving average is, the more it may lag behind the real local trend; if the shorter the
moving average is, theweaker the random shock effects are removed), MA(rt+1, 3)(= (rt+1+rt+
rt−1)/3), as a proxy of the local trend of the relative bias, that is, substitute MA(rt+1, 3) into rt+1
in formula (5.2), we have a proxy of the local trend of daily return, denoted by R̃t(1), namely

R̃t(1) = MA(rt+1, 3) +MA(Rt, 20). (5.4)

The following two subsections are the forecasting performance comparisons of the direction
and magnitude between Trend-LD model and random walk model.

Firstly, we consider the performance comparison of forecasting direction for our Trend-
LD model with random walk model. A common directional measure [49] is to use a 2 × 2
contingency table that summarizes the numbers of “rights” and “errors” of the model in
predicting ups and downs of local trend of the return Rt+1 in the forecasting subsample, see
Table 6. M11 and M22 indicate correct forecasts of the up and down direction, respectively.
M12 and M21 indicate incorrect forecasts of the up and down direction, respectively. The
Chi-squared statistic derived from the above contingent table is computed by

χ2 =
2∑

i=1

2∑

j=1

(
Mij −Mi0M0j/M

)2

Mi0M0j/M
(5.5)

which can be used to evaluate the performance of the model. A large χ2 signifies that the
model outperforms the chance of random choice. Under some mild conditions, χ2 has an
asymptotic chi-squared distribution with 1 degree of freedom.



16 Mathematical Problems in Engineering

Table 7: 2 × 2 Contingent table.

DJI SP500 FTSE
forecast R̂t(1) forecast R̂t(1) forecast R̂t(1)

Up Down Total Up Down Total Up Down Total
Up 1594 782 2376 1216 505 1721 473 225 698

Trend R̃t(1) Down 797 1103 1900 591 885 1472 245 350 595

Total 2391 1885 4276 1807 1386 3193 718 575 1293
STI BSE SZCI

forecast R̂t(1) forecast R̂t(1) forecast R̂t(1)
Up Down Total Up Down Total Up Down Total

Up 468 203 671 319 202 521 423 143 566
Trend R̃t(1) Down 237 307 544 130 292 422 223 219 442

Total 705 510 1215 449 494 943 646 362 1008

Table 8: Forecast of the directions of trend and its test.

DJI SP500 FTSE STI BSE SZCI
M11/M10 0.671 0.707 0.678 0.698 0.612 0.747
M22/M20 0.581 0.599 0.588 0.564 0.692 0.496
(M11 +M22)/M 0.631 0.657 0.637 0.638 0.648 0.637
χ2 270.697 300.586 91.954 84.546 86.514 63.584
P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 7 shows results of the numbers of “rights” and “errors” of the model in 1-step
predicting ups and downs of local trend of the return in the six forecasting subsamples.
Table 8 summarizes the right and error rates of directional prediction and its tests. the DJI has
the smallest right rate, 63.1% and the SP500 has the largest, 65.7%. The P values of statistic
χ2 are almost zero. This shows that the dynamic behavior of Trend-LD model outperforms
significantly the randomwalk model for all the six stock indices. In addition, the right rates of
up direction (M11/M10) are greater than those of down direction (M22/M20) except the BSE.
Indeed, this can be observed intuitively from Figure 1. In this figure, we find that, when the
price rises, the local trend of index is more regular and easily predicted than the case when
the price falls. This may result from the complicated, asymmetric psychology factors of most
of investors, such as diminishing marginal utility, greed, and fear. Moreover, interestingly,
the best and worst rate of forecast of up direction is 61.2% of the BSE and 74.5% of the SZCI,
respectively. For the down direction, conversely, the right rate of the SZCI is 49.6% and the
BSE is 69.2%, respectively. That is, the best andworst rate of forecast of the up-down direction
always appears in the market of underdeveloped countries.

Secondly, we consider the comparison of forecasting magnitude for the two models
above. Assume that the predicting error e1t of the Trend-LD model is the difference between
forecast return R̂t(1) and the proxy of local trend R̃t(1), and the predicting error e2t of random
walk hypothesis is the difference between 0 and R̃t(1). Denote dt = e21t − e22t, the forecast
performance of the magnitude of local trend is tested by a DM statistic [50]

DM =
d

√
2πf̂d(0)/T

, (5.6)



Mathematical Problems in Engineering 17

Table 9: The statistic DM and its test with window radius w = 20.

DJI SP500 FTSE STI BSE SZCI
DM −4.524 −4.612 −2.207 −2.793 −2.659 −3.060
P value <0.001 <0.001 0.014 0.003 0.004 0.001
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Figure 3: The local trend of the returns of the DJI and its forecasts (2010.03.29–2010.08.18).

where d is the sample mean of the loss differential series d1, d2, . . . , dT , f̂d(0) is a consistent
estimate of fd(0), fd(·) is the spectral density of series {dt}. Under the null hypothesis of equal
predictive accuracy, the DM statistic is asymptotically standard normal distribution N(0, 1).
In Table 9, the P values of the DM statistic show that the magnitude forecasts of local trend
model all significantly outperform the random walk model.

In Figure 3 (as there are 4276 forecasted daily returns, the figure will be too congested
to convey any details if we plot the total time series. As a result, we only show part of the
forecasted results), the dash-dot line is the proxy of the real local trend R̃t(1), the solid line is
the forecast of the real local trend R̂t(1). Even if the forecast of the direction and magnitude
of local trend have some errors, the overall forecast is good. Furthermore, the direction and
magnitude of the local trend and its prediction show inertia (duration), which is different
from the dynamic of the mean-reversion model and the error correction model that the
direction and magnitude of the local trend will immediately change and it will go back to
the long-term mean level or equilibrium when the process deviates from a long-term mean
level or equilibrium.

To summarize, the proposed Trend-LD model can efficiently reflect the fluctuation
characteristics of financial time series, such as the inertia or the duration of the local up-
down trend, the asymmetric dependency of the alternate local high-low level, the level and
duration clustering and has many properties that beyond the traditional randomwalkmodel.

6. Conclusions

Trend-LD model, in essence, is a conditional regime-switching (or time-varying two-
dimensional thresholds) model, its threshold (local high-low levels and up-down durations
or the high-low turning points) is not fixed, but conditionally dependent on the past ones.
This means that the proposed model can incorporate longer-term, salient history information
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into trend-switching. Therefore, it is more flexible than the traditional random walk, mean-
reversion, TAR, STAR and MSAR models.

Our model may introduce to some more interesting further studies: (1) The choices of
the order of moving averagem and the window radius w, and the determination of the local
trend change is a challenge and interesting problem for further exploring. (2) Comparisons
of our model with mean reversion, TAR, STAR, and MSAR models for other time series data
are also meaningful.
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