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The computation of the Gaussian curvature of a surface is a requirement in many propagation
problems in physics and engineering. A formula is developed for the calculation of the Gaussian
curvature by knowledge of two close geodesics on the surface, or alternatively from the projection
(i.e., image) of such geodesics. The formula will be very useful for problems in general relativity,
civil engineering, and robotic navigation.

1. Introduction

In many propagation problems in physics and engineering, it becomes necessary to compute
the Gaussian curvature of a two-dimensional surface. In physics, this becomes necessary in
the applications of general relativity, where it is sometimes desired to calculate the Gaussian
curvature at a point in space from the observed geodesic paths of planets or light rays [1, 2]. In
engineering, engineers who are involved in the design of structures such as geodesic domes
frequently require a practical formula for computing the Gaussian curvature, where relations
exist between the Gaussian curvature at any point on the surface of the structure and the
stability of such a structure [3]. In certain other engineering applications, such as computer
vision and robotic navigation, engineers sometimes find themselves facing the complicated
problem of having to compute the Gaussian curvature of a surface in order to calculate 3-
dimensional depth data (or range) [4–6].

From the basic principles of differential geometry, the Gaussian curvature G at any
point of a two-dimensional surface S is given by

G = k1k2, (1.1)
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Figure 1: A general curve S that is embedded in a surface of revolution and a copy S′ that is separated
from S by a small rotation.

where k1 and k2 are the maximum and the minimum normal curvatures [6]. Unfortunately,
in many practical situations, k1 and k2 are simply unknown. In the following section, we
will derive a formula for computing the Gaussian curvature at any point on a surface by
knowledge of two close geodesics on the surface, or alternatively from the projection (i.e.,
image) of such geodesics (this is very important in applications such as general relativity and
robotic navigation, where no direct knowledge of the geodesics exists, but only an image of
the geodesics is available). A simple test of the formula is given in Section 3 (the test shows
that G, as computed from the formula, must vanish in an Euclidean 2-space). In Section 4, it
is proven that the Gaussian curvature is a projective invariant and hence can be calculated
from any projected image of two geodesics.

2. Calculation of the Gaussian Curvature from Geodesic Deviation

It is well known that any general 2-dimensional surface is topologically equivalent at any
given point to a surface of revolution [6]. Hence, two close geodesics on the surface, when
considered only within a small surface patch, can be treated as embedded in a surface
of revolution. Such curves, however, will not necessarily be geodesics in the surface of
revolution. Consider now a surface of revolution, where the smooth curve S is a general
curve that is embedded in the surface (Figure 1). S′ is a copy of S that is obtained by rotating
S through a small angle θ.

pr is a position vector, defined over a circular ring passing by S-S′. Let us select two
parameters u and v, such that u varies as we travel along the curve S, but v is constant, and
v varies as we pass from one curve to another, but u is constant. Obviously,

u = s, v = θ, (2.1)
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where θ is the rotation angle of the axis from S to S′. Given such parameters on any surface
in space, it can be shown that [7]

(
∇2
sθδ

ρ
)
dθ −

(
∇2
θsδ

ρ
)
dθ =

∑
ζ,μ,ν

R
ρ

ζμνδ
ζδνpμ, (2.2)

where δr is the unit tangent vector to the curve, Ra
bcd is the mixed curvature tensor [7], and

the symbol ∇ is the covariant derivative operator [6, 7]. If the curve S was a geodesic in the
surface, we must have had [6, 7]

∇sδ
r = 0, (2.3)

since the covariant derivative of the unit tangent vector to a geodesic vanishes along the curve
[6, 7]. Since S is a general curve, however, then ∇sδ

r will be the components of a vector of
finite length, normal to the vector δr [6]. On the other hand, due to circular symmetry in a
surface of revolution, the vector ∇sδ

r , clearly, is parallel transported [6, 7] along a circular
ring in the surface. Hence, we must conclude that

∇θ(∇sδ
r) = ∇2

θsδ
r = 0, (2.4)

at any point on S. Further, given the parameters s and θ, it can be shown that [7]

(
∇2
sθδ

r
)
dθ = ∇2

sp
r , (2.5)

for any 2-dimensional surface. From (2.4) and (2.5), (2.2) is rewritten as

∇2
sp

ρ =
∑
ζ,μ,ν

R
ρ

ζμν
δζδμpν, (2.6)

where ζ, μ, ν = 1, 2. Moreover, it has be shown that [7]

Ra
bcd

= G
(
δac gbd − δadgbc

)
, (2.7)

for a smooth 2-dimensional manifold, where G is the Gaussian curvature, δab is the Kronecker
delta, and gab are the components of the metric tensor at any point on the surface. Substituting
from (2.7) into (2.6) and carrying out the summation, we obtain

∇2
sp

ρ +Gpρ = Gδρ
∑
μ,ν

gμνδ
μpν, (2.8)

where we have used the identity

∑
μ,ν

gμνδ
μδν = 1. (2.9)
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Figure 2: Unit tangent vectors to S and S′, respectively.

Equation (2.8) is analogous to the equation of geodesic deviation [6, 7]. Once again, if S was
a geodesic in the surface, we must have had an orthogonality condition

∑
μ,ν

gμνδ
μpν = 0, (2.10)

and (2.8) would have reduced to the well-known equation of deviation of two geodesics in
a Riemannian 2-manifold. Equation (2.8), in its given form, will not allow the computation
of the Gaussian curvature G, since the metric tensor components, as well as all the covariant
derivatives on the surface, are unknown. However, (2.8) can be further reduced as follows:
for an infinitesimal rotation dθ,

pr =
∂xr

∂θ
dθ. (2.11)

Thus,

∂pr

∂s
=
∂δr

∂θ
dθ. (2.12)

Now,

δrS′ = δrS +
∂δrS
∂θ

dθ

= δrS +
∂pr

∂s
,

(2.13)

where δrS, δrS′ are unit tangent vectors at S and S′, respectively, separated by a rotation dθ
(Figure 2).
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Given that, for any vector pr on the surface [7],

∇sp
ρ =

∂pρ

∂s
+
∑
μ,ν

Γρμνpμ
∂xν

∂s
, (2.14)

where Γa
bc

is a Christoffel symbol of the second kind, we can always select coordinates such
that Christoffel symbols vanish at the origin [6, 7] (e.g., we can select coordinates on the
surface, at the location of the vector pr). Then, the vector

∑
μ,νΓ

ρ
μνp

μδν is generally very small
in the vicinity of the origin, and can be neglected (i.e., a linear approximation of ∇sp

ρ is
assumed here. This approximation will be further justified in the following discussion and in
Section 3). Therefore, let

ηr =
(
δrS′ − δrS

)
=
∂pr

∂s
≈ ∇sp

r . (2.15)

Further, let us define the deviation angle, ψ, as the angle between the two unit tangent vectors
δrS, δrS′ , at any point along the curve S. Generally, the angle between two curves is given by
[7]

cosψ =
∑
μ,ν

gμν
dxμ

ds
· dx

ν

ds′
, (2.16)

but since s = s′ is the length of the curve, and having δr = dxr/ds, we can write

cosψ =
∑
μ,ν

gμν(δμ)S(δ
ν)S′ . (2.17)

Hence, from (2.15) and (2.17),

∑
μ,ν

gμνη
μην =

∑
μ,ν

gμν
[
δ
μ

S′δ
ν
S′ + δ

μ

Sδ
ν
S − 2δμS′δ

ν
S

]
= 2
(
1 − cosψ

)

≈
∑
μ,ν

gμν
(∇sp

μ)(∇sp
ν).

(2.18)

We also see that

cosψ ≈
∑
μ,ν

gμνδ
μ[δν +∇sp

ν]

≈ 1 +
∑
μ,ν

gμνδ
μ(∇sp

ν).
(2.19)
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Now, consider (2.8) and the summation

∑
μ,ν

gμνp
μ
(
∇2
sp

ν
)
+G

∑
μ,ν

gμνp
μpν = G

∑
α,β

gαβp
αδβ
[∑
μ,ν

gμνδ
μpν
]

= G

[∑
μ,ν

gμνδ
μpν
]2

,

(2.20)

and let

P =
√∑

μ,ν

gμνpμpν (2.21)

denote the Euclidean norm of the vector pr ; thus,

d

ds
P 2 = 2

∑
μ,ν

gμνp
μ(∇sp

ν), (2.22)

d2

ds2
P 2 = 2

∑
μ,ν

gμν
[
pμ
(
∇2
sp

ν
)
+
(∇sp

μ)(∇sp
ν)]. (2.23)

Substitution from (2.18), (2.21), and (2.23) into (2.20) gives

1
2
d2P 2

ds2
− 2
(
1 − cosψ

)
+GP 2 = G

[∑
μ,ν

gμνδ
μpν
]2

. (2.24)

To evaluate the last term in (2.24), we rewrite (2.8) as

pρ = δρ
∑
μ,ν

gμνδ
μpν − 1

G
∇2
sp

ρ. (2.25)

Now, from (2.22) and (2.25), we have

dP 2

ds
= 2
∑
μ,ν

gμν

⎡
⎣δμ
∑
α,β

gαβp
αδβ − 1

G
∇2
sp

μ

⎤
⎦(∇sp

ν)

= 2

(∑
μ,ν

gμνp
μδν
)(∑

μ,ν

gμνδ
μ(∇sp

ν)
)

− 2
G

∑
μ,ν

gμν
(
∇2
sp

μ
)(
δνs′ − δνs

)
.

(2.26)
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Each of the components in the last term of (2.26) vanishes identically. To prove this, we
evaluate each of the components for each of the curves, S and S′, by substitution from (2.6).
We have

∑
μ,ν

gμνδ
μ
(
∇2
sp

ν
)
=
∑
α

δα

⎡
⎣ ∑
ρ,ζ,μ,ν

gαρR
ρ

ζμνδ
ζδμpν

⎤
⎦

=
∑
α,ζ,μ,ν

Rαζμνδ
αδζδμpν

=
∑
α,ζ,μ,ν

G
(
gαμgζν − gανgζμ

)
δαδζδμpν.

(2.27)

A straightforward summation shows that the right-hand side of (2.27) vanishes. We therefore
conclude that ∇2

sp
r is in the direction normal to the curve. In plus ∇sp

r is in the direction of
the tangent to the curve.

Finally, substitution from (2.19) into the first term of (2.26) gives

dP 2

ds
= 2

(∑
μ,ν

gμνp
μδν
)(

cosψ − 1
)
, (2.28)

or

∑
μ,ν

gμνp
μδν =

−dP 2/ds

2
(
1 − cosψ

) , (2.29)

and hence (2.24) is further reduced to

G =
(1/2)d2P 2/ds2 − 2

(
1 − cosψ

)
[
(dP 2/ds)/2(1 − cosψ)

]2 − P 2
, (2.30)

where G is the Gaussian curvature of the surface at the location of the vector P . In the
following section, we prove that the Gaussian curvature given by (2.30) must vanish in an
Euclidean 2-space. In Section 4, it is further proven that G is a projective invariant and hence
can be calculated from any projected image of the curves S and S′.

3. Investigation of the Behavior of G in an Euclidean Space

Here, we illustrate by a simple example that the Gaussian curvature G, given by (2.30), must
vanish in an Euclidean 2-space.

Consider a right circular cone, shown in Figure 3 .
P is the Euclidean norm of the position vector, and θ is the rotation angle (as discussed

in the above text).
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Figure 3: A right circular cone and the corresponding geometry.

From the Figure 3 , we see that

P 2 = 2r2(1 − cos θ),

r = s sinα,
(3.1)

where s is the length of the generator. Hence,

P 2 = 2(1 − cos θ)
(
s2sin2α

)
,

dP 2

ds
= 4ssin2α(1 − cos θ).

(3.2)

Thus

d2P 2

ds2
= 4sin2α(1 − cos θ). (3.3)

For an infinitesimal rotation, cos θ is expressed by the first two terms of its power series, that
is,

cos θ ≈ 1 − θ2

2!
, (3.4)

and thus, (3.3) is written as

d2P 2

ds2
= 2sin2αθ2. (3.5)
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Furthermore, we can see that

r2θ2 = 2s2(1 − cosψ
)
, (3.6)

where ψ is the deviation angle, or

(
1 − cosψ

)
=

1
2

sin2αθ2. (3.7)

From (3.5) and (3.7), we have

d2P 2

ds2
= 4
(
1 − cosψ

)
. (3.8)

By comparison of (2.30) and (3.8), we immediately see that G must vanish in an Euclidean
2-space. This proves the correctness of (2.30).

4. Proof That the Gaussian Curvature G Is a Projective Invariant

Now, we will reach our final goal by demonstrating that G, formulated by (2.30), can be
measured directly in the image plane.

We rewrite (2.8) as

G = − ∇2
sp

ρ

pρ − δρ∑
μ,ν
gμνδμpν

. (4.1)

From (2.27), we saw that ∇2
sp

r is a vector in the direction normal to the curve. Now, by using
(2.9) and taking the summation

∑
μ,ν

gμνδ
μpν −

∑
μ,ν

gμνδ
μδν
[∑
μ,ν

gμνδ
μpν
]
= 0, (4.2)

it is easy to see that the denominator in (4.1) is also a vector in the direction normal to the
curve.

If we now let

∇2
sp

ρ = αvρ,

pρ − δρ
∑
μ,ν

gμνδ
μpν = βvρ,

(4.3)

where α, β are scalars, and vρ is a vector in the direction normal to the curve, then

G = −α
β
. (4.4)
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Now, consider the orthographic projection of the two vectors in (4.3), written as

∇2
spρ =

∑
σ

J
ρ
σ

(
∇2
sp

σ
)
= α
∑
σ

J
ρ
σv

σ,

pρ − δρ
∑
μ,ν

gμνδμpν =
∑
σ

J
ρ
σ

(
pσ − δσ

∑
μ,ν

gμνδ
μpν
)

= β
∑
σ

J
ρ
σv

σ,

(4.5)

where Ja
b

is a transformation Jacobian between a coordinate system on the surface and a
coordinate system in the image plane.

If measured in the image plane, the Gaussian curvature G is now given by

G = − ∇2
spρ

pρ − δρ∑
μ,ν
gμνδμpν

= −α
β
, (4.6)

as we can easily see from (4.5).
Hence,

G = G. (4.7)

The Gaussian curvature is therefore a projective invariant. It should be noted that, while
orthographic projection is assumed, the image plane may be placed in any arbitrary position
with respect to the curve S, and for all such positions, the Gaussian curvature K holds the
same numerical value. Equation (2.30) should be used in the image plane to obtain a correct
measurement of K.
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