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To improve the defect detectability of Lamb wave inspection systems, the application of nonlinear
signal processing was investigated. The approach is based on a Warped Frequency Transform
(WFT) to compensate the dispersive behavior of ultrasonic guided waves, followed by a
Wigner-Ville time-frequency analysis and the Hough Transform to further improve localization
accuracy. As a result, an automatic detection procedure to locate defect-induced reflections
was demonstrated and successfully tested by analyzing numerically simulated Lamb waves
propagating in an aluminum plate. The proposed method is suitable for defect detection and can
be easily implemented for real-world structural health monitoring applications.

1. Introduction

In recent years, ultrasonic guided waves (GWs) have received a great deal of attention
among nondestructive tests community due mainly to the ability to travel long distances
without substantial attenuation and to employmultimode/-frequency examination for defect
classification and sizing. Among the various techniques based on GWs, the detection of
defects in plates-like structures by means of Lamb waves has been, and is still, widely
investigated [1–6] due to the variety of potential applications. Since the propagation
characteristics are directly related to both the inherent structure and mechanical properties
of the medium, the dispersiveness of GWs can reveal important information for structural
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Figure 1: Group velocity dispersion curves for the Lamb waves propagating in a 2.54mm thick aluminum
plate (Young modulus E = 69GPa, Poisson’s coefficient ν = 0.33, and density ρ = 2700 kg/m3).

health monitoring purposes. Unfortunately, several different modes appear simultaneously
in the signal. These modes overlap in both time and frequency domains, and simple Fourier
analysis techniques are not able to separate them.

Thus, identification of Lamb modes is a challenging step in the process of damage
detection. However, recent works in the area of time-frequency representations (TFRs)
[7, 8] show great potential for applications in nondestructive evaluation and material
characterization. Specifically, TFRs can provide an effective tool for the interpretation of
GWs, whose multimodal and dispersive nature make them an extremely complicated class
of ultrasonic signals.

This work proposes a time-frequency (TF) energy density function approach that
makes use of known dispersion characteristics for a propagating wave mode in order to
compensate for the effect of dispersion and locate defects in plate-like structures. Our
approach will be illustrated through a relevant case study, in which defects are to be located
on an aluminum plate where Lamb waves are excited.

2. Numerical Simulation of Lamb Wave Propagation

Let us consider an aluminum plate of thickness is h = 2.54mm, Young’s modulus E = 69GPa,
and Poisson’s ratio ν = 0.33. The proposed processing requires the computation of the
group velocity dispersion curves for the plate. For such task, today several formulations
and tools are available. For instance, in uniform waveguides the group velocity cg(f)
can be estimated by means of analytical-based formulations [9], semianalytical finite
element (SAFE) simulations [10], and by using standard finite element codes [11]. Recent
developments allow the computation of the dispersion curves also in the case of irregular
waveguides [12]. The results shown in Figure 1 were obtained by a using free-SAFE-based
tool that can be downloaded at http://www.guiguw.com/ [10].
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Figure 2: Schematic representation of the damaged aluminum plate used in the time-transient FEM
simulations (plate dimensions are in mm). The spatial distribution and time-amplitude shape of the
actuation pulse is also shown.

As a second step, time waveforms related to Lamb waves propagating in the
aluminum plate were obtained numerically by means of dedicated Finite Element (FEM)
simulations using Abaqus explicit [13]. Thanks to the Lamb problem symmetry, a x-y plane
strain condition was assumed, as shown in Figure 2. A notch of width b = 0.25mm and
depth awas considered, such that a/h = 0.3. The assumed notch location was on the top side
at the center of the plate (x = 500mm). Lamb waves were excited by applying an impulsive
force p(t) to the left edge of the plate towards the positive x-direction: this mainly stimulates
the symmetric S0 mode. The force was shaped in time as a triangular window with a total
duration of 2μs (see the top left of Figure 2) in order to excite consistent Lamb waves up to
500 kHz.

For instance, a similar excitation was obtained in [14] by focusing, through
conventional optics, a laser beam to a straight line acting along the plate edge. It is shown
in such work that the S0 mode can be excited by means of such experimental setup.

To ensure accuracy to the time-transient finite element simulations [15], the plate
domain was discretized with elements of maximum side length Lmax = 0.125mm, and the
time integration step was kept Δt < 1e − 8 sec.

Time-dependent out-of-plane displacements v(t) were recorded at three points on the
top side of the plate (y = h/2), namely, A, B, and C, respectively, located at xA = 100mm,
xB = 200mm, and xC = 300mm. The recorded waveforms are shown in Figure 3. The
leftmost peak in each signal corresponds to the passage of the excited S0 mode through the
recording position (path 1, in Figure 4), while oscillations in the central part of the waveforms
are due to defect-induced reflections (path 2, in Figure 4), which also excite the slower A0

mode. Spreading of these oscillations clearly reveals the effect of dispersion. Finally, further
reflections from the plate edges (path 3, in Figure 4) are responsible for the complicated
behaviour observed in the rightmost part of the signals.
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Figure 3: Time-dependent out-of-plane displacements recorded on the top side (y = h/2) of the plate at
(a) xA = 100mm, (b) xB = 200mm, and (c) xC = 300mm.
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Figure 4: Schematic representation of the multiple paths traveled by the waves detected in a given
acquisition point.

3. Mathematical Tools

The defect location procedure can be divided in three steps: (i)Warped Frequency Transform
to remove the dispersive behaviour of the S0 mode; (ii) equalization procedure to enhance
weak reflections; (iii) Wigner-Hough Transform to distinguish S0 reflections from other
interfering waves. Such steps are detailed in the following subsections.
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Figure 5: Computational flow of the frequency warping operator Ww. F and F−1 are the direct and
inverse Fourier Transform operators, respectively, while w(f) and ẇ(f) are the warping map and its first
derivative.

3.1. The Warped Frequency Transform (WFT)

The WFT is a unitary time-frequency transformation that produces a flexible sampling of the
time-frequency domain [16].

Given a generic signal s(t) whose Fourier Transform (FT) is S(f), the frequency
warping operator Ww transforms the original waveform into a warped version sw(t) by
reshaping the frequency domain through a properly designed warping map w(f). The
procedure is depicted in Figure 5.

The WFT can be used to compensate dispersion in GWs [17] by defining the warping
map through the following relationship:

K
dw−1(f)

df
=

1
cg
(
f
) . (3.1)

Equation (3.1) relates the functional inverse w−1(f) of the map to the inverse of the group
velocity curve, that is, 1/cg(f), of the wave that we want to consider. K is a normalization
parameter selected so that w−1(0.5) = w(0.5) = 0.5. As shown in Figure 1, for acoustic
emission below 500 kHz, only the two fundamental waves A0 and S0 can propagate through
the plate. It is assumed that mostly S0 is actuated, therefore the group velocity curve of S0

has been used to build w(f).
If s(t) is an undamped guided wave at a traveled distance D from the actuator, its FT

is given by S(f) = S0(f) · e−j2π
∫f
0 τ(α)dα where S0(f) is the FT of the actuated wave (incipient

pulse) and τ(f) = D/cg(f) represents the frequency-dependent group delay of S0 in this
case. Using (3.1), S(f) can be rewritten as

S
(
f
)
= S0

(
f
) · e−j2πD ∫f

0 (1/cg(α))dα

= S0
(
f
) · e−j2πw−1(f)KD.

(3.2)

By applying warping and exploiting the invertibility property of the map, that is,
w−1[w(f)] = f , yields to a signal sw(t) whose spectrum is

FWw{s(t)} =
[√

ẇ
(
f
)
S0

(
w
(
f
))] · e−j2πfKD. (3.3)

The linear dependence on the warped frequency in this equation shows that the dispersive
effect is converted in a simple warped time-delay (KD) proportional to the distance.
Dispersion is therefore compensated, and the resulting signal sw can be equivalently plotted
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as a function of the distance from the source, thus allowing to locate defects of the excited
waveguide by detecting the corresponding reflected waves.

It is worth noticing that, despite the different formalism, the processing described
above is substantially analogous to the ones presented in [18, 19]. However, in many practical
applications such dispersion compensation is not sufficient to ensure a reliable estimation of
wave traveled distance, due to the weakness of reflections and to the interfering presence of
different modes. For these reasons, necessary further processing steps are introduced in this
work, as will be shown in the following sections.

3.2. Wave Equalization

By means of the warping procedure described in the previous section, a realignment of the
time-frequency content of S0 waves in vertical lines is produced. However, in general the
energy of the waves scattered by defects is much lower than the energy of the incident
wave, especially for small defects. To overcome this problem, the energy of incident and
reflected waves in the acquired signal can be conveniently equalized. Such task can be
accomplishedwith a simple but effective procedure based on a local averaging of the acquired
signal. Indicating with LA(|sw(x)|) the local average of |sw(x)| in the neighborhood of x, the
equalized signal swe(x) is obtained as

swe(x) =
sw(x)

max{LA(|sw(x)|), T} , (3.4)

where T is a given threshold, set as the 5% of the maximum value of |sw(x)|, which is
used to avoid the undesired amplification of numerical noise when the signal is absent. In
experimental data, the value of T must be set according to the SNR of the acquisition setup.

The warped and equalized versions of the signal in Figure 3(a) are plotted in Figures
6(a) and 6(c), respectively. The equalization factor max{LA(|sw(x)|), T} is depicted in
Figure 6(b).

3.3. The Wigner-Hough Transform (WHT)

After equalization, defect detection can be performed automatically with a further processing
of the signal swe(x). It is worth noticing that the energy of spurious contribution (caused by
multimodal propagation or mode conversion) is quite high in the equalized signal compared
to the energy of compensated S0 waves. In the example of Figure 6(c), the peak related to
the S0 wave reflected by the defect (indicated as S0 path 2) is just about twice as high
as the peak in the following mode-converted wave (A0). Therefore it is quite difficult to
implement simple thresholding procedures capable of distinguishing different wave modes
in this representation.

However, defect-induced reflections of the analyzed mode (S0 in this example) appear
in the compensated waveform as well-localized spikes, thus producing vertical maxima
lines in a TF representation, whose (warped) time location can be directly converted to the
defect position. On the contrary, spurious contributions related to different modes (A0 in this
example) show a peculiar frequency modulation due to a different group velocity curve from
the one of S0. This can be clearly observed in a simple TFR of swe(t), provided by the short-
time Fourier transform (STFT), shown in Figure 7.



Mathematical Problems in Engineering 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−2

0

2

v
A
w
(m

m
)

Position (m)

×10−5

(a) Warped signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

L
A
(|v

A
w
|)
(m

m
)

Position (m)

×10−5

LA(|sw(x)|)
Max{LA(|sw(x)|), T}

(b) Equalizing signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−10

0

10

20

Position (m)

v
A
w
e

S0 path 3S0 path 2S0 path 1
A0

(c) Equalized warped signal

Figure 6: (a) Warped version vAw of the signal vA represented in Figure 3(a). (b) Equalization factor for
the same signal. (c) Equalized warped signal vAwe as a result of the equalization procedure.

Other energy distributions, such as the Wigner-Ville distribution (WVD), defined as

Wswe

(
t, f

)
=
∫+∞

−∞
swe

(
t +

τ

2

)
s∗w

(
t − τ

2

)
· e−j2πfτdτ (3.5)

can be used to further improve the effectiveness of the representation. In fact, WVD provides
optimal energy localization of linear chirp signals in the time-frequency plane [20]. It follows
that applying vertical line detection algorithms to the WVD of the compensated signals
provides an asymptotically optimal detector of wave propagating distances.

In particular, automatical detection of the desired lines of energy maxima can be
performed by applying theHough Transform (HT) [21] to theWVD, resulting in the so-called
Wigner-Hough Transform (WHT) [22]. Generally speaking, the HT is an image processing
tool that performs an integration on all the possible lines of a given image I and maps
the value of each integral to a (ρ, θ) plane corresponding to the polar parametrization of
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Figure 7: Spectrogram of the equalized waveform vAwe represented in Figure 6(c).

Position (m)

W
ar

pe
d

 fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 −600

−400

−200

0

200

400

600

Wigner-Ville distribution of the equalized 
warped signal

Figure 8: Wigner-Ville distribution (WVD) of the equalized waveform vAwe represented in Figure 6(c).

the lines. High-intensity pixels concentrated on straight lines on I will therefore produce
peaks in the (ρ, θ) domain. In the Wigner-Hough Transform, the input image corresponds to
theWVD of the considered signal and, in our approach, emphasis is placed in finding vertical
lines, located at θ = {π/2, 3π/2}. Therefore, in the WHT, the portion which corresponds
to these angles is isolated, and the ρ value corresponding to detected peaks represents the
distance traveled by the wave. One of the major limitations of the WVD is the presence of
interference terms between different spectral components of the analyzed waveform induced
by the WVD. However, it is worth noticing that this inconvenience is largely compensated
through the integration performed by the Hough operator, as these undesired components
appear as alternating positive peaks and negative valleys in the TF plane.
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Figure 10: vAwe−WHT extracted for the values of θ = π/2 and 3π/2 from the WHT of Figure 9, computed
for the signal vAwe represented in Figure 8.

4. Procedure of the Method

The mathematical tools detailed in the previous section can be efficiently implemented by the
following processing steps.

(i) The discrete WFT can be computed with the approach described in [23]. In essence,
the warped signal is obtained by performing a nonuniform Fourier Transform [24]
followed by an inverse Fourier Transform. Fast-Fourier algorithms can be exploited
to compute both the direct nonuniform and the inverse transforms.

(ii) In the second step, warped signals are equalized in amplitude, according to (3.4).
The local averaging window applied in the right hand term of the same equation is
about 9 cm in length (it is worth recalling that, in the warped domain, time intervals
are related to distances).
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Figure 11: (a)Warped version vBw of the signal vB presented in Figure 3(b). (b) Equalization factor for the
same signal. (c) Equalized warped signal vBwe as a result of the equalization procedure.

(iii) The software (Time-Frequency Toolbox—TFTB) which computes the Wigner-
Ville distribution adopted in this study is available for academic use at
http://tftb.nongnu.org/. In the same tool, also the code for Hough Transform
computation is provided. However, for wave propagating distance estimation,
the calculation of the Hough Transform coefficients in the whole (ρ, θ) plane
is redundant, as described in Section 3.3. For this reason, in our approach such
calculation is simplified with a simple integration of WVD coefficients across
frequencies.

5. Numerical Results

TheWVD of the equalized warped signal in Figure 6 is depicted in Figure 8. As it can be seen,
two vertical lines appears in correspondence to the actual traveled distances of the incident
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Figure 12: (a)Warped version vCw of the signal vC presented in Figure 3(c). (b) Equalization factor for the
same signal. (c) Equalized warped signal vCwe as a result of the equalization procedure.

and scattered wave (at 0.1 and 0.9m, resp.) together with spurious contribution due to
different modes of propagation and interference terms.

The computation of the WHT, that is, the Hough Transform on the WVD, produces
the image depicted in Figure 9, where three peaks can be associated with θ = π/2 and 3π/2.
The peaks ordinates represent the difference between the effective distance of propagation of
a given wave and a reference distance of propagation of 0.7m, which corresponds to the half
of the maximum considered propagation distance in the analyses of 1.4m.

By extracting the values related to θ = π/2 and 3π/2 in the WHT and reordering
them according to the distance from the origin, a novel signal swe−WHT is obtained. In such
signal, depicted in Figure 10, the peaks related to the actual traveled distances of S0 waves
clearly emerge with respect to the spurious contribution due to mode-converted waves, thus
greatly simplifying the definition of automated distance estimation procedures. In particular,
the amplitude of the peak related to the reflected S0 (path 2) is about 10 times higher than



12 Mathematical Problems in Engineering

θ (rad)

ρ
(m

)

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

Winger-Hough Transform Detection of lines

Figure 13: Wigner-Hough Transform (WHT) of the equalized warped signal vBwe represented in
Figure 11(c). Peaks at θ = {π/2, 3π/2} (dashed lines) correspond to vertical lines in the Wigner-Ville
distribution; ρ coordinates provide the distance from the center of the analyzed domain.

θ (rad)

ρ
(m

)

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

Winger-Hough Transform Detection of lines

Figure 14: Wigner-Hough Transform of the equalized warped signal vCwe represented in Figure 12(c).
Peaks at θ = {π/2, 3π/2} (dashed lines) correspond to vertical lines in the Wigner Ville distribution; ρ
coordinates provide the distance from the center of the analyzed domain.

the maximum values of spurious contribution, that is, five times more with respect to the
dispersion compensated wave of Figure 6. Similar results have been obtained by processing
the signals vB and vC represented in Figures 3(b) and 3(c).

Also for these signals, in fact, it can be seen that the path followed by the compensated
mode S0 can be tracked by observing local peaks in the warped signals, as illustrated in
Figures 11(a) and 12(a), and the location of the defect can be inferred by the position of
reflected peaks. However, the amplitude of the reflected S0 peak, at 0.8m in Figure 11(a)
and 0.7m in Figure 12(a), is much smaller compared to that on the incident S0 mode and
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Figure 15: vBwe−WHT extracted for the values θ = π/2 and 3π/2 from the WHT of vBwe represented in
Figure 13.
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Figure 16: vCwe−WHT extracted for the values θ = π/2 and 3π/2 from the WHT of vCwe represented in
Figure 14.

comparable to that of the reflected spurious A0 wave. It follows that the location of defects
by exploiting only warped signals could be difficult in real noisy applications. As for the first
case discussed, the proposed robust and automated approach involves first an equalization
of the warped signal to emphasize the amplitude of reflection-induced peaks and next
the detection of vertical maxima lines in a space-frequency representation (WHT) of the
equalized warped signals.

The Wigner-Hough Transform, in fact, appears as a suitable tool to isolate S0

components and locate defect-induced reflections, as it can be seen form Figures 13 and 14,
where the WHT of the equalized warped signals vBwe and vCwe, respectively, are displayed.

Local maxima at θ = π/2 and θ = 3π/2 can be easily detected, and the corresponding
ρ coordinates provide the distance traveled by the incident and reflected S0 waveform
components, respectively.

From the extraction of peak coordinates in the waveforms swe−WHT depicted in Figures
10, 15, and 16, the defect responsible for reflections is located at x = 503mm, x = 502mm, and
x = 502mm, respectively. Errors with respect to the actual defect position (x = 500mm) are
thus below 3mm, which roughly corresponds to the minimum wavelength associated with
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the excited Lamb waves. Similar good results were found by considering different defect
depths and positions, not shown here for the sake of brevity.

6. Conclusions

The work described the application of a Warped Wigner-Ville analysis to improve defect
detectability of conventional Lamb wave inspection systems. The proposed equalization
approach effectively enhances the amplitude of relevant peaks in warped signals, where
dispersion for a GW mode of interest has been removed. This procedure may encounter
limitations in the presence of especially noisy signals, as spurious components might
be erroneously amplified. However, several alternatives are possible, including more
sophisticated preprocessing algorithms under investigation and the averaging of multiple
acquisitions.

The Wigner-Ville distribution of the equalized signal is then computed. The presence
of interference terms is largely compensated through the integration of the time-frequency
decomposition performed by the Hough operator.

In the resultingWinger-Hough Transform representation, vertical lines associatedwith
relevant acoustic events can be detected. This allows for the separation of overlapping Lamb
waves. In particular, it was shown with numerical examples that the contribution of S0 can
be highlighted and the one due to interfering terms (such as A0 wave) deeply attenuated.

Finally, with simple thresholding procedures, the information about the distance
traveled by the incident and reflected components of a monitored wave can be easily
recognized. Thanks to its very high precision the developed tool could pave the way for a
new class of procedures to locate defects in waveguides.
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