
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 365697, 18 pages
doi:10.1155/2012/365697

Research Article
A Modified PSO Algorithm for Minimizing
the Total Costs of Resources in MRCPSP

Mohammad Khalilzadeh,1 Fereydoon Kianfar,1
Ali Shirzadeh Chaleshtari,1 Shahram Shadrokh,1
and Mohammad Ranjbar2

1 Department of Industrial Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
2 Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,
Mashhad 9177948974, Iran

Correspondence should be addressed to Mohammad Khalilzadeh, mo.kzadeh@gmail.com

Received 6 September 2011; Revised 4 December 2011; Accepted 30 December 2011

Academic Editor: Yi-Chung Hu

Copyright q 2012 Mohammad Khalilzadeh et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We introduce a multimode resource-constrained project scheduling problem with finish-to-start
precedence relations among project activities, considering renewable and nonrenewable resource
costs. We assume that renewable resources are rented and are not available in all periods of
time of the project. In other words, there is a mandated ready date as well as a due date for
each renewable resource type so that no resource is used before its ready date. However, the
resources are permitted to be used after their due dates by paying penalty costs. The objective
is to minimize the total costs of both renewable and nonrenewable resource usage. This problem
is called multimode resource-constrained project scheduling problem with minimization of total
weighted resource tardiness penalty cost (MRCPSP-TWRTPC), where, for each activity, both
renewable and nonrenewable resource requirements depend on activity mode. For this problem,
we present a metaheuristic algorithm based on a modified Particle Swarm Optimization (PSO)
approach introduced by Tchomté and Gourgand which uses a modified rule for the displacement
of particles. We present a prioritization rule for activities and several improvement and local search
methods. Experimental results reveal the effectiveness and efficiency of the proposed algorithm for
the problem in question.

1. Introduction

The resource-constrained project scheduling problem (RCPSP) is the scheduling of project
activities subject to precedence relations as well as renewable resource constraints with the
objective of minimizing the makespan of the project. Each nonpreemptive activity in RCPSP
can be done in a single mode. For more information on RCPSP and solution methods, we
refer to Demeulemeester and Herroelen [1]. In the multimode RCPSP (MRCPSP), a set of



2 Mathematical Problems in Engineering

allowable modes can be defined for each activity which is characterized by a constant
duration and associated resource requirements. In this paper we consider MRCPSP with
the objective of minimizing total costs of all resources. Two types of resources, renewable
and nonrenewable, are considered. Nonrenewable resource cost of an activity is a function
of its resource requirements, determined by its modes. The limited renewable resources are
rented and each renewable resource is available in a predetermined sequential time period
specified by its ready time and due date and is not available before the ready time. However,
each renewable resource can be used after its due date with tardiness penalty cost. As the
cost of renting for each renewable resource is fixed, there is no need to incorporate it into
the objective function and only tardiness penalty cost is considered for each renewable re-
source. The MRCPSP under minimization of total costs of resources (RCPSP-TWRTPC) is an
applicable problem and a modified version of the MRCPSP in which all assumptions and
constraints of the MRCPSP are held, but the objective function is different. We assume that
there are a few renewable resources such as very expert human resources with high skill
levels, particular types of cranes, and tunnel boring machines that should be leased from
other companies providing these types of resources. Since these limited renewable resources
are employed in other projects, there is a dictated ready date as well as a due date for each
of them such that no resource can be accessible before its ready date, but these resources are
allowed to be used after their due dates by paying penalty cost, depending on the resource
type. Also, we suppose that there are a few nonrenewable resources like budget, materials,
energy, or other resources which are consumed during the project.

Ranjbar et al. [2] studied this problem with single mode for each activity and availab-
ility of one unit for each type of renewable resource, without considering nonrenewable re-
sources. They called this problem resource-constrained project scheduling problem, minimization
of total weighted resource tardiness penalty cost (RCPSP-TWRTPC), which is an extended form of
resource-constrained project scheduling problem (RCPSP). They developed ametaheuristic-based
GRASP algorithm together with a branch and bound procedure to solve the problem.

The problem we have studied here is a generalization of the problem introduced by
Ranjbar et al. [2] with more realistic viewpoint of resource costs by considering both renew-
able and nonrenewable resources cost. We call this problem multimode resource-constrained
project scheduling problem, minimization of total weighted resource tardiness penalty cost (MRCPSP-
TWRTPC).

Several exact and heuristic methods have been presented for MRCPSP. For instance,
we can point to branch and cut method introduced by Heilmann [3] and branch and bound
method developed by Zhu et al. [4] as two of the most powerful exact methods. Zhang et al.
[5] presented classical particle swarm optimization (PSO) methods for multimode resource-
constrained project scheduling problems to minimize the duration of construction projects.
Lova et al. [6] suggested a heuristic algorithm based on priority rules and thereafter a hy-
brid genetic algorithm [7] to solve MRCPSP. Jarboui et al. [8] applied a combinatorial pa-
rticle swarm optimization for solving multimode resource-constrained project scheduling
problem. Ranjbar et al. [9] developed scatter search algorithm to tackle this problem, using
path relinking methodology as its local search method. Van Peteghem and Vanhoucke [10]
proposed genetic algorithm to solve preemptive and nonpreemptive multimode resource-
constrained project scheduling problems. Kazemi and Tavakkoli-Moghaddam [11] devel-
oped a multimode particle swarm optimization which combines with genetic operator to
solve a biobjective multimode resource-constrained project scheduling problemwith positive
and negative cash flows. The difference between this study and the previous papers is that
they all considered the minimization of project makespan as objective function, but, in our



Mathematical Problems in Engineering 3

problem, the objective function is minimization of total costs of renewable and nonrenewable
resources.

MRCPSP-TWRTPC is a generalization of the RCPSP problem, and, considering the
NP-hardness of RCPSP [12, 13], the MRCPSP-TWRTPC problem is NP-hard as well, and
hence, metaheuristic method is the practical approach. In the remainder of this paper, we
introduce a metaheuristic-based PSO algorithm for solving this problem. PSO, in its present
form, dates back to 1990s; however, in this short period, PSO has shown good performance
in a variety of application domains, particularly in the constrained optimization problems.
Many researchers studied PSO widely and proposed several modifications. In this paper, we
use a modified PSO algorithm developed and used by Tchomté and Gourgand for solving
RCPSP efficiently [14].

The rest of this paper is organized as follows. In the next section, MRCPSP-TWRTPC
is described in detail and is formulated in a mathematical model. In Section 3, a description
of the PSO algorithm and its modifications is presented, and in Section 4 an algorithm based
on modified PSO introduced by Tchomté and Gourgand [14] is explained. Section 5 is the
experimental analysis. Finally, Section 6 concludes the work.

2. Problem Description

In MRCPSP-TWRTPC, a project is to be scheduled in order to minimize its total costs.
Resources available for completing project activities can be classified as either renewable
or nonrenewable. Activity j may have a number of execution modes Mj . Each activity
mode specifies the activity duration and the activity requirements for the certain amount of
renewable and nonrenewable resources. Each type of limited renewable resource is rented
for a fixed time interval, starting from its ready time and ending with its due date, and is
not available before its ready time but can be used after its due date with tardiness penalty
cost. Nonrenewable resources are not limited. All activities are ready at the beginning of
the project, and no preemption is permitted. If an activity is started under a specific mode,
the activity mode cannot be changed. Activity j executed in mode m has duration djm and
requires rjmk units of renewable resource k and njmk units of nonrenewable resource k. The
project network is depicted by an activity on node (AON) representation with finish-to-start
precedence relations and zero time lag. Dummy activities 1 and n correspond to start and
completion of the project. The list of activities is topologically numbered; that is, each
predecessor of every activity has a smaller number than the number of activity itself. Also,
we define the earliest and latest start time of activity j by ESTj and LSTj , respectively. ESTjs
and LSTjs are computed by CPM forward and backward passes using the mode with shortest
duration for each activity and assigning LSTn = LFTn = T , where T is an upper bound for
project makespan determined by any valid method, such as the sum of the longest duration
of entire project activities plus the ready times of renewable resources. Consequently, each
activity j can only be performed in time period [ESTj ,LSTj].

We define problem parameters as follows:

n: number of project activities,

NR: number of nonrenewable resources,

ck: unit cost of nonrenewable resource k,

R: number of renewable resources,



4 Mathematical Problems in Engineering

Rk: renewable resource k availability,

rk: ready time of renewable resource k,

dk: due date of renewable resource k,

pk: tardiness penalty cost of renewable resource k for each period,

Mj : number of modes of activity j,

Pj : the set of predecessors of activity j,

djm: duration of activity j under mode m,

rjmk: renewable resource k requirement for executing activity j under mode m,

njmk: nonrenewable resource k requirement for executing activity j under mode m,

ESTj : earliest start time of activity j,

LSTj : latest start time of activity j,

T: upper bound of the project makespan.

We also define the decision variables as follows:

xjmτ =

⎧
⎨

⎩

1, if activity j is started under mode m in period τ,

0, otherwise,

ykτ =

⎧
⎨

⎩

1, if renewable resource k is used in period τ,

0, otherwise.

(2.1)

lk: is the renewable resource k tardiness, determined by lk = max{0, CPk − dk}, where
CPk is the release time of resource k by the project.

The mixed integer programming model for this problem can be formulated as follows:

Min
NR∑

k=1

ck

⎛

⎝
n∑

j=1

Mj∑

m=1

njmk

LSTj∑

τ=ESTj

xjmτ

⎞

⎠ +
R∑

k=1

pk · lk (2.2)

S.t.
Mj∑

m=1

LSTj∑

τ=ESTj

xjmτ = 1, j = 1, 2, . . . , n, (2.3)



Mathematical Problems in Engineering 5

Mi∑

m=1

LSTi∑

τ=ESTi

(τ + dim)ximt ≤
Mj∑

m=1

LSTj∑

τ=ESTj

τxjmt, j = 1, 2, . . . , n, i ∈ Pj, (2.4)

n∑

j=1

Mj∑

m=1

rjmk

τ∑

z=τ−djm+1

xjmz ≤ Rk · ykτ , k = 1, 2, . . . , R, τ = 1, 2, . . . , T, (2.5)

rk−1∑

τ=1

ykτ = 0, k = 1, 2, . . . , R, (2.6)

τ · ykτ − dk ≤ lk, k = 1, 2, . . . , R, τ = dk, dk + 1, . . . ,LSTn, (2.7)

xjmτ ∈ {0, 1}, j = 1, 2, . . . , n, m = 1, 2, . . . ,Mj, τ = ESTj , . . . ,LSTj , (2.8)

ykτ ∈ {0, 1}, k = 1, 2, . . . , R, τ = 0, . . . ,LSTn, (2.9)

lk ≥ 0, k = 1, 2, . . . , R. (2.10)

In the above model, objective function (2.2) is project cost minimization in which the
first and second terms are total costs of using nonrenewable resources and total penalty costs
of renewable resources tardiness, respectively. Constraint set (2.3) ensures that each activity j
is started under one of its modes within its specified start time periods, that is, [ESTj ,LSTj].
Constraint set (2.4) forces precedence relationship between activities. Constrain (2.5) limit
renewable resource usage. According to constraint (2.6), renewable resources cannot be used
before their ready times and their tardiness periods are determined by constraint (2.7).
Finally, constraint sets (2.8), (2.9), and (2.10) are nonfunctional ones.

3. Particle Swarm Optimization

The PSO algorithm is relatively recent, evolutionary, and population-based metaheuristic,
originally developed by Kennedy and Eberhart [15] and redefined by Shi and Eberhart
[16]. In spite of the early stages of the PSO method, it has found broad applications in
combinatorial and constrained optimization domains and is currently a main research topic.
PSO inspired from the social behavior of natural swarms exploits a swarm of particles for
search space that are updated from iteration to iteration. Each particle corresponds to a
candidate solution assessed by the objective function of the problem in question and is
considered as a point in an n-dimension space. The status of a particle is represented by
its position and velocity [15]. The n-dimensional position for particle i at iteration t can be
represented as Xi,t = (xt

i1, x
t
i2, . . . , x

t
in). Similarly, the velocity is also an n-dimension vector

for particle i at iteration t which can be denoted as Vi,t = (vt
i1, v

t
i2, . . . , v

t
in). Using the fitness

evaluation, each particle remembers the best position it has perceived so far, referred to as Pi,t,
and the best position of all particles, the best position of the best particle in the entire swarm,
referred to as Gt. The position vector of each particle at iteration t is updated using (3.1), and
the particle moves to its new position:

Xi,t+1 = Xi,t + Vi,t. (3.1)



6 Mathematical Problems in Engineering

Velocity vector is also updated by(3.2)

Vi,t+1 = c1 · Vi,t + c2 · r2 · (Pi,t −Xi,t) + c3 · r3 · (Gt −Xi,t). (3.2)

This vector is a function of three components: previous velocity of the particle, the best
experience of the particle, also, the entire swarm’s best experiences up to the current iteration
which are called inertia, cognition part, and social part, respectively [16].

Updating process continues until the termination criterion is met which usually is the
maximal number of generations, processing time, or the best particle position of the whole
swarm that cannot improve further after a predefined number of generations.

In (3.2), r2 and r3 are real random numbers with uniform distribution which are
usually selected from the interval [0, 1]. c2 and c3 are known constants as learning factors,
showing the significance of local and global best experiences, respectively. Also, c1 is defined
as a positive inertia weight which was first introduced by Shi and Eberhart [17]. This
parameter can be specific for each particle [18]. Liu et al. [19] and Shi and Eberhart [20]
introduced time-decreasing inertia weight.

The PSO parameters analyses have been the subject of several researches. For instance,
Tchomté and Gourgand [14] determined some conditions for parameters to ensure that each
particle converges to some equilibrium point after enough number of iterations.

Although PSO has been originally designed for solving continuous problems, it can
be used for solving discrete problems as well. Different techniques have been designed to
use this algorithm for combinatorial optimization problems such as the ones introduced by
Jarboui et al. [8], Clerc [21], and Kennedy and Eberhart [22].

In this paper, we use the modified PSO approach which was introduced by Tchomté
and Gourgand [14] as an extension of PSO that integrates a new displacement rule of the
particles. The computational results of their algorithm showed that their PSO algorithm
outperformed all state-of-the-art algorithms in solving RCPSP, and this is the reason for
selecting their approach for our problem. We describe this modified PSO method in the
following.

A metaheuristic algorithm should be able to explore search space effectively and
efficiently. PSO algorithm should be intelligent enough to both intensively explore regions of
the search space with high-quality solutions and to diversely move to unexplored regions of
the search space. These two techniques that were introduced by Glover and Laguna [23] are
known as intensification and diversification methods, respectively. Tchomté and Gourgand
[14] analyzed particle trajectories and modified particle position updating rules. The idea
originated from the PSO applications in which particles basically move from their current
positions toward the best local and global positions (Pi,t, Gt), but the particles do not get close
enough to Pi,t and Gt. As a result, diversification is performed well, but intensification is
not. Consequently, Tchomté and Gourgand [14] proposed a new particle displacement rule
to improve the intensification process by letting each particle visit two positions Si,t and Ti,t
before moving from current position, Xi,t, to the next position Xi,t+1. First, the inertia has
influences on the position by making the particle move from Xi,t to Si,t. Then the cognition
part moves the particle to Ti,t and finally under social part affect the particle to reach its
new position, Xi,t+1, at the next iteration. Adapted from Tchomté and Gourgand [14], particle
displacement in the classical PSO and this modified PSO has been shown in Figures 1(a) and
1(b), respectively.



Mathematical Problems in Engineering 7

Vit

Xit

Pit

Xi,t+1

Gt

(a)

Vit

Xit

Pit

Xi,t+1

Gt

Tit

Sit

(b)

Figure 1: Particle displacement in the swarm: (a) classical PSO, (b) modified PSO.

For this purpose, the particle position updating rule is

Si,t = Xi,t + c1 · Vi,t,

Ti,t = Si,t + c2 · r2 · (Pi,t − Si,t),

Xi,t+1 = Ti,t + c3 · r3 · (Gt − Ti,t),

Xi,t+1 = Xi,t + c1 · (1 − c2 · r2) · (1 − c3 · r3) · Vi,t

+ c2 · r2 · (1 − c3 · r3) · (Pi,t −Xi,t) + c3 · r3 · (Gt −Xi,t). (3.3)

Then, in each time step t, velocity vector is updated as follows:

Vi,t+1 = α · Vi,t + β · (Pi,t −Xi,t) + γ · (Gt −Xi,t), (3.4)

α = c1 · (1 − r2 · c2) · (1 − r3 · c3),
β = c2 · (1 − r3 · c3),

γ = c3.

(3.5)

Tchomté and Gourgand [14] showed that the necessary conditions for coefficients so
that the particles converge to the equilibriums are satisfying (3.6) plus (3.7) or (3.6) plus (3.8):

φ > 0, φ − 2 ∗ (c1 + 1) < 0, c1 < 1, (3.6)

where φ = (c2 + c3)/2,

0 < c1 < 0.9, 0 < c2 < 2, 0 < c3 < 2, (3.7)

0 < c1 < 0.9, 2 ≤ c2 < 4, 2 ≤ c3 < 4. (3.8)

4. Modified PSO for MRCPSP-TWRTPC

In this section, we present a modified PSO algorithm, using the approach of Tchomté and
Gourgand [14], for solving MRCPSP-TWRTPC. Algorithm 1 shows the pseudocode. In this
algorithm the ith particle position at iteration t is represented by the n-dimensional vector



8 Mathematical Problems in Engineering

(1) Do Preprocessing
(2) Generate initial particle swarm
(3) While termination criterion is met do
(4) While all particles have been evaluated do
(5) Determine activities priorities
(6) Schedule activities based on their modes and priorities using the parallel

schedule generation and delay local search
(7) While schedule is improved do
(8) Improve schedule by Mode Assignment Modification—Part I
(9) Improve schedule by Local Left Shift
(10) End while
(11) Improve schedule by Mode Assignment Modification—Part II
(12) Compute corresponding cost of the generated schedule
(13) End while
(14) Update the local and global best solutions if necessary
(15) Update position and velocity of each particle according to (3.3) and (3.4), respectively
(16) End while
(17) Report the global best solution

Algorithm 1: Pseudocode of modified PSO algorithm for MRCPSP-TWRTPC.

Xi,t = (xt
i1, x

t
i2, . . . , x

t
in) inwhich xt

ij , j = 1, 2, 3, . . . , n is themode assignment to the jth activity
at iteration t and is an integer in the interval [1,Mj]. A feasible schedule of the project is
constructed from each Xi,t. For this purpose, first the activities are prioritized, see Section 4.3.
Then, using single-pass parallel schedule generation scheme, the activities are scheduled, see
Section 4.4. Certain local search and improvement procedures are applied on this solution to
reach a better schedule, see Sections 4.5, 4.6, 4.7, and 4.8.

Each particle’s fitness value is determined by calculating total cost of the final sched-
ule. Then, if necessary, local and/or global best positions are updated, see Section 4.9. If ter-
mination criterion is not met, particle positions and velocity vectors are updated by (3.3) and
(3.4), respectively, for the next iteration, see Section 4.10. Different parts of this algorithm are
described in more details as follows.

4.1. Preprocessing

Sprecher et al. [24] introduced several preprocessing rules in order to reduce feasible space of
MRCPSP. Later, these rules have been used in other articles such as Lova et al. [6], Peteghem
and Van Vanhouck [10], and Hartmann and Briskorn [25]. Considering the similarities
between MRCPSP-TWRTPC and MRCPSP, we apply two of these rules to our proposed
problem. One is the nonexecutable mode elimination rule for an activity. For a nonexecutable
mode, the amount of the resource needed for executing the activity is more than the resource
availability. Another method is inefficient mode elimination method. A given mode is inefficient
for an activity if there is another mode for which the activity duration is less, and that activity
can be accomplished with less total amount of both renewable and nonrenewable resources.
Therefore, activities modes are analyzed one by one and nonexecutable and inefficient modes
are deleted.

4.2. Generating Initial Particle Swarm

Initial particle swarm is generated randomly. Here, component j, j = 1, . . . , n, of either po-
sition or velocity vectors for each particle is generated randomly from the ranges [1,Mj] and



Mathematical Problems in Engineering 9

[−Mj,Mj], respectively, as there is no nonrenewable resource constraint in the problem;
moreover, all nonexecutable modes have been deleted, initial mode assignments are feasible,
and no modification is needed.

4.3. Activity Priority for Scheduling
In order to generate a solution in MRCPSP-TWRTPC, two issues are to be decided: activities
mode assignment and scheduling of activities. By specifying mode assignment for a solution,
the cost of nonrenewable resources is determined and fixed. Then, scheduling of activities is
performed with the objective of minimizing the total cost of renewable resource tardiness
penalties. Therefore, the priorities of activities for scheduling are determined by renewable re-
sources. Our procedure for this purpose is as follows.

First, we define the set of activities which need renewable resource k as the activity set of
resource k (ASRk). Each activity in this set may have immediate or nonimmediate predecessors
that may not be a member of this set. We define the set of these predecessors which are not
members of ASRk as activities predecessors of resource k (APRk). Then, the pairs of ASRk and
APRk, k = 1, . . . , R, are prioritized by index k using the heuristic that activities in ASRk

and APRk for the resource which has more potential of causing tardiness penalty should
receive higher priority of being scheduled. To access the potential of the kth resource tardiness
penalty cost, we note that this penalty cost is equal to Pk × max{0, CPk − dk}, where CPk is
the release time of resource k in the project, and hence Pk × (CPk − dk) is a good measure for
prioritizing the resources for this purpose. Now the question is how to access CPk without
knowing the schedule. We use the following procedure to access CPk, k = 1, . . . , R.

Since no activity can start sooner than the ready time of all the resources it needs, in
order to take into account the resource ready time, we add one dummy node k for each re-
source k, k = 1, . . . , R, to the project network. Each dummy activity R is single mode with no
resource requirement, and the duration of rk. All these dummy activities can be scheduled at
time zero. Then, for any activity j which needs renewable resource k, we set dummy activity
k as one of its predecessors. So execution of activity j is not possible before the time rk. Note
that dummy activity k is a member of APRk. The length of the critical path of subnetwork
k is denoted by CPk and is considered as a relative measure of CPk for k = 1, . . . , R. CPk is
computed using CPMmethod. After computation ofCPk for all resources, the parts of activity
sets ASRk and APRk, k = 1, . . . , R, are prioritizing using the value of Pk × (CPk − dk).

In our procedure for prioritizing activities for scheduling, we give more priority to the
activities in APRk than activities in ASRk, since activities in ASRk cannot be scheduled unless
activities in APRk are scheduled.

Finally, for each resource k, it is necessary to prioritize the activities belonging to each
set of ASRk and APRk. We notice when a set of activities using a renewable resource are to be
scheduled, we actually deal with an RCPSP, because activities under specified modes are
to be scheduled in order to execute within the shortest possible time. Therefore, in order to
prioritize activities of a set of ASRk or APRk, we apply one of the most efficient heuristics to
scheduling of activities in RCPSP. Lova et al. [6] compared a number of most efficient heu-
ristics for prioritization of activities in RCPSP and found out that activities prioritization
based on nondecreasing order of the sum of the latest start and finish time (LSTLFT)
gained the best results among single-pass heuristics. This has been among the best multipass
methods as well. Multipass methods need much more computation times than single-pass
methods, but they usually result in negligible improvement of the solution; hence, we use
the LSTLFT method with single-pass scheduling in order to prioritize activities of ASRk and
APRk.



10 Mathematical Problems in Engineering

4.4. Scheduling Activities

We use parallel schedule generation scheme for scheduling activities, since it fits well with de-
lay local searchwhich we will use. For more details on parallel schedule generation scheme see
Section 6.3.2.1.2 of Demeulemeester and Herroelen [1].

Parallel schedule generation scheme repeats over the separate decision points at which
activities can be added to the schedule. A decision point in time horizon corresponds with the
completion times of already scheduled activities; thus, at most n decision points need to be
considered. At each decision point, the unscheduled activities whose predecessors have been
accomplished are taken into consideration in the order of priority list and are scheduled if no
resource conflict exists at that time instant.

In this problem, renewable resources have ready time and availability of them differs
before and after these times and some new activities may be able to be scheduled after these
times. Therefore, we consider ready times in addition to the completion times of activities for
choosing new point in time horizon. A new point in time horizon is the closest point to the
current point among the ready times of renewable resources and the completion time of
scheduled activities.

4.5. Delay Local Search

This local search method was used by Chen et al. [26] for the RCPSP problem to escape from
local minimum. This method performs like the mutation operator in genetic algorithm and
can delay scheduling each activity in spite of its priority to let other activities be scheduled
sooner and some resources asked by selected activity will be retained for other activities.

In order to use resources more efficiently, scheduling some activities are delayed in
spite of their priority. So other activities can be scheduled sooner. If these selected activities
are not delayed, they could delay other project activities for a rather long time. Therefore,
each activity is delayed if q ≤ q0, where q is randomly selected form uniform distribution
[0, 1] and q0 (0 < q0 < 1) is the probability of delay and called “delay rate.”

Considering the efficiency of this delay local search in shortening project makespan
shown in Chen et al. [26], we apply this method to scheduling activities.

4.6. Mode Assignment Modification-Part I

After scheduling activities, the current schedule may have a set of activities with positive
free floats. We call this set FFA. For each j ∈ FFA, it may be possible to change the
mode of activity j and reschedule it, using its free float, such that its finish time is not
increased and hence no other activity is affected. The mode change and rescheduling of
activity j can reduce nonrenewable resource costs, but it can also change CPk, release time
of resource k, k = 1, . . . , R. The change of CPk can change renewable resource k tardiness,
k = max{0, CPk−dk}, and its cost, pklk. If we set the availability of resource k, k = 1, . . . , R, for
the periods after max{CPk, dk} equal to zero and then reschedule activity j, we are sure that
this scheduling is not going to increase renewable resource tardiness penalties. Considering
the above points, we define “mode assignment modification-part I” as follows and use it as a
local search procedure in our algorithm.

(1) For the current schedule find the set FFA by forward pass computation.

(2) Set the availability of resource k, k = 1, . . . , R, for the periods after max{CPk, dk}
equal to zero.



Mathematical Problems in Engineering 11

(3) For each j ∈ FFA, as we go through forward pass, consider the least nonrenewable
resource cost mode of activity j. If it is not its current mode, reschedule activity
j in this mode using its free float and considering resource constraints, without
increasing its finish time. If this rescheduling is not possible, check the next least
nonrenewable resource cost mode of activity j.

4.7. Local Left Shift Improvement

Mode assignment modification-part I can reduce the renewable resource requirements of
the project for certain periods under the resulted schedule. This should be expected since
usually the mode with less nonrenewable resources has longer duration and requires less
renewable resources per period. Hence, the possibility of local left shift of certain activities
exists. Therefore, we perform the standard local left shift method after the mode assignment
modification-part I.

After performing local left shift, we might be able to modify some of the activities
mode assignment again by mode assignment modification-part I. Hence, these two
procedures are used one after another until no improvement can be achieved in the schedule.

4.8. Mode Assignment Modification-Part II

We consider the set of project activities with no successors and call this set NSA. The direct
predecessor activities of dummy activity n make NSA. For any j ∈ NSA if we change the
mode of activity j and reschedule it, the schedule of no other activity changes and the value
of cost change of the project is Δc = ΔNRCj +

∑R
k=1 pkΔlk, where ΔNRCj is the change of

nonrenewable resource cost of mode for activity j and Δlk is the change of kth resource
tardiness. Since activity j has no successor, Δlk can be computed easily. If the value of change
effect on total cost is negative, themode change for activity j ∈ NSA is justifiable. Considering
above points, we define the following local search procedure as “mode assignment modification-
part II” and use it in our algorithm.

(1) Let NSA = {j | activity j is the direct predecessor of dummy activity n}.

(2) For each j ∈ NSA, consider some modes for activity j, in which nonrenewable re-
sources requirement cost is less and this cost saving is more than the probable in-
crease in the penalty cost of renewable resources. Compute Δc for each of them.
Considering renewable resource constraints, if the least Δc is negative, its cor-
responding mode replaces the current mode of activity j.

4.9. Updating the Local and Global Best Solutions

As mentioned earlier, the PSO algorithm stores the best local solution obtained by each pa-
rticle and the best global solution obtained by the entire swarm. Therefore, after evaluating
all the particles of the swarm at iteration, the best local solution for each particle up to the
current iteration is compared with the current solution of the particle. If the current solution
has lower total cost, the best local solution of the particle is replaced by the current solution
of the particle.

Similarly, the best global solution is updated.



12 Mathematical Problems in Engineering

4.10. Updating Particles Position and Velocity

To update position of the particles to generate new solutions for the next iteration, firstly,
particles velocity is updated using (3.4). In this process each element of the velocity vector
which is more thanMi is changed toMi and each element of the velocity vector which is less
than −Mi is changed to −Mi. Then, particles positions are updated using (3.3). Similar to the
procedure for updating each particle velocity, each element of the new position vector which
is more than Mi is changed to Mi and each element of the new position vector which is less
than 1 is changed to 1. As the elements of position vector determine the mode assignment of
activities and should be integer, each noninteger element is rounded to the closest integer.

5. Experimental Analysis

In this section, we present experimental analysis of the algorithm. All programs have been
coded and executed on C#.NET 2008 platform on a PC with Core 2 Duo 2.53GHz CPU and
3GB RAM.

5.1. Sample Problems

We used sample problems library of PSPLIB [27] and selected three sets of multimode project
scheduling problems, j10, j16, j20 as the small size problems and j30 as the medium size
problem. In addition, two sets of large size problems, j60 and j90, were generated with the
same parameters as j30, but with 60 and 90 activities, respectively. Also, in order to observe
the effect of resources in the problem, two extra sets of project scheduling problems were
generated by Kolisch et al. [28], which we call j30 r4 n4 and j60 r4 n4. All the parameters
in these sets are similar to those in sets j30 and j60, respectively, but instead of having 2
renewable and 2 nonrenewable resources, there exist 4 resources of each type.

Discrete uniform distribution has been used in the related literature of the project
scheduling; for example, Ranjbar et al. [2] and Khalilzadeh et al. [29] used discrete uniform
distribution for resource ready dates and due date. Hence, in this paper we have used discrete
uniform distribution to select the parameters. The unit cost of nonrenewable resources
were randomly selected from discrete uniform distribution (2,6), the unit penalty cost of
renewable resource tardiness were randomly chosen from discrete uniform distribution
(10,30). The ready times of renewable resources were randomly generated from discrete
uniform distribution (0,15), and finally, the renewable resource due dates were randomly
picked from discrete uniform distribution (5,15) plus the amount of their ready time.

5.2. Parameters Tuning

There exist five parameters, delay rate (q0), the number of particles in the swarm P, and also,
c1, c2, and c3 in our PSO algorithm. For setting these parameters we used 3-point factorial
design as shown in Table 1. As mentioned in Section 3, parameters c1, c2, and c3 ought to be
chosen in the ranges given by (3.6) and (3.7), or (3.6) and (3.8). For each of these two ranges,
three points have been selected.

A set of 100 test instances was randomly selected from the set j16 and solved with the
CPU time limit of 150 milliseconds. Subsequently, around 4 to 30 iterations were executed,
depending on the number of particles in the swarm.



Mathematical Problems in Engineering 13

Table 1: Parameter settings.

Parameter Levels
q0 0.2–0.4–0.6
P 10–30–60
c1 0.2–0.45–0.7

Satisfying relations (3.6) and (3.7) Satisfying relations (3.6) and (3.8)
c2 0.5–1–1.5 2.5–3–3.5
c3 0.5–1–1.5 2.5–3–3.5

Table 2: Algorithm validity assessment.

Problems set Average CPU time (millisecond) Average d Standard deviation of d
J10 (536 problems) 278 1.19 2.18
J16 (550 problems) 446 3.64 4.75
J20 (554 problems) 543 4.70 5.65
J30 (640 problems) 825 7.40 8.13
J60 (640 problems) 1818 10.56 11.06
J90 (640 problems) 2916 11.76 12.21
J30-r4-n4 (640 problems) 1509 7.78 8.73
J60-r4-n4 (640 problems) 3302 11.69 12.56

Each test instance was run for all 35×2 = 486 permutations of parameter values, a total
of 48,600 problems. The tuned values of the parameters are q0 = 0.4, P = 60, c1 = 0.2, c2 = 0.5,
c3 = 1.

5.3. Algorithm Validity

As our research is new, we could not find any solved problem in the literature. So we
developed some instance problems whose optimum objective function values are in hand.
Then we solved these instances with our algorithm and tested the results. In order to
generate these instances, we used sample problems introduced in Section 5.1; however, we
modified the due dates of renewable resources as follows. We generated a random feasible
schedule for each instance, after assigning the least nonrenewable cost mode to each activity
of the project. In this schedule, we determined the release time of each renewable resource.
Subsequently, we set the due date for each renewable resource equal to its release time; hence,
this schedule has zero tardiness penalty cost and its objective function value is equal to the
cost of nonrenewable resources. As we assigned the least nonrenewable cost modes to the
activities, this schedule is optimal and the optimum value of its objective function is available.

All sample problems were modified with the above procedure and solved with the
PSO algorithm. The termination criterion was generation of 600 schedules. In order to assess
the validity of the algorithm, d, the percent deviation of the objective function value from
optimum, computed for each test problem solved, where d = 100 × (Zp − Zopt)/Zopt, Zp is
the objective function value of the best solution achieved by the PSO algorithm and Zopt,
the optimal objective function value of the instance. Table 2 shows the average and standard
deviation of d for each problem set. The low values of average and standard deviation of d
reveal good performance of the algorithm with small CPU time, although we do not have
any standard for comparison.



14 Mathematical Problems in Engineering

Table 3: Algorithm robustness check.

Problem set
120 schedules 900 schedules

Average CPU time
(millisecond)

Average percent
deviation

Average CPU time
(millisecond)

Average percent
deviation

j10 69 6.18 352 5.17
j16 112 4.74 541 5.01
j20 135 4.14 648 4.14
J30 216 4.17 1039 3.65
J60 471 3.44 2220 3.35
J90 776 2.13 3652 2.08
J30-r4-n4 410 4.13 1893 3.29
J60-r4-n4 880 2.77 4085 2.76

5.4. Algorithm Robustness

In order to check the robustness of the PSO algorithm, we have used the algorithm for
several instances. Each instance has been solved several times, and d the percent deviation
of objective function value for each instance has been computed.

From each set of problems, 15 randomly chosen instances have been used and each
instance has been solved 30 times using the PSO algorithm, and each time done under two
termination criteria, generation of 120 and 900 schedules.

To check the robustness of the algorithm, d′ for each instance has been computed,
where d′ = 100×Sd(Zi)/E(Zi), Zi is the objective function value of the best solution achieved
by solving the problem for ith run, Sd(Zi) standard deviation of Zi, and E(Zi) is the mean of
Zi. The average of d′ for the problems of each set has been shown in Table 3.

5.5. Improvement Methods Performance Assessment

In this section, we assess the performance of the improvement methods introduced in
Sections 4.6 and 4.8. The first one is the mode assignment improvement method-part I along
with local left shift, and the other one is the mode assignment improvement method-part II.
In order to assess each of these improvement methods, we remove each one from the original
algorithm to get two simplified algorithms, each of which does not have one of the two
improvement methods. We use 30 instances from each problem set and solve them with the
main algorithm, also, with the two simplified algorithms. Subsequently, compare the results
gained by simplified algorithms with the results of the original algorithm. All instances have
been solved by three algorithms under three different termination criteria, to generation of
120, 600, and 900 schedules. We compute d′′ for each instance to compare the results, where
d′′ = 100 × (Zs − Zp)/Zp, Zs is the final solution objective function value obtained by the
simplified PSO algorithm, Zp, final solution objective function value obtained by original
PSO, and d′′ is the percent deviation of Zs from Zp.

Mean and standard deviation of d′′ for each set have been computed. Table 4 shows
the effect of deleting mode assignment improvement method-part I and local left shift and
we can see that, in all cases, the performance of the algorithm deteriorates remarkably and in
most cases the mean CPU time, in millisecond, considerably increases if this local search is
deleted.



Mathematical Problems in Engineering 15

Ta
b
le

4:
Pe

rf
or
m
an

ce
as
se
ss
m
en

to
fi
m
pr
ov

em
en

tp
ar
tI
.

12
0
sc
he

d
ul
es

60
0
sc
he

d
ul
es

90
0
sc
he

d
ul
es

Pr
ob

le
m

se
t

A
ve

ra
ge

C
PU

ti
m
e
of

or
ig
in
al

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

C
PU

ti
m
e
of

si
m
pl
ifi
ed

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

d

St
an

d
ar
d

d
ev

ia
ti
on

of
d

A
ve

ra
ge

C
PU

ti
m
e
of

or
ig
in
al

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

C
PU

ti
m
e
of

si
m
pl
ifi
ed

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

d
St
an

d
ar
d

d
ev

ia
ti
on

of
d

A
ve

ra
ge

C
PU

ti
m
e
of

or
ig
in
al

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

C
PU

ti
m
e
of

si
m
pl
ifi
ed

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

d

St
an

d
ar
d

d
ev

ia
ti
on

of
d

J1
0

87
85

6.
43

14
.1
3

27
0

33
5

7.
27

15
.7
7

38
5

48
7

15
.9
0

27
.7
9

J1
6

12
1

13
3

10
.3
2

16
.6
5

70
7

52
3

4.
54

9.
11

60
5

79
1

6.
66

12
.7
5

J2
0

15
7

17
1

10
.6
1

15
.7
1

51
5

65
4

10
.4
3

17
.4
9

72
5

98
3

12
.6
3

21
.8
4

J3
0

23
3

24
7

5.
41

9.
93

78
7

10
05

8.
58

14
.7
5

11
20

14
88

10
.4
1

14
.9
2

J6
0

49
9

54
1

10
.4
6

12
.2
9

16
58

21
89

8.
95

10
.7
2

24
19

32
57

10
.3
3

13
.2
6

J9
0

81
9

88
6

10
.0
5

11
.5
7

26
76

35
31

11
.2
3

11
.8
3

39
60

52
93

11
.8
2

13
.0
4

J3
0-
r4
-n
4

43
7

47
6

9.
43

13
.3
4

14
23

19
64

8.
81

13
.5
5

20
82

29
09

11
.7
1

13
.8
1

J6
0-
r4
-n
4

88
7

10
03

12
.1
2

13
.9
4

29
50

70
89

12
.7
2

15
.0
3

42
94

60
84

13
.1
3

14
.7
8



16 Mathematical Problems in Engineering

Ta
b
le

5:
Pe

rf
or
m
an

ce
as
se
ss
m
en

to
fi
m
pr
ov

em
en

tp
ar
tI
I.

12
0
sc
he

d
ul
es

60
0
sc
he

d
ul
es

90
0
sc
he

d
ul
es

Pr
ob

le
m

se
t

A
ve

ra
ge

C
PU

ti
m
e
of

or
ig
in
al

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

C
PU

ti
m
e
of

si
m
pl
ifi
ed

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

d

St
an

d
ar
d

d
ev

ia
ti
on

of
d

A
ve

ra
ge

C
PU

ti
m
e
of

or
ig
in
al

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

C
PU

ti
m
e
of

si
m
pl
ifi
ed

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

d
St
an

d
ar
d

d
ev

ia
ti
on

of
d

A
ve

ra
ge

C
PU

ti
m
e
of

or
ig
in
al

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

C
PU

ti
m
e
of

si
m
pl
ifi
ed

al
go

ri
th
m

(m
ill
is
ec
on

d
)

A
ve

ra
ge

d

St
an

d
ar
d

d
ev

ia
ti
on

of
d

J1
0

87
11
2

0.
61

8.
65

27
0

42
9

3.
32

11
.9
2

38
5

64
6

4.
37

14
.7
7

J1
6

12
1

17
5

2.
45

7.
62

70
7

67
6

5.
47

10
.2
0

60
5

10
32

2.
04

8.
66

J2
0

15
7

22
0

1.
50

7.
41

51
5

84
2

0.
38

5.
85

72
5

12
31

0.
66

7.
96

J3
0

23
3

34
1

−1
.5
2

8.
06

78
7

13
13

1.
68

5.
29

11
20

19
22

2.
16

6.
63

J6
0

49
9

73
0

−0
.5
4

3.
19

16
58

28
58

−0
.5
5

3.
74

24
19

42
08

0.
68

4.
25

J9
0

81
9

11
67

0.
06

3.
55

26
76

45
75

−0
.7
3

4.
32

39
60

67
52

−0
.9
3

2.
84

J3
0-
r4
-n
4

43
7

61
8

−0
.7
0

6.
74

14
23

24
13

−0
.0
4

3.
61

20
82

36
11

0.
39

4.
27

J6
0-
r4
-n
4

88
7

13
22

0.
77

3.
89

29
50

51
02

1.
34

4.
70

42
94

75
05

−0
.6
2

3.
45



Mathematical Problems in Engineering 17

Table 5 shows the effect of deletingmode assignment improvement method-part II. We
can see that in most cases the performance of the algorithm deteriorates, and in all cases the
average CPU time increases remarkably. In the following, we explain the reason for increasing
the average CPU time.

6. Conclusions

In this paper, we introduced MRCPSP-TWRTPC problem as a resource-oriented cost min-
imization project scheduling problem considering both renewable and nonrenewable re-
source costs. We formulated and mathematically modeled this problem as mixed integer pro-
gramming model and discussed its NP-hardness. Subsequently, we developed a metaheuris-
tic algorithm to tackle the proposed project scheduling problem. We briefly reviewed the ap-
plications of the PSO algorithm for solving combinatorial and constrained optimization prob-
lems. Thereafter, we applied a modified PSO algorithm including modified updating rules
for particles velocity and position. In order to generate feasible schedules, we used the
PSO algorithm for activity mode assignment and developed a novel heuristic technique to
prioritize activities for parallel scheduling scheme. Two improvement heuristics, delay local
search and local left shift, in line with two mode assignment modification methods, were
implemented to improve the solutions. The computational results revealed proper algorithm
robustness in solving different instances especially with high number of iterations. Also, the
validity analysis showed small deviations from the optimal solutions for the test instances in
reasonable solving time. Finally, we assessed two improvement methods used in our algo-
rithm to demonstrate their good performance.

References

[1] E. Demeulemeester and W. S. Herroelen, Project Scheduling, A Research Handbook, Kluwer Academic,
Dordrecht, The Netherlands, 2001.

[2] M. Ranjbar, M. Khalilzadeh, F. Kianfar, and K. Etminani, “An optimal procedure for minimizing total
weighted resource tardiness penalty costs in the resource-constrained project scheduling problem,”
Computers and Industrial Engineering, vol. 62, no. 1, pp. 264–270, 2012.

[3] R. Heilmann, “A branch-and-bound procedure for the multi-mode resource-constrained project
scheduling problemwithminimum andmaximum time lags,” European Journal of Operational Research,
vol. 144, no. 2, pp. 348–365, 2003.

[4] G. Zhu, J. F. Bard, and G. Yu, “A branch-and-cut procedure for the multimode resource-constrained
project-scheduling problem,” INFORMS Journal on Computing, vol. 18, no. 3, pp. 377–390, 2006.

[5] H. Zhang, C. M. Tam, and H. Li, “Multimode project scheduling based on particle swarm optimiza-
tion,” Computer-Aided Civil and Infrastructure Engineering, vol. 21, no. 2, pp. 93–103, 2006.

[6] A. Lova, P. Tormos, and F. Barber, “Multi-mode resource constrained project scheduling: scheduling
schemes, priority rules andmode selection rules,” Inteligencia Artificial, vol. 10, no. 30, pp. 69–86, 2006.

[7] A. Lova, P. Tormos, M. Cervantes, and F. Barber, “An efficient hybrid genetic algorithm for scheduling
projects with resource constraints and multiple execution modes,” International Journal of Production
Economics, vol. 117, no. 2, pp. 302–316, 2009.

[8] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, “A combinatorial particle swarm optimization for
solving multi-mode resource-constrained project scheduling problems,” Applied Mathematics and
Computation, vol. 195, no. 1, pp. 299–308, 2008.

[9] M. Ranjbar, B. De Reyck, and F. Kianfar, “A hybrid scatter search for the discrete time/resource trade-
off problem in project scheduling,” European Journal of Operational Research, vol. 193, no. 1, pp. 35–48,
2009.

[10] V. Van Peteghem and M. Vanhoucke, “A genetic algorithm for the preemptive and non-preemptive
multi-mode resource-constrained project scheduling problem,” European Journal of Operational
Research, vol. 201, no. 2, pp. 409–418, 2010.



18 Mathematical Problems in Engineering

[11] F. S. Kazemi and R. Tavakkoli-Moghaddam, “Solving a multi-objective multi-mode resource-con-
strained project scheduling problem with particle swarm optimization,” International Journal of
Academic Research, vol. 3, no. 1, pp. 103–110, 2011.

[12] J. Błażewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Scheduling subject to resource constraints:
classification and complexity,” Discrete Applied Mathematics, vol. 5, no. 1, pp. 11–24, 1983.

[13] P. Brucker, A. Drexel, R. Mohring, K. Neumann, and E. Pesch, “Resource-constrained project sched-
uling: notation, classification, models and methods,” European Journal of Operational Research, vol. 113,
pp. 3–41, 1999.

[14] S. Kemmoé Tchomté and M. Gourgand, “Particle swarm optimization: a study of particle displace-
ment for solving continuous and combinatorial optimization problems,” International Journal of
Production Economics, vol. 121, no. 1, pp. 57–67, 2009.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International
Conference on Neural Networks, pp. 1942–1948, Piscataway, NJ, USA, December 1995.

[16] Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in Proceedings of the IEEE International
Conference on Evolutionary Computation (ICEC ’98), pp. 69–73, Piscataway, NJ, USA, May 1998.

[17] Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimization,” in Annual Conference
Evolutionary Programming, San Diego, Calif, USA, 1998.

[18] C. Y. Tsai and S. W. Yeh, “A multiple objective particle swarm optimization approach for inventory
classification,” International Journal of Production Economics, vol. 114, no. 2, pp. 656–666, 2008.

[19] S. Liu, J. Tang, and J. Song, “Order-planning model and algorithm for manufacturing steel sheets,” In-
ternational Journal of Production Economics, vol. 100, no. 1, pp. 30–43, 2006.

[20] Y. Shi and R. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 945–1950, Piscataway, NJ, USA, 1999.

[21] M. Clerc, “Discrete particle swarm optimization,” in New Optimization Techniques in Engineering, G. C.
Onwubolu and B. V. Babu, Eds., pp. 204–219, Springer, Berlin, Germany, 2004.

[22] Kennedy and R. C. Eberhart, “Discrete binary version of the particle swarm algorithm,” in Proceedings
of the IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4104–4108, IEEE
Computer Society, Washington, DC, USA, 1997.

[23] F. Glover and M. Laguna, “Tabu search,” in Handbook of Combinatorial Optimization, D.-Z. Du and P.
M. Pardalos, Eds., vol. 3, pp. 621–757, Kluwer Academic, Boston, Mass, USA, 1998.

[24] A. Sprecher, S. Hartmann, and A. Drexl, “An exact algorithm for project scheduling with multiple
modes,” OR Spektrum, vol. 19, no. 3, pp. 195–203, 1997.

[25] S. Hartmann and D. Briskorn, “A survey of variants and extensions of the resource-constrained pro-
ject scheduling problem,” European Journal of Operational Research, vol. 207, no. 1, pp. 1–14, 2010.

[26] R. M. Chen, C. L. Wu, C. M. Wang, and S. T. Lo, “Using novel particle swarm optimization scheme to
solve resource-constrained scheduling problem in PSPLIB,” Expert Systems with Applications, vol. 37,
no. 3, pp. 1899–1910, 2010.

[27] R. Kolisch and A. Sprecher, “PSPLIB—a project scheduling problem library,” European Journal of
Operational Research, vol. 96, no. 1, pp. 205–216, 1997.

[28] R. Kolisch, A. Sprecher, and A. Drexl, “Characterization and generation of a general class of resource-
constrained project scheduling problems,”Management Science, vol. 41, pp. 693–1703, 1995.

[29] M. Khalilzadeh, F. Kianfar, and M. Ranjbar, “A Scatter Search Algorithm for RCPSP with discounted
weighted earliness-tardiness costs,” Life Science Journal, vol. 8, no. 2, pp. 634–640, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


