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Propagation of nonlinear guided waves is a very attracting phenomenon for structural health
monitoring applications that has received a lot of attention in the last decades. They exhibit very
large sensitivity to structural conditions when compared to traditional approaches based on linear
wave features. On the other hand, the applicability of this technology is still limited because of
the lack of a solid understanding of the complex phenomena involved when dealing with real
structures. In fact the mathematical framework governing the nonlinear guided wave propagation
becomes extremely challenging in the case of waveguides that are complex in either materials
(damping, anisotropy, heterogeneous, etc.) or geometry (multilayers, geometric periodicity, etc.).
The present work focuses on the analysis of nonlinear second-harmonic generation in complex
waveguides by extending the classical Semianalytical Finite Element formulation to the nonlinear
regime, and implementing it into a powerful commercial Finite Element package. Results are
presented for the following cases: a railroad track and a viscoelastic plate. For these case-
studies optimum combinations of primary wave modes and resonant double-harmonic nonlinear
wave modes are identified. Knowledge of such combinations is critical to the implementation of
structural monitoring systems for these structures based on higher-harmonic wave generation.

1. Introduction

Traditional techniques in nondestructive evaluation and structural health monitoring
applications rely on measuring “linear” parameters of the waves (amplitude, speed, and
phase shifts) to infer salient features of the inspected structure. Several studies, however, have
shown that “nonlinear” parameters are, in general, more sensitive to structural condition
than linear parameters [1]. Furthermore, the use of nonlinear guided waves is extremely
attractive because guided waves combine the mentioned high sensitivity typical of nonlinear
parameters with large inspection ranges [2–9].
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From a mathematical standpoint, the framework behind nonlinear guided waves
propagation is relatively challenging since the Navier elastodynamic equations are further
complicated by stress-free conditions at the waveguide’s cross-sectional boundaries. For
this reason, most of the previous works on elastic waves in waveguide solids considered
the propagation to be in the linear elastic regime with the assumption of infinitesimal
deformations (coincidence between deformed and initial configurations). However, as the
amplitude of the wave increases or the structure starts experiencing finite deformations (i.e.,
nonlinear elasticity) or another cause of nonlinear effects is present, the nonlinearity in the
structural response becomes relevant and must be introduced in the analysis. Hence cubic
(and eventually higher-order) terms in the particle displacements gradients must be included
in the elastic strain energy density expression [10, 11].

Among the manifestations of the nonlinear behavior, higher-harmonic generation is
considered in detail in the present work. In this scenario, supposing to excite an ultrasonic
wave into the waveguide structure at a fixed frequency, ω (Fundamental Frequency), the
nonlinearity manifests itself in the generation of multiple harmonics of ω, for example, 2ω
(second harmonic), 3ω (third harmonic), and so on. For a practical use, this nonlinearity can
be quantified via an ultrasonic nonlinear parameter, β, well documented in literature [2].

In the last thirty years, several successful applications of nonlinear guided waves have
been discussed, spanning from assessing the fatigue damage of metals [12–14] and concrete
[15], to the efficient location of internal cracks and dislocations [16–20]. The authors of the
present paper recently exploited the features of nonlinear guided wave propagation in seven-
wire steel strands and proposed a methodology to measure the stress level acting on these
structural elements based on the theory of contact acoustic nonlinearity [21].

While several investigations pertaining to nonlinear effect in solids and second
harmonic generation were reported in the past [22, 23], most of them were limited in their
applicability to structures with simple geometries (plates, rods, and shells) where analytical
solutions for the primary (linear) wave field are available in literature. Very few studies
tried to analyze the nonlinear wave propagation phenomena in geometrically complex
waveguides using specialized SAFE codes [24].

In the present work, the propagation of waves in nonlinear solid waveguides with
complex geometrical and material properties is investigated theoretically and numerically.
For the solution of the nonlinear boundary value problem, perturbation theory and modal
expansion are used [22]. The main novelty consists in the development of a powerful
numerical algorithm, able to efficiently predict and explore the nonlinear wave propagation
phenomena in several types of structural waveguides. It is based on the implementation of
a nonlinear semianalytical finite element formulation into a commercial multipurpose finite
element package. Compared to the classical finite element formulation, the proposed solution
is computationally more efficient since it simply requires the finite element discretization
of the cross-section of the waveguide and assumes harmonic motion along the wave
propagation direction. Furthermore, compared to traditional spectral or waveguide element
method approaches, no new elements need to be developed, the full power of ready-to-
use high-order shape functions (crucial for the development of the present theory) can be
easily exploited though friendly GUI, and immediate and extensive postprocessing for all
the required quantities can be developed.

The applicability of the proposed analysis is quite wide, since it can efficiently handle
general prismatic structures, viscoelastic waveguides with damping effects, multilayered
composite laminate panels, and heterogeneous systems, all cases where theoretical wave
solutions are either nonexistent or extremely difficult to determine. In addition, the proposed
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approach requires simple modifications to the original commercial FEM code so that the
nonlinear semianalytical formulation can be taken into account and translated to match the
required formalism. After a brief discussion on the background of the present work and
the proposed algorithm, two case studies have been analyzed in detail: a railroad track
and a viscoelastic plate. They were considered to show the potential of the algorithm in
handling complex geometry as well as viscoelastic material properties. The proposed code
was successful in identifying optimal combinations of resonant primary and secondary
modes. The knowledge of these nonlinear resonance conditions is of paramount importance
for the actual implementation of conditions assessment systems for these structures that are
based on the measurement of nonlinear ultrasonic guided waves.

2. Nonlinear Guided Waves Propagation

In the present section, a brief overview of the generalized nonlinear theory of elasticity for
wave propagation involving finite deformations is presented [25]. Following [22], assuming
that the body is homogeneous, isotropic, and hyperelastic, it possesses a strain energy density
ε which is an analytic function of the Green-Lagrange strain tensor Eij via its invariants; in
this scenario, the Second Piola-Kirchoff stress tensor Sij can be expressed as:

Sij = ρ0
∂ε

∂Eij
, (2.1)

where ρ0 is the initial density of the body.
According to finite strain theory, in (2.1) we have assumed the following:

Eij =
1
2
(
ui,j + uj,i + uk,iuk,j

)
, ui,j =

∂ui

∂xj
. (2.2)

The strain energy density expression becomes

ε =
1
2
λI21 + μI2 +

1
3
CI31 + BI1I2 +

1
3
AI3 +O

(
E4
ij

)
, (2.3)

where I1, I2, and I3 are the first three invariants of the Green-Lagrange strain tensor defined
as I1 = Eii, I2 = EijEji, and I3 = EijEjkEki; λ and μ are the Lamé elastic constants andA, B, and
C are the Landau-Lifshitz third-order elastic constants [26].

In (2.3), first-order material nonlinearity was introduced through A,B,C, and
geometric nonlinearity through Eij . By substituting (2.3) into (2.1), and keeping up to second-
order terms in Eij , the nonlinear hyperelastic constitutive equation reads

Sij = λEkkδij + 2μEij + δij(CEkkEll + BEklElk) + 2BEkkEij +AEjkEki. (2.4)
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Using (2.4) in the general momentum equation, the nonlinear boundary value
problem governing the propagation of nonlinear elastic waves in isotropic, homogeneous
and hyperelastic waveguides can be formulated as [10]:

ρ0üi − μui,kk −
(
λ + μ

)
ul,li =

(
μ +

A

4

)
(ul,kkul,i + ul,kkui,l + 2ui,lkul,k)

+
(
λ + μ +

A

4
+ B

)
(ul,ikul,k + uk,lkui,l) + (λ + B)ui,kkul,l

+
(
A

4
+ B

)
(uk,lkul,i + ul,ikuk,l) + (B + 2C)uk,ikul,l.

(2.5)

Characterizing the system of (2.5) to the “guided” wave propagation case (stress-free
boundary condition), the governing equations can be recast in vector notation as:

(
λ + 2μ

)∇(∇ · u) − μ∇ × (∇ × u) + f = ρ0
∂2u

∂t2
,

SL(u) · nr = −S(u) · nr on Γ,

(2.6)

where u is the particle displacement vector, ρ0, λ and μ are defined above, f is the nonlinear
term acting as a body force, nr is the unit vector normal to the surface of the waveguide Γ,
and SL and S are the linear and nonlinear parts of the second Piola-Kirchoff stress tensor,
respectively. The nonlinear waveguide system is illustrated in Figure 1.

Considering higher harmonics up to the second order, the nonlinear boundary value
problem presented in (2.6) is solved using perturbation theory. The solution of the primary
wave field can be obtained analytically for simple geometries (plates, rods, shells, etc.)
and numerically using the classical SAFE formulation for waveguides with generic cross-
section [27]. Following [22, 28], if ω is the primary frequency that is excited into the system,
the first-order nonlinear solution is calculated through modal expansion using the existing
propagating guided modes 2ω as:

v
(
x, y, z, t

)
=

1
2

∞∑

m=1

Am(z)vm

(
x, y

)
e−i2ωt + c.c., (2.7)

where (x, y) are the cross-sectional coordinates of the waveguide, z is the lengthwise
coordinate of the waveguide, c.c. denotes complex conjugates, vm is the particle velocity
vector referred to the mth mode at 2ω, and Am is the higher-order modal amplitude given
by:

Am(z) = Am(z)ei(2kz) −Am(0)eik
∗
nz, (2.8)

where k represents the wavenumber. The amplitude Am(z) quantifies how strong is the
excitation of the mth secondary mode in the modal expansion.
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Figure 1: Generic nonlinear waveguide (finite element mesh just on the cross section) with second
harmonic generation highlighted.

In (2.8), the amplitude of the secondary modes is expressed in two different forms
depending on the existence or not of the phase-matching condition (synchronism). The latter
occurs between two modes having the same phase velocity. The expressions are

Am(z) = i

(
fvol
n + f surf

n

)

4Pmn(k∗
n − 2k)

if k∗
n /= 2k (ASYNCHRONISM), (2.9)

Am(z) =

(
fvol
n + f surf

n

)

4Pmn
z if k∗

n = 2k (SYNCHRONISM), (2.10)

where Pmn is the complex power flow along the direction of wave propagation and fvol
n and

f surf
n are identified as the complex external power due to surface sources and volume force,

respectively.
It is possible to notice how the nonlinearity of the waveguide transforms a

monochromatic (single frequency) wave input into a distorted output where primary wave
and second harmonic coexist (Figure 1). Furthermore the modal amplitude of the genericmth
secondary mode oscillates in value if the solution is asynchronous, while it increases with
propagation distance z if the solution is synchronous. The latter is the known cumulative
behavior occurring for nonlinear resonant modes. Further details concerning the terms
appearing in (2.9)-(2.10) can be found in [22]. The internal resonance mechanism relies on
the simultaneous occurrence of two conditions, namely:

(1) Phase matching: k∗
n = 2k.

(2) Nonzero power transfer from primary to secondary wave field: f surf
n + fvol

n /= 0.
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Recent investigations performed by Deng et al. have analyzed the influence of an
additional requirement for the occurrence of internal resonance, namely, the group velocity
matching [29]. In this study, the authors showed analytically and experimentally that, as
long as the two aforementioned conditions (phase-matching and nonzero power transfer)
are satisfied, the cumulative effect of the secondary resonant mode takes place even when
the group velocity matching condition is not satisfied. They concluded that group velocity
matching does not represent a necessary requirement for cumulative second-harmonic
generation. For this reason in the present work, phase-matching and power transfer only
are considered in detail.

In nonlinear structural monitoring, the key consists of the identification of an optimal
combination of synchronous primary and secondary modes. The rest of this paper presents
a numerical tool that enables to identify these resonant conditions for various complex
waveguides, that would be extremely difficult to study by other means, and that include
cases of periodic structures, damped structures, multilayered geometries and heterogeneous
structures.

3. Nonlinear Semianalytical Finite Element Algorithm

Linear SAFE formulation has shown in the past its great potential in calculating the
dispersion characteristics of complex waveguides (where the analytical solution is not
available) in a very efficient way [27, 30]. The knowledge of these curves is the starting point
for the development of any application based on the use of guided waves. The present work
focuses on the extension of this approach to the nonlinear regime and its implementation,
into a highly flexible COMSOL commercial code, of a nonlinear SAFE formulation to solve
complex waveguides (CO.NO.SAFE Algorithm).

The implementation combines the full power of existing libraries and routines of the
commercial code with its ease of use and extremely capable postprocessing functions; hence
internal resonance conditions of structural waveguides with different level of complexity can
be conveniently analyzed via user-friendly interfaces. Furthermore, since all the nonlinear
parameters involve gradients of the displacement field up to the third order, high-order finite
elements (at least cubic) need to be used in order to obtain meaningful results; this task is not
trivial to implement in general SAFE algorithms.

Starting from the nonlinear boundary value problem stated in (2.6), the displacement
field is approximated in the cross-section of the waveguide (x, y) and is enforced to be
harmonic in time and along the direction of wave propagation (z) in accordance with the
classical SAFE formulation. For the generic eth element, this condition reads

ue(x, y, z, t
)
= Ne(x, y

)
Ueei(kz−ωt), (3.1)

where Ne(x, y) is the matrix of shape functions, t is time, k is the wavenumber, and Ue

is the nodal displacement vector for the eth element. The enforcement of this particular
displacement field in (2.6) constitutes the main modification that needs to be applied in
the original cross-sectional FEM formulation. Hence, after the original quadratic eigenvalue
problem in wavenumbers has been reformulated in a linear fashion by doubling the space
dimension [27], the nonlinear boundary value problem can be implemented in COMSOL
using the general PDE solver engine [31]. COMSOL formalism for the boundary value
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Table 1:Material properties assumed for the railroad track analysis.

ρ (kg/m3) λ (GPa) μ (GPa) A (GPa) B (GPa) C (GPa)
7932 116.25 82.754 −340 −646.667 −16.667

problem with Neumann boundary conditions (which correspond to the guided wave
propagation) is

∇ · (c∇U + αU − γ
) − β · ∇U − aU + λdaU = 0, (3.2)

n · (c∇U + αU) + qU = 0, (3.3)

where n is the outward unit normal vector on the surface of the waveguide, c is the diffusion
coefficient, α is the conservative flux convection coefficient, da is a damping coefficient, β is
the convection coefficient, a is the absorption coefficient, γ is the conservative flux source
term, f is the source term, q is the boundary absorption term, λ is the eigenvalue and U
represents the set of dependent variables to be determined. All these coefficients generally
admit complex values (appropriate for viscoelastic materials) [32]. The formalism introduced
in (3.2)-(3.3) is very general and can be used for a broad range of physical problems governed
by a system of PDEs, once every coefficient has been conveniently characterized to the
particular physics governing the considered problem.

Once all the parameters have been defined, dispersion curves for the selected
waveguide can be promptly calculated. Next, after a particular frequency has been selected
as primary excitation, second harmonic generation and internal resonance occurrence can be
analyzed.

In the next section, the proposed algorithm is benchmarked with two case studies of
interest in structural engineering.

4. Applications

4.1. Railroad Track

A136RE railroad track was considered first for this study. Due to the complex geometry
of the cross section, solutions for the dispersion curves and, consequently, for the higher
harmonic generation analysis cannot be calculated analytically. After a preliminary study
involving the selection and the analysis of internal resonance conditions for several primary-
secondary wave field combinations, two exemplary cases were selected as representative. In
the first case, phase matching between primary and secondary modes is verified. However,
due to the characteristic energy distribution over the rail cross-section, no power transfer
is present between the modes and, consequently, internal resonance does not occur; hence,
the secondary modal amplitude is bound in value and oscillates with distance along the
direction of wave propagation (3.1). In the second case, instead, both required conditions
are verified and internal resonance takes place, leading to a resonant secondary wave field
growing linearly with wave propagation distance.

The material properties considered are given in Table 1. The Landau-Lifshitz third-
order elastic constants are detailed in [33].
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Figure 2: (a) Geometry and finite element mesh adopted for the railroad track nonlinear analysis. (b)
Phase-velocity dispersion curve in the (0 ÷ 200) kHz frequency range with selected combinations of
primary and secondary modes pinpointed.

The geometry of the railroad track cross-section, with the FE mesh used for
the analysis, is shown in Figure 2(a). To correctly explore the displacement field and
all the derived quantities (essential for the calculation of all the terms during the
nonlinear postprocessing), 618 cubic Lagrangian triangular isoparametric finite elements
were employed [34]. In Figure 2(b), the resultant phase-velocity dispersion curve in the (0
÷ 200) kHz frequency range is represented. As detailed in the following, the same figure also
pinpoints the two selected combinations of primary and secondarymodes as exemplary cases
for the internal resonance analysis.

The complexity of the guided wave propagation for this particular waveguide is
evident considering the abundance of propagative modes present and their dispersion
characteristics (especially at higher frequencies). Selecting a primary excitation frequency
of 80 kHz, the eigenvalue problem has been solved, and 500 propagative modes (real
eigenvalues) have been extracted at ω (80 kHz) and at 2ω (160 kHz). Next, Figure 3 shows
some propagative modes found in this specific frequency range. It can be noted how
differently the energy is concentrated within the waveguide.

4.1.1. Nonresonant Combination

A flexural horizontal primary mode was selected as primary excitation (input for the
CO.NO.SAFE algorithm). The nonlinear analysis revealed the presence of a synchronous
secondary mode at 2ω (similar flexural horizontal displacement distribution). However,
the second required condition concerning the power transfer is not met for this particular
combination, leading to an oscillating secondary modal amplitude value and absence of
internal resonance. At the same time, a conspicuous power transfer is present between the
selected primary mode and some asynchronous secondary modes; here again, because of
the lack of one of the two essential requirements (phase matching) internal resonance does
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Figure 3: Propagative modes in the (80 ÷ 160) kHz frequency range. (a) Flexural vertical mode (energy
mainly concentrated in the rail’s head). (b) Flexural horizontal mode (energy exclusively, confined in
the rail’s web). (c) Axial mode. (d) Complex mode involving a mixture of axial, torsional, and flexural
displacements (color online).

not take place. This fact translates into the very small value associated of modal amplitude
associated with the only synchronous mode and the relatively higher values associated to the
asynchronous secondary modes.

The following Figures 4(a) and 4(b) illustrate the selected primary and secondary
modes, respectively. Figure 4(c) plots the modal amplitude results as calculated from (3.2)
for the propagative secondary modes present at 160 kHz.

4.1.2. Resonant Combination

In this case a flexural vertical mode was selected as primary excitation. The results of the
nonlinear SAFE analysis disclosed the presence of some synchronous secondary modes with
one in particular (slightly different flexural vertical type) able to verify both requirements
producing internal resonance and a nonlinear double harmonic growing linearly with
distance. As in the previous case, Figures 5(a)-5(b) display the selected modes, while
Figure 5(c) spotlights the very high value of modal amplitude related to the secondary
resonant mode; small amplitude values associated to the other synchronousmodes, for which
power transfer is absent, are also shown in the same figure.

The previous results point up an optimal combination of primary and secondary
wave fields able to maximize the nonlinear response of the waveguide. Furthermore, it
is worthwhile to notice how the selected primary mode is not only able to produce a
resonant condition, but also very attractive in terms of practical excitability by a piezoelectric
transducer.
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Figure 4: (a) Selected primary mode at 80 kHz. (b) Phase-matched (synchronous) but nonresonant
secondary mode at 160 kHz. (c) Modal amplitude plot for propagative secondary modes.

Table 2: HPPE plate material properties.

ρ (kg/m3) h (mm) cL (m/s) cT (m/s) kL (Np/wavelength) kT (Np/wavelength)
953 12.7 2344 953 0.055 0.286

4.2. Viscoelastic Isotropic Plate

A viscoelastic isotropic high-performance polyethylene (HPPE) plate was investigated next
to extend the applicability to dissipative waveguides. This system is of primary importance
in aerospace and mechanical engineering and has been studied quite extensively in the past
assuming linear elastic regime to obtain dispersion curves and associated waveguide modes
[27, 35, 36]. In the present work, these results are confirmed and extended to the nonlinear
regime; an efficient combination of resonant primary and secondary modes is identified and
discussed in detail.

Material and geometrical properties for the plate are illustrated in Table 2 [35, 36],
where ρ is the density, h is the thickness, cL is the longitudinal bulk wave velocity, cT is the
shear bulk wave velocity, kL is the longitudinal bulk wave attenuation, and kT is the shear
bulk wave attenuation.
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Figure 5: (a) Selected primary mode at 80 kHz. (b) Resonant secondary mode at 160 kHz. (c) Modal
amplitude plot for secondary propagative modes.

The dissipative behavior of the plate was modeled via the Hysteretic formulation [27].
Hence, the resultant stiffness matrix is frequency-independent andwas calculated just once at
the beginning of the analysis once the complex Lame’s constants were evaluated. The results
for the present case are

λ̃ =
ρc̃2T

((
3c̃2L − 4c̃2T

)
/
(
c̃2L − c̃2T

))
ν̃

(1 + ν̃)(1 − 2ν̃)
= 3.51 + 0.06i, GPa,

μ̃ =
ρc̃2T

((
3c̃2L − 4c̃2T

)
/
(
c̃2L − c̃2T

))

2(1 + ν̃)
= 0.86 − 0.08i, GPa.

(4.1)

In (4.1) the complex bulk wave velocities (longitudinal and transverse) are calculated as
follows:

c̃L,T = c̃L,T

(
1 + i

kL,T
2π

)−1
. (4.2)
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The resultant viscoelastic stiffness matrix, with terms expressed in GPa, is given by:

C̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ̃ + 2μ̃ λ̃ λ̃ 0 0 0
λ̃ λ̃ + 2μ̃ λ̃ 0 0 0
λ̃ λ̃ λ̃ + 2μ̃ 0 0 0
0 0 0 μ̃ 0 0
0 0 0 0 μ̃ 0
0 0 0 0 0 μ̃

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.23 − 0.09i 3.51 + 0.06i 3.51 + 0.06i 0 0 0
3.51 + 0.06i 5.23 − 0.09i 3.51 + 0.06i 0 0 0
3.51 + 0.06i 3.51 + 0.06i 5.23 − 0.09i 0 0 0

0 0 0 0.86 − 0.08i 0 0
0 0 0 0 0.86 − 0.08i 0
0 0 0 0 0 0.86 − 0.08i

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.3)

First, the plate system was solved in the linear regime in order to calculate the
dispersion curves and obtain the propagative modes, necessary for the nonlinear analysis.
For this purpose, an extension of the linear SAFE algorithm [32] was employed. It allows
the study of the guided wave propagation along structures exhibiting material/geometrical
periodicity along their width (which is normal to the direction of propagation and to the
thickness and considered infinite) by applying the so-called periodic boundary conditions
(PBCs). With this powerful tool, a generally complex periodic structure (grooved panel,
reinforced concrete elements, just tomention a couple) can bemodeled simply by considering
a very small cell and applying PBCs on its sides. Mathematically, they represent a particular
case of Neumann boundary conditions: the variables and their derivatives up to the element
order are forced to take identical values on the pair of boundaries of the structure where the
PBCs are applied. This tool is very attractive since it opens new possibilities to study the
guided wave propagation (linear and nonlinear) for a general class of periodic structures by
developing the analysis just on a small portion (periodic cell).

According to this approach, the present plate system was modeled using a mesh of
just 60 quadrilateral cubic Lagrangian elements mapped and deployed in a (3.17 × 12.7)mm
periodic cell (Figure 6(a)). The resulting Lamb wave solutions are displayed in Figures 6(b)-
6(c) in the (0 ÷ 500) kHz frequency range. They are found to be in perfect agreement with
well-known results previously published in literature. Primary and secondary modes for the
nonlinear analysis are highlighted with white circles in the same figures.

Due to the lack of studies in literature concerning specifically the HPPE material, the
third-order Landau-Lifshitz elastic constants of a very similar plastic polymer (Polystyrene)
were adopted for the nonlinear analysis [37]. The assumed values are A = −10.8GPa, B =
−7.85GPa, and C = −9.81GPa.

The nonlinear analysis was developed between 250 kHz (primary mode) and 500 kHz
(secondarymode). The waveguide being dissipative, all the eigenvalues and eigenvectors are
complex. Propagative modes were separated from evanescent and nonpropagative solutions
by using a threshold of 10% between imaginary and real parts of each eigenvalue. After a
preliminary analysis on different potential combinations among the propagative modes, one
particular mode was selected as input (primary mode) for the nonlinear postprocessing. It is
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Figure 6: (a) Geometry with associated mesh for the 2D periodic cell representative of the 12.7mm thick
HPPE plate (dimensions in mm). (b) Phase-velocity dispersion curve in the (0 ÷ 500) kHz frequency range
with primary and secondary modes for nonlinear analysis highlighted (white circles). (c) Attenuation
curve (expressed in dB/m) in the (0 ÷ 500) kHz frequency range with primary and secondary modes for
nonlinear analysis highlighted (white circles).

associated with a complex eigenvalue k = 669.62 + 87.56i and a corresponding phase velocity
cph = 2345.80m/s at 250 kHz.

The application of the CO.NO.SAFE algorithm in this case is simplified because of the
assumption of 2D strain regime (the plate is considered infinite in the width direction). For
this reason all the terms used in the nonlinear postprocessing discussed before are evaluated
on a line segment running through the thickness. This approach is sometimes referred as 1D
SAFE [32], and was first introduced almost four decades ago [38, 39].

The results of the analysis pinpointed the presence of a resonant secondary mode. As
mentioned before, while the contribution of all other modes is oscillatory and bounded (2.9),
this secondary mode shows a cumulative behavior and represents the dominant term in the
expansion equation (2.7) with a contribution that linearly increases with distance. In fact,
after all the secondary modal amplitudes were calculated from (2.10) for the synchronous
case, the identified resonant secondary mode exhibits a value which is orders of magnitude
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Figure 7: Modal amplitude plot for secondary propagative modes along with contour plots and 3D views
of the selected primary and secondary modes for the viscoelastic HPPE plate (color online).

larger than those associated to the asynchronous modes (Figure 7). The same figure also
illustrates primary and secondary modes as contour plots (height and color gradients are
proportional to the out-of-plane displacement component along the propagation direction)
and 3D rendered views (global modeshape) considering a length of 1 cm. The amplitudes of
the displacement fields are not normalized and, consequently, they supply exact information
about the mode shapes. At the same time, the values are therefore not comparable from one
mode to another.

Figure 7 shows that the selected primary mode is a complex axial symmetric mode.
The mode at the double harmonic shows also features typical of axial modes. This resonant
secondary mode at 500 kHz looks very promising in a possible structural monitoring system
because it keeps the majority of the energy in the central area of the cross-section and
minimizes wave leakage into the surrounding medium. Furthermore, Figure 6(c) shows
that both primary and secondary modes have very small attenuation values (especially the
secondary mode at 500 kHz); this fact makes the studied combination even more attractive
because of the large inspection range that can potentially be achieved.

5. Conclusions

Nondestructive evaluation and structural health monitoring communities are showing an
increasing interest in nonlinear guided waves because of their significant potential in
several applications. However, proper application of nonlinear features requires a complete
understanding of the higher-harmonic generation phenomenon that can be expected for
the test waveguide. This paper discussed the extension of the classical SAFE algorithm
to the nonlinear regime and its implementation in a powerful multipurpose commercial
FEM code (COMSOL). The result is an innovative tool that opens new possibilities for
the analysis of dispersion characteristics and, most importantly here, nonlinear internal
resonance conditions, for a variety of complex structural waveguides that do not lend
themselves to alternative analyses such as purely analytical solutions. The specific cases that
were examined in this paper include complex geometry (railroad track) and viscoelastic
waveguides with damping effects (HPPE plate). In all these cases, the proposed algorithm
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successfully identified optimal combinations of resonant primary and secondarywavemodes
that exhibit the desired conditions of synchronicity and large cross-energy transfer. These
properties can be exploited in an actual system aimed at monitoring the structural condition
of the waveguide by nonlinear waves (detect defects, measure quasi-static loads or instability
conditions, etc.).
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