
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 376546, 26 pages
doi:10.1155/2012/376546

Research Article
Predictor-Corrector Primal-Dual Interior Point
Method for Solving Economic Dispatch Problems:
A Postoptimization Analysis
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This paper proposes a predictor-corrector primal-dual interior point method which introduces line
search procedures (IPLS) in both the predictor and corrector steps. The Fibonacci search technique
is used in the predictor step, while an Armijo line search is used in the corrector step. The method
is developed for application to the economic dispatch (ED) problem studied in the field of power
systems analysis. The theory of the method is examined for quadratic programming problems and
involves the analysis of iterative schemes, computational implementation, and issues concerning
the adaptation of the proposed algorithm to solve ED problems. Numerical results are presented,
which demonstrate improvements and the efficiency of the IPLS method when compared to
several other methods described in the literature. Finally, postoptimization analyses are performed
for the solution of ED problems.

1. Introduction

Since its introduction in 1984, the projective transformation algorithm proposed by
Karmarkar in [1] has proved to be a notable interior point method for solving linear
programming problems (LPPs). This pioneer study caused an upheaval in research activities
in this area. Among all the variations of Karmarkar’s original algorithm, the first to attract
the attention of researchers was the one that uses a simple affine transformation to replace
Karmarkar’s original and highly complex projective transformation, enabling work with



2 Mathematical Problems in Engineering

LPP in its standard form. The affine algorithm was first introduced in [2] by Dikin, a
Soviet mathematician. Later, in 1986, the work was independently rediscovered by Barnes
in [3] and by Vanderbei et al. in [4]. They proposed using the primal-affine algorithm
to solve LPP in standard form and also presented proof of the algorithm’s convergence.
A similar algorithm, called dual-affine, was developed and implemented by Adler et al.
[5] to solve the LPP in the form of inequality. Compared to the relatively cumbersome
projective transformation, the implementation of the primal-affine and dual-affine algorithms
was simpler because of its direct relationship with the LPP. These two algorithms produced
promising results when applied to large problems [6], although the theoretical proof of
polynomial time complexity was not obtained from the affine transformation. Megiddo
and Shub’s study in [7] indicated that the trajectory that leads to the optimal solution
provided by affine algorithms depends on the initial solution. A poor initial solution, which
is close to a viable domain vertex, could result in an investigation that covers all vertex
problems.

Nevertheless, the polynomial time complexity of primal-affine and dual-affine
algorithms can be re-established by incorporating a logarithmic barrier function into the
objective function of the original LPP. The purpose of this procedure is to solve the
problem pointed out by Megiddo, that is, to prevent an interior solution from becoming
“trapped” at the border of the problem (possibly a vertex). This procedure also provides
proof of the complexity of the method. The idea of using the logarithmic barrier function
method for convex programming problems was developed by Fiacco and McCormick
in [8, 9], based on the method proposed by Frisch in [10]. After the introduction of
Karmarkar’s algorithm in 1984, the logarithmic barrier function method was reconsidered
to solve linear programming problems. Gill et al. used this method in [11] to develop
a projected Newton barrier method and demonstrated its equivalence with Kamarkar’s
projective algorithm. The methods proposed, among others, by Ye in [12], Renegar in
[13], Vaidya in [14], and Megiddo in [15], as well as those of a central trajectory—called
path-following methods, which were proposed by Gonzaga in [16, 17] and Monteiro and
Adler in [18], use the objective function augmented by the logarithmic barrier function.
A third variation, the so-called primal-dual interior point algorithm, was introduced by
Monteiro et al. in [19] and by Kojima et al. in [20]. This algorithm explores a potential
primal-dual function, a variation of the logarithmic barrier function, called the potential
function. The polynomial time complexity theory was successfully demonstrated by Kojima
et al. in [20] and Monteiro et al. in [19] based on Megiddo’s work, which provided
a theoretical analysis for the logarithmic barrier method and proposed the primal-dual
approach.

The predictor-corrector procedure initially defined by Mehrotra and Sun in [21] and
implemented in by Lustig et al. in [22] explored variant directions of the primal-affine interior
point methods in the predictor step. In the corrector step, the point previously obtained
(in the predictor step) was “centralized” to exploit the potential function related to the
logarithmic barrier function. This procedure significantly improved the performance of the
primal-dual interior point methods.

This strategy was reviewed and modified byWu et al. in [23] and successfully applied
to solve optimal power flow problems. Wu used the logarithmic barrier penalization, the
Newton method, and first-order approximations in the predictor step to determine search
directions and the approximate solution. Second-order approximations were considered in
the corrector step to refine solutions obtained in the predictor step.



Mathematical Problems in Engineering 3

The methods related to the primal-dual interior point methodology, especially those
proposed by Kojima et al. in [20], Monteiro and Adler in [18], and Monteiro et al. in [19],
which were broadly investigated by Fang and Puthenpura in [24], have been explored in this
past decade to solve linear, nonlinear, and integer mathematical programming problems in
several fields of research.

This paper proposes a primal-dual interior point method that uses the predictor-
corrector strategy described by Lustig et al. in [22] and Wu et al. in [23] and incorporates
line search procedures in both the predictor and corrector steps. Theoretical aspects as well
as iterative schemes and computational implementation are investigated. A Fibonacci line
search procedure is carried out in the predictor step and an Armijo line search is used in the
corrector step to calculate the step sizes while taking into account constraints in the variables
of the problem. The line search procedures adopted are aimed at improving the overall
convergence of the proposed method for solving quadratic programming problems. The
method is applied to solve the economic dispatch (ED) problem, a classical quadratic problem
studied in the field of electrical power systems. The results obtained with the proposed
method are compared with those obtained by several others described in the literature
for solving ED problems, such as the primal-dual method described in [6], evolutionary
algorithms found in [25–27], genetic and coevolutionary genetic algorithms described by
Samed in [27], the cultural algorithm described by Rodrigues in [26], and a hybrid atavistic
genetic algorithm given in [25]. This comparative investigation demonstrates the efficiency
of the proposed IPLS method.

This paper is organized as follows: Section 2 presents the ED problem; Section 3
develops the theory of the proposed IPLS method and presents its algorithm; Section 4
describes a computational implementation of the method, applying it to solve ED problems.
This section also includes a postoptimization analysis. Finally, conclusions are drawn in
Section 5.

2. The Economic Dispatch Problem

The economic dispatch problem (ED) is defined as an optimal allocation process of electricity
demands among available generating units, where operational constraints must be satisfied
while minimizing generation costs. Happ reported in [28] that, by 1920, several engineers
had become aware of the economic allocation problem. According to the aforementioned
author, one of the first methods employed to solve the ED problem was to request power
from the most efficient unit (the merit order loading method). This method was based on the
following idea: the next incremental active power was to be supplied by the most efficient
plant, until it reached its maximum operational point, and so on, successively. Although this
method failed to minimize costs, it was employed until 1930, when the equal incremental cost
criterion began to produce better results.

The idea behind the method of incremental costs is that the next incremental
system load increase should be allocated to the unit with the lowest incremental cost,
which is determined by measuring the derivative of the cost curve. Steinberg and Smith
mathematically proved in [29] the equal incremental costs criterion, which was already being
used empirically. Around 1931, this method had already become well established. In theory,
the method described by Steinberg and Smith in [29] also ensures that if there are no active
constraints at the point of optimal operation, the incremental costs of all units should be
equal. This rule is still widely used by power system operators today.
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2.1. Optimization Model for the Classical Economic Dispatch Problem

The economic dispatch (ED) problem is concerned with minimizing active power production
costs while meeting the system demand and taking into account the operational limits of all
generating units. The ED problem is mathematically described in

Minimize CT =
n∑

i=1

(
Ci(Pi) = aiP

2
i + biPi + ci

)

subject to
n∑

i=1

Pi = D

Pmin
i ≤ Pi ≤ Pmax

i ; i = 1, . . . , n,

(2.1)

where CT : total cost function for generating units, n: number of generating units, Ci(Pi): cost
of generation unit i (without considering the valve-point effect), ai, bi, ci: coefficient of the cost
function for generating unit i, Pi: power output of generating unit i, D: total power demand,
Pmin
i : minimum power output limit for generating unit i, and Pmax

i : maximum power output
limit for generating unit i.

The objective function in (2.1) may also represent the so-called valve-point effects, as
in [28], which are associated with the opening of pressure valves at some specific operating
points. In such cases, Ci(Pi) is mathematically described as in

Ci(Pi) = aiP
2
i + biPi + ci +

∣∣∣ei sin
(
fi
(
Pmin
i − Pi

))∣∣∣. (2.2)

The cost function Ci(Pi) described in (2.2) is continuous but not differentiable.
Although it is more representative, function (2.2) makes ED a much more complex problem
to solve due to its characteristics of nondifferentiability.

The literature describes several different methodologies to solve ED problems. In those
studies, the methodology associated with evolutionary algorithms stands out, especially
when issues related to nondifferentiability (such as those described in (2.2)) are involved.
Evolutionary algorithms have been used to solve ED problems because they are able to find
optimal solutions even when the objective function and/or constraints are not continuous
or non-differentiable. Numerical problems related to evolutionary algorithms involve the
inability to verify the optimality conditions associated with the solutions obtained and also
the computational effort necessary to obtain the solutions, especially for large systems.

Optimal solutions to ED problems have also been investigated through traditional
nonlinear programming methods, including interior point methods [6, 23, 30]. This paper
proposes a predictor-corrector primal-dual interior point method for solving ED problems,
which incorporates line search procedures in both the predictor and corrector steps. The
results presented here demonstrate that the proposed method improves the solution of ED
problems. The following section examines the application of the primal-dual interior point
method to solve quadratic programming problems.
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3. Solution Technique for the Quadratic Programming Problem

Quadratic programming problems (QPPs) represent a special class of nonlinear program-
ming in which the objective function is quadratic and the constraints are linear [31]. The
problem is expressed mathematically by

Minimize
1
2
xTQx + cTx

subject to Ax = b

l ≤ x ≤ u,

(3.1)

where A ∈ �m×n so that rank(A) = n, b ∈ �m, x ∈ �n, c ∈ �n, u ∈ �n, l ∈ �n, and Q ∈ �n×n

is a diagonal matrix. Problem (3.1) is equivalent to (3.2), where z ∈ �n is a slack variable and
r ∈ �n is a surplus variable:

Minimize
1
2
xTQx + cTx

subject to Ax = b

x + z = u; z ≥ 0

x − r = l; r ≥ 0.

(3.2)

For μ > 0, it is possible to incorporate a logarithmic barrier function to the objective
function of (3.2) and eliminate inequality constraints. This procedure results in the following
nonlinear optimization problem:

Minimize Fμ(x, r, z) =
1
2
xTQx + cTx − μ

n∑

j=1

ln rj − μ
n∑

j=1

ln zj

subject to Ax = b

x + z = u

x − r = l.

(3.3)

The Lagrangian function related to (3.3) is expressed by

Lμ

(
x, r, z,w, s, y

)
=

1
2
xTQx + cTx +wT (b −Ax) + sT (l − x + r) + yT (x + z − u)

− μ
n∑

j=1

ln sj − μ
n∑

j=1

lnyj,

(3.4)
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where the dual variables associated with the three equality constraints in (3.3) are,
respectively, w ∈ �m, y ∈ �n, s ∈ �n. The optimal Karush-Kuhn-Tucker (KKT) conditions
for problem (3.1) are depicted in

∂Lμ

∂x
= 0 ⇐⇒ − Qx − c +ATw + s − y = 0,

∂Lμ

∂w
= 0 ⇐⇒ Ax = b,

∂Lμ

∂y
= 0 ⇐⇒ x + z = u,

∂Lμ

∂s
= 0 ⇐⇒ x − r = l,

∂Lμ

∂z
= 0 ⇐⇒ ZYe − μe = 0,

∂Lμ

∂r
= 0 ⇐⇒ RSe − μe = 0,

(3.5)

where R,Z, S and Y are diagonal matrices whose diagonal elements are ri, zi, si, and yi; i =
1, . . . , n, respectively; e = (1, . . . , 1)T ; μ is a dual metric or adjustment parameter for the curve
defined by the central trajectory (path-following parameter). The set Ω0 given in (3.6) is
defined to simplify to notation. This set describes interior points for problem (3.2) and its
corresponding dual problem:

Ω0 =
{(

x,w, z, r, y, s
) ⊥ − Qx +ATw + s − y = c,

Ax = b, x + z = u, x − r = l,
(
z, r, y, s

)
> 0
}
.

(3.6)

Equations (3.4), (3.5), and (3.6) are considered in the following sections to perform the
analysis of important issues concerning the proposed IPLS method, such as search directions,
step sizes, stopping criteria, and updating of the barrier parameter.

3.1. Search Directions

In this section, the search directions used in the proposed IPLS method are investigated.
In Section 3.2, the search directions for the predictor step are calculated while the search
directions for the corrector step are determined in Section 3.3. The proposed strategy is a
variant of the approach developed by Wu et al. in [23].
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3.2. Search Directions—Predictor Step

Let us suppose that, in an iteration k, a point hk satisfies the primal and dual feasibility
conditions expressed by (3.5). In this case, the definition of the new point hk+1 depends solely
on the calculation of a search direction and on a step size in such a direction. Disregarding
the step size in the iteration k + 1, the new point hk+1 is defined by the following equation:

hk+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk+1

wk+1

zk+1

rk+1

yk+1

sk+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk + dk
x

wk + dk
w

zk + dk
z

rk + dk
r

yk + dk
y

sk + dk
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.7)

Therefore, it is necessary to determine the direction of the movement dk to obtain the
new point hk+1. Following the steps in the Newton method applied to the nonlinear system
(3.5), dk can be obtained by solving for the system (3.8), which is equivalent to (3.9):

J
(
h(k)
)
d(k) = −F

(
h(k)
)
, (3.8)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 0 0 0 0

−Q AT 0 0 −I I

I 0 I 0 0 0

I 0 0 −I 0 0

0 0 Y 0 Z 0

0 0 0 S 0 R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dk
x

dk
w

dk
z

dk
r

dk
y

dk
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tk

gk

fk

ok

qk

vk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.9)

where the residuals of (3.9) for the predictor step are expressed as in

tk = b −Axk; gk = Qxk + c −ATwk − sk + yk; fk = u − xk − zk;

ok = l − xk + rk; qk = μke − ZkYke; vk = μke − RkSke; e = (1, 1, . . . , 1)T .
(3.10)
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The directions dk
x, d

k
w, d

k
z, d

k
r , d

k
y, d

k
s to be determined in the predictor step use the

residuals defined in (3.10), resulting in (3.11)–(3.16), as follows:

Adk
x = tk, (3.11)

−Qdk
x +ATdk

w + dk
s − dk

y = gk, (3.12)

dk
x + dk

z = fk, (3.13)

dk
x − dk

r = ok, (3.14)

Ykd
k
z + Zkd

k
y = qk, (3.15)

Skd
k
r + Rkd

k
s = vk. (3.16)

From (3.13) and (3.14), we obtain (3.17) and (3.18), respectively:

dk
z = −dk

x + fk, (3.17)

dk
r = dk

x − ok. (3.18)

Isolating dk
y and dk

s in (3.15) and (3.16), respectively, leads to (3.19) and (3.20), as
follows:

dk
y = Z−1

k

(
qk − Ykd

k
z

)
, (3.19)

dk
s = R−1

k

(
vk − Skd

k
r

)
. (3.20)

Combining the results found in (3.17), (3.18), (3.19), and (3.20) with those given in
(3.11)–(3.16), and considering (3.21), yields the directions (3.22) and (3.23):

θ =
(
R−1

k Sk + Z−1
k Yk +Q

)−1
, (3.21)

dk
w =
(
AθAT

)−1[
Aθ
(
gk + pk

)
+ tk
]
, (3.22)

dk
x = θ

(
ATdk

w − gk − pk
)
, (3.23)

where

pk = R−1
k

(
Sko

k−vk
)
+ Z−1

k

(
qk−Ykf

k
)
. (3.24)

Note that, after calculating (3.23), the remaining components of the direction vector
dk
z, d

k
r , d

k
y, and dk

s in (3.17), (3.18), (3.19), and (3.20), respectively, are easily calculated. Since
matrixAθAT is symmetrical and positive definite in (3.22) (considering thatQ is symmetrical
and positive definite), dk

w can be determined by using the Cholesky decomposition.
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3.3. Search Directions—Corrector Step

Analogously to the procedure carried out in Section 3.2, this section describes the calculation
of the search direction for the corrector step d̃k, which is obtained by solving the linear system
(3.25), as follows:

J
(
hk
)
d̃k = −F̃

(
hk
)
, (3.25)

where F̃(hk) is obtained by considering second-order approximations in the residuals (3.10)
(calculated in the predictor step), so that (3.25) is equivalent to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 0 0 0 0

−Q AT 0 0 −I I

I 0 I 0 0 0

I 0 0 −I 0 0

0 0 Y 0 Z 0

0 0 0 S 0 R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d̃k
x

d̃k
w

d̃k
z

d̃k
r

d̃k
y

d̃k
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t̃k

g̃k

f̃k

õk

q̃k

ṽk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.26)

where

t̃k = b −Axk; g̃k = Qxk + c −ATwk − sk + yk; f̃ k = u − xk − zk;

õk = l − xk + rk; q̃k = μke − ZkYke −Dk
zD

k
ye; ṽk = μke − RkSke −Dk

xD
k
s e,

(3.27)

Dk
x, D

k
z , D

k
y and Dk

s are diagonal matrices whose diagonal components are (dk
x)i, (d

k
z)i, (d

k
y)i

and (dk
s )i, i = 1, . . . , n, respectively.
The calculation of the residuals tk, gk, fk, ok, qk, vk, described in (3.10), and of

t̃k, g̃k, f̃ k, õk, q̃k, ṽk, described in (3.27), basically distinguishes the predictor and corrector
steps in the proposed method. It is important to note that the corrector step procedure uses
direction values dk

x, d
k
z , d

k
y, and dk

s , which have already been calculated in the predictor step,
to redefine residuals q̃k and ṽk in (3.27). Using (3.25) and (3.26) and following the same steps
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taken to determine the directions of the predictor step, as seen in Section 3.2, the components
of the direction vector d̃kcan be calculated using the following:

d̃k
w =
(
AθAT

)−1[
Aθ
(
gk + p̃k

)
+ t̃k
]
, (3.28)

d̃k
x = θ

(
ATd̃k

w − gk − p̃k
)
, (3.29)

d̃k
z = −d̃k

x + f̃ k, (3.30)

d̃k
r = d̃k

x + õk, (3.31)

d̃k
y = Z−1

k

(
q̃k − Ykd̃

k
z

)
, (3.32)

d̃k
s = R−1

k

(
ṽk − Skd̃

k
r

)
, (3.33)

where

p̃k = R−1
k

(
Skõ

k − ṽk
)
+ Z−1

k

(
q̃k − Ykf̃

k
)
, (3.34)

and θ is defined in (3.21).

3.4. Step Size

After calculating the search directions for the predictor and corrector steps, it is possible to
move to a new point (xk+1, wk+1, zk+1, rk+1, yk+1, sk+1), while ensuring that sk+1 > 0, zk+1 > 0,
yk+1 > 0 and rk+1 > 0. In order to ensure nonnegativity constraints over the slack variables, the
step to be taken in each direction in both the predictor and corrector steps must be controlled.
The basics of this procedure are described in [31] and are discussed below.

3.4.1. Predictor Step Size

Considering the variables defined in the predictor step, the step size for primal and dual
variables is calculated as described below:

xk+1 = xk + αPkd
k
x, (3.35)

rk+1 = rk + αPkd
k
r , (3.36)

zk+1 = zk + αPkd
k
z, (3.37)

wk+1 = wk + αDkd
k
w, (3.38)

yk+1 = yk + αDkd
k
y, (3.39)

sk+1 = sk + αDkd
k
s . (3.40)
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The step size αPk for the primal variables is calculated through

αPk = Min
{
αP , αQ, αLS

}
, (3.41)

where, for 0 < α < 1, the step sizes αP , αQ, αLS are determined as follows.

(i) The step size for primal variables αP is obtainedwithout violating the nonnegativity
requirements of the primal variables:

αP = Min

{
−αz

k
i

dk
zi

,−αr
k
i

dk
ri

such that dk
zi , d

k
ri < 0

}
. (3.42)

(ii) The step size αQ is the maximum step size possible without increasing the objective
value:

αQ = −

[(
dk
x

)t(
Qxk + c

)]

[(
dk
x

)t
Qdk

x

] . (3.43)

(iii) The step size αLS is determined as in (3.44) from the Fibonacci line search strategy,
which is briefly summarized as follows:

αLS = Min
αk

{
Fμ

(
x̂k+1(αk)

)}
= Min

αk

{
Fμ

(
x̂k + αkd

k
x̂

)}
, (3.44)

where Fμ is defined in (3.3).

For notation simplicity, in the summary of the Fibonacci search, the following
identities are defined: x̂k+1(αLS) = (xk+1(αLS), rk+1(αLS), zk+1(αLS))

T = (xk + αLSd
k
x, r

k +
αLSd

k
r , z

k + αLSd
k
z)

T , and dk
x̂

= (dk
x, d

k
r , d

k
z); so that dk

x is defined in (3.23), dk
r is defined in

(3.18), and dk
z is defined in (3.17). Only primal variables are considered in the Fibonacci

search algorithm used by the IPLS method. Starting at a point x̂k = (xk, rk, zk)T , the
algorithm searches a new point x̂k+1 in direction dk

x̂
using the function Fμ defined in (3.3). The

Fibonacci method calculates αLS so that the minimization of Fμ is ensured. αLS is determined
considering the Fibonacci sequence. The initial value of αLS is set taking into account the
interval of uncertainty [0, 1].

The step size αDk for the dual variables (3.38)–(3.40) is calculated through (3.45) for
0 < α < 1:

αDk = Min

{
1,−αs

k
i

dk
si

,−αy
k
i

dk
yi

such that dk
si ;d

k
yi
< 0

}
. (3.45)
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3.4.2. Corrector Step Size

In the corrector step, the calculation of step size is defined analogously, considering the
variables from the following

xk+1 = xk + βPk d̃
k
x, (3.46)

rk+1 = rk + βPk d̃
k
r , (3.47)

zk+1 = zk + βPk d̃
k
z, (3.48)

wk+1 = wk + βDk d̃
k
w, (3.49)

yk+1 = yk + βDk d̃
k
y, (3.50)

sk+1 = sk + βDk d̃
k
y, (3.51)

where

βPk = Min
{
βP , βQ, βLS

}
, (3.52)

while the step sizes βP , βQ, βLS are determined as follows.

(i) The step size for primal variables βP is obtainedwithout violating the nonnegativity
requirements of the primal variables:

βP = Min

{
1,−αz

k
i

d̃k
zi

,−αr
k
i

d̃k
ri

such that d̃k
zi , d̃

k
ri < 0

}
. (3.53)

(ii) The step size βQ is the maximum step size possible without increasing the objective
value:

βQ = −

[(
d̃k
x

)t(
Qxk + c

)]

[(
d̃k
x

)t
Qdk

x

] . (3.54)

(iii) The step size βLS in (3.55) is determined from the Armijo line search:

βLS = βk, (3.55)

so that

Fμ

(
x̂k+1(βk

)) ≤ Fμ

(
x̂k
)
+ βk∇Fμ

(
x̂k
)T

d̃k
x̂, (3.56)
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where x̂k+1(βk) = (xk+1(βk), rk+1(βk), zk+1(βk))
T = (xk + βkd̃

k
x, r

k + βkd̃
k
r , z

k + βkd̃
k
z)

T
; d̃k

x̂
=

(d̃k
x, d̃

k
r , d̃

k
z ); so that d̃k

x, d̃
k
r , d̃

k
z are defined in (3.29)–(3.31), respectively. In the proposed IPLS

method, the Armijo search is also performed in the direction defined by primal variables.
Starting at a point x̂k = (xk, rk, zk), the method searches for a new point x̂k+1, in direction d̃k

x̂
,

so that the function Fμ defined in (3.3) decreases. This search calculates βLS, thereby ensuring
the reduction of Fμ. To prevent oscillations in the iterative process, the initial choice for βk
should not be too high, and to prevent the process from stopping prematurely, it should not
be too low. Therefore, this value is generally adjusted to β0 = 1. If (3.44) is not satisfied, βk is
updated using the following sequence:

βk+1 =
βk
δ
, k = 0, 1, . . . , n; with δ > 1, usually set to δ = 2. (3.57)

The following equation is used for the analysis of (3.56):

∇Fμ

(
x̂k
)
=
(
∇Fμ

(
xk
)
,∇Fμ

(
rk
)
,∇Fμ

(
zk
))T

=
(
Qxk + c, − μkR

−1
k e, − μkZ

−1
k e
)T

(3.58)

with μk determined as in Section 3.6.
The step size for dual variables βDk is calculated by (3.59), without violating the

nonnegativity requirements of the dual variables:

βDk = Min

{
1,−αs

k
i

d̃k
si

,−αy
k
i

d̃k
yi

such that d̃k
si ; d̃

k
yi
< 0

}
. (3.59)

The general principle used here to calculate αPk and βPk is to choose a step size that
reduces the quadratic objective by a maximum amount without violating the nonnegativity
requirements of the primal variables.

The basic idea for defining the line searches in both the predictor and corrector steps is
to use a more accurate search for the predictor step (which uses first order approximation to
calculate the residuals) and a simpler search, albeit more robust, for the corrector step (which
uses second-order approximation to calculate the residuals). Therefore, the Fibonacci search
is used in the predictor step, since it is more accurate, and provides the minimum value for
the objective function in the predefined direction; the Armijo search is used in the corrector
step because it is simpler and more robust.

3.5. Stopping Rules

Interior point algorithms do not find exact solutions for linear or quadratic programming
problems. Therefore, stopping rules are needed to decide when the solution obtained in a
current iteration is sufficiently close to the optimal solution. In this study, the stopping rules
are based on [32].

Many algorithms consider that a good approximate solution is the one that presents
sufficiently small values for primal and dual residuals tk, uk, and also for the dual metric μk.
Nevertheless, it is possible to use relative values for the metrics tk, uk, and μk in order to
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reduce scaling problems, as described in [32]. Typical stopping rules are shown in (3.60)–
(3.65), as follows:

(i) primal feasibility:

∥∥tk
∥∥

‖b‖ + 1
≤ ε1

(
predictor step

)
, (3.60)

∥∥∥t̃k
∥∥∥

‖b‖ + 1
≤ ε1

(
corrector step

)
; (3.61)

(ii) dual feasibility:

∥∥uk
∥∥

∥∥Qxk + c
∥∥ + 1

≤ ε2
(
predictor step

)
, (3.62)

∥∥ũk
∥∥

∥∥Qxk + c
∥∥ + 1

≤ ε2
(
corrector step

)
; (3.63)

(iii) complementary slackness:

∥∥∥vk
∥∥∥ ≤ ε3,

∥∥∥qk
∥∥∥ ≤ ε3

(
predictor step

)
(3.64)

∥∥∥ṽk
∥∥∥ ≤ ε3,

∥∥∥q̃k
∥∥∥ ≤ ε3

(
corrector step

)
, (3.65)

where ε1, ε2, and ε3 are sufficiently small positive numbers. Eventually, other criteria can be
adopted according to the specific characteristics of each problem, as can be seen in [24, 32].

3.6. Update of the Barrier Parameter

According to [32], the barrier parameter is updated using an inner product that involves the
primal variables rk and zk, and the dual variables sk and yk, respectively, as shown in the
following equation

μ1
k =

(
rk
)T
sk

n
; μ2

k =

(
zk
)T
yk

n
, (3.66)

so that μk is calculated using the following equation

μk = Min
{
σμ1

k, σμ
2
k

}
for a constant 0 < σ < 1, (3.67)

where the parameter σ is used to accelerate the convergence of the iterative process. This
procedure for updating the barrier parameter proposed by Wright in [32] helps in the
theoretical convergence proof and also in the complexity analysis of primal-dual methods.
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3.7. Algorithm for the Proposed IPLS Method

Step 1 (initialisation). Adjust k = 0. Choose an arbitrary point: (x0;w0; z0, y0, r0, y0, s0) ∈ Ω0

and choose ε1, ε2, and ε3 as sufficiently small positive numbers.

Step 2 (intermediate calculations—predictor). Calculate: tk; gk; fk; ok; qk;vk using (3.10), μk

using (3.67) and matrix θ using (3.21).

Step 3 (finding directions of translation—predictor). Calculate search directions dk
x, d

k
w, d

k
z ,

dk
r , d

k
y, and dk

s for the predictor step using (3.17)–(3.24).

Step 4 (computing step size—predictor). Calculate Fibonacci step sizes αPk and αDk using
(3.41)–(3.44).

Step 5 (moving to a new solution—predictor). Update xk+1; wk+1; sk+1; yk+1; zk+1;rk+1

obtained from the predictor step, according to (3.35)–(3.44).

Step 6 (checking for optimality—predictor). If the criteria defined in (3.60), (3.62), and (3.64)
are satisfied, stop. The solution is optimal. Otherwise, go on to the following step.

Step 7 (intermediate calculations—corrector). Calculate: t̃k; g̃k; f̃ k; õk; q̃k; ṽk using (3.27), μk

using (3.67) and matrix θ using (3.21).

Step 8 (finding directions of translation—corrector). Calculate d̃k
x, d̃

k
w, d̃

k
z , d̃

k
r , d̃

k
y, and d̃k

s , for
the corrector step using (3.28)–(3.33).

Step 9 (computing step size—corrector). Calculate the Armijo step size βPk and βDk using
(3.52)–(3.58).

Step 10 (moving to a new solution—corrector). Update xk+1; wk+1; sk+1; yk+1; zk+1; rk+1 using
(3.46)–(3.48).

Step 11 (checking for optimality—corrector). If the criteria defined in (3.61), (3.63), and (3.65)
are satisfied, stop. The solution is optimal. Otherwise, go on to the next step.

Step 12. Adjust k = k + 1 and return to Step 2.

The predictor Steps 2 through Step 6 are held in odd iterations, while the corrector
Steps 7 through Step 11 are performed in even iterations. The next section describes numerical
simulations involving the application of the proposed method to ED problems.

4. Application of the Proposed Algorithm to Solve ED Problems

In this section, the proposed method is applied to solve three power systems with 3, 6, and
13 generators, respectively. Tables 1, 3, and 5 show the data related to the generating units
of the power systems. These data were extracted from [26, 27]. The tables list the coefficients
of the cost function for each generating unit, as described in (2.1), and also minimum and
maximum power output limits.

Tables 2 and 3 present the results of the application of the proposed method to solve
the power system with 3 generators, while Tables 5 and 6 list the results for the system with
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Table 1: Characteristics of the system with 3 generators.

Unit Pmin
i (MW) Pmax

i (MW) ai ($/MW2) bi ($/MW) ci ($)
1 100 600 0,001562 7,92 561
2 50 200 0,004820 7,97 78
3 100 400 0,001940 7,85 310

6 generators, and Tables 8 and 9 depict the results for the system with 13 generators. These
tables compare the solutions obtained by the proposed IPLS method against those calculated
by the following methods: the predictor-corrector primal-dual (PCPD) method described in
[6], the hybrid genetic algorithm (HGA), the coevolutionary genetic algorithm (COEGA), the
hybrid atavistic genetic algorithm (HAGA) and the cultural algorithm (CA). The solutions
determined by the HGA and COEGA methods are available in [27], while the solutions
obtained with the CA method are described in [26], and those obtained with HAGA method
are given in [25], but only for the system comprising 13 generators.

The comparison between the IPLS method and the evolutionary approaches cited
above were introduced in this section because these are traditional methods used in power
system to solve ED problems, especially when a more general nondifferentiable objective
function (as shown in (2.2)) is used. However, it is important to highlight that these
evolutionary approaches are heuristic procedures, which provide only approximate solutions
to ED problems. When ED is formulated as a quadratic problem, it can be solved by means
of exact methods, such as the IPLS and PCPD method.

Therefore, to better evaluate the performance of proposed IPLS method, this method
has been compared to the PCPD method in Table 10. The results in Table 10 have the
main purpose to show the reduction in the computational effort when the IPLS method is
compared to the PCPD method. Both methods were implemented using Borland Pascal 7.0
programming language.

4.1. Power System with 3 Generators

The main characteristics of the system containing 3 generators are described in Table 1.
Parameters ai, bi, ci stand for the coefficients of the cost functions for the generators, while
Pmin
i , Pmax

i represent minimum and maximum power output capabilities, respectively, for
generating unit i.

The following values are adopted to initialise the method:

x0 = (450, 100, 300); w0 = (0, 0, 0); y0 = (0, 0, 0). (4.1)

The parameters related to the system’s total demand are set at D = 850MW and the
active power losses are neglected. The values adopted for ε1, ε2, and ε3 are 10−8.

Table 2 shows the active power output calculated by the methods. The results for the
HAGA algorithm are not presented in this case study. Table 3 compares optimal values for
the objective functions obtained by each method. From the results presented in this table, it
is clear that the dispatches calculated by all the types of genetic algorithms cannot reach the
global optimum dispatch attained by the interior point methods PCPD and IPLS. As Table 3
indicates, the cost calculated by the IPLS and PCPD methods is lower than that obtained by
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Table 2: Comparison of the power generation outputs obtained for the system with 3 generators.

Power output HGA COEGA PCPD IPLS
P1 (MW) 470,8421 344,7295 393,1698 393,1698
P2 (MW) 109,4012 193,9445 122,2264 122,2264
P3 (MW) 269,7567 311,3260 334,6038 334,6038
ΣPi (MW) 850,0000 850,0000 850,000 850,000

Table 3: Characteristics of the system with 3 generators.

Results Generation costs ($)
HGA 8.212,73
COEGA 8.223,86
PCPD 8.194,36
IPLS 8.194,36

Table 4: Characteristics of the system with 6 generators.

Unit PMin
i (MW) PMax

i (MW) ai ($/MW2) bi ($/MW) ci ($)
1 10 125 0,15247 38,53973 756,79886
2 10 150 0,10587 46,15916 451,3251
3 35 225 0,02803 40,39655 1049,9977
4 35 210 0,03546 38,30533 1243,5311
5 130 325 0,02111 36,32782 1658,5696
6 125 315 0,01799 38,24041 1356,6592

the HGA and COEGA methods. As already discussed, this is an expected result, since the
evolutionary approaches provide only approximate solution to the problem.

4.2. Power System with 6 Generators

Table 4 describes the main characteristics of the system containing 6 generators.
As in the previous case study, the parameters ai, bi, ci stand for the coefficients of the

cost functions for the generating unit I, while Pmin
i , Pmax

i represent minimum andmaximum
power output capabilities, respectively, for the generating unit i.

The following values are adopted to initialise the method:

x0 = (20, 30, 75, 75, 145, 155); w0 = (0, 0, 0, 0, 0, 0); y0 = (1, 1, 1, 1, 1, 1). (4.2)

The parameters related to the system’s total demand are set at D = 500MW and the
active power losses are neglected. The values adopted for ε1, ε2, and ε3 are 10−8.

Table 5 shows the active power dispatch calculated by the methods. The solutions
for COEGA and HAGA algorithms were not presented by their authors. Table 6 compares
optimal values for the objective function obtained by each method. Again, as expected, the
costs calculated by the IPLS and PCPD methods are lower than those obtained by the HGA
method.
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Table 5: Comparison of the power generation outputs obtained for the system with 6 generators.

Generated power HGA PCPD IPLS
P1 (MW) 20,1367 17,36596 17,36596
P2 (MW) 14,8645 10,00000 10,00000
P3 (MW) 72,4008 61,340667 61,340667
P4 (MW) 72,4008 77,97487 77,97487
P5 (MW) 180,0617 177,81828 177,81828
P6 (MW) 139,5865 155,500216 155,500216
ΣPi (MW) 500,0000 500,0000 500,0000

Table 6: Values of the objective function for the system with 6 generators.

Results Generation cost ($)
HGA 27.037,29
PCPD 27.003,50
IPLS 27.003,50

Table 7: Characteristics of the system with 13 generators.

Unit PMin
i (MW) PMax

i (MW) ai ($/MW2) bi ($/MW) ci ($)
1 0 680 0,00028 8,1 550
2 0 360 0,00056 8,1 309
3 0 360 0,00056 8,1 307
4 60 180 0,00324 7,74 240
5 60 180 0,00324 7,74 240
6 60 180 0,00324 7,74 240
7 60 180 0,00324 7,74 240
8 60 180 0,00324 7,74 240
9 60 180 0,00324 7,74 240
10 40 120 0,00284 8,6 126
11 40 120 0,00284 8,6 126
12 55 120 0,00284 8,6 126
13 55 120 0,00284 8,6 126

4.3. Power System with 13 Generators

Table 7 describes the main characteristics of the system containing 13 generators.
The parameters in this table are analogous to those described in the preceding case

studies. The following values are adopted to initialise the method:

x0 = (660, 320, 330, 150, 140, 155, 165, 150, 140, 70, 80, 75, 85);

w0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);

y0 = (30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30).

(4.3)

The parameters related to the system’s total demand are set at D = 2520MW and the
active power losses are neglected. The values adopted for ε1, ε2, and ε3 are 10−8.
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Table 8: Comparison of the power generation outputs obtained for the system with 13 generators.

Power output HGA COEGA CA PCPD IPLS
P1 651,145 735,626 679,2551 680,0000 680,0000
P2 319,982 337,495 359,8672 360,0000 360,0000
P3 320,463 292,625 357,2368 360,0000 360,0000
P4 137,776 146,713 154,8137 155,0000 155,0000
P5 156,688 177,346 158,0946 155,0000 155,0000
P6 147,007 131,552 155,8520 155,0000 155,0000
P7 159,165 154,197 146,1697 155,0000 155,0000
P8 145,378 159,550 146,8364 155,0000 155,0000
P9 151,551 167,339 168,7979 155,0000 155,0000
P10 82,259 60,677 40,0181 40,0000 40,0000
P11 86,320 74,681 40,0000 40,0000 40,0000
P12 82,893 56,537 55,0175 55,0000 55,0000
P13 79,368 25,655 55,0488 55,0000 55,0000
ΣPi (MW) 2.520,00 2.520,00 2.520,00 2.520,00 2.520,00

Table 9: Values of the objective function for the system with 13 generators.

Results Generation cost ($)
HGA 24.111,69
COEGA 24.072,03
HAGA 24.052,34
CA 24.052,10
PCPD 24.050,08
IPLS 24.050,08

Table 8 lists the power generation outputs obtained by the methods. The values of
the dispatch calculated by the HAGA are not given by [25], who provided only the optimal
value for the objective function. Once more, as Table 9 indicates, the total cost calculated by
the PCPD and IPLS methods is lower than that calculated by all the others, although CA and
HAGA approaches get close to the optimal solution point.

4.4. Performance of the Interior Point Methods Tested

This section evaluates the computational effort of the interior point methods tested here
(PCPD and IPLS), measuring it in terms of the number of iterations required to obtain
the optimal solution. To this end, Table 10 shows the number of iterations obtained by the
solution algorithms of each method for the previously studied systems. It is important to
highlight that the same parameter settings were used for the two methods.

Computational tests were carried out in an Intel Corel Quad Q9550, with 3.5GB of
RAM memory, in order to calculate and compare the CPU times between the proposed IPLS
method and the PCPD method. For such a purpose, we utilized the specific unit GET TIME
from Borland Pascal 7.0. The precision of this unit is up to milliseconds. The computational
times calculated by this unit for the power systems tested (which include the systems with
3, 6, and 13 generators) were all null for both, the proposed method, and the PCPD method.
This occurred due to the efficiency of the machine processor and also due to the efficiency of
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Table 10: Number of iterations for the PCPD and IPLS methods.

Simulated system PCPD IPLS
3 generating units 26 12
6 generating units 22 15
13 generating units 23 17

both methods tested. Therefore, the efficiency of the methods is compared only in terms of
number of iterations, as described in Table 10.

The basic difference between the PCPD and IPLS algorithms is that line searches
are incorporated in the corrector and predictor steps of the IPLS method. Therefore, these
results demonstrate that the introduction of line searches in the IPLS method greatly reduces
the number of iterations required to solve ED problems. Since line searches represent only
a minor additional computational effort in the overall process of finding a solution, the
computational effort for solving ED problems is significantly improved by the proposed IPLS
method.

4.5. Postoptimization Analysis: Incremental Costs

This section conducts a postoptimization analysis to evaluate the optimality conditions of the
solutions obtained in the previous section for the systems in question. The purpose of this
analysis is to evaluate the complete picture concerning optimal solutions for ED problems.
The classical ED problem (2.1) can be rewritten as follows:

Minimize CT

subject to
n∑

i=1

Pi = D

Pi ∈ S,

(4.4)

where S = {Pi ∈ � ⊥ Pi − Pmin
i ≥ 0 and Pmax

i − Pi ≥ 0, i = 1 . . . , n}, and CT =
∑n

i=1(Ci(Pi) =
aiP

2
i + biPi + ci).

Problem (4.4) is subsequently used for the postoptimization analysis of the solutions
obtained by the systems studied in the previous section.

4.6. The Lagrangian Function and KKT Conditions

Considering ED as redefined in (4.4), one finds the following associated Lagrangian function:

L
(
Pi,w, si, yi

)
= CT (Pi) +w

(
D −

n∑

i=1

Pi

)
+

n∑

i=1

si
(
Pmin
i − Pi

)
+

n∑

i=1

yi

(
Pi − Pmax

i

)
, (4.5)
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where w ∈ �, si ∈ �, and yi ∈ �, i = 1, . . . , n, are the associated Lagrange multipliers. The
KKT conditions associated with the Lagrangian function (4.5) are expressed through

D −
n∑

i=1

Pi = 0, (4.6)

Pi − Pmin
i ≥ 0; si

(
Pi − Pmin

i

)
= 0; i = 1, . . . , n, (4.7)

Pmax
i − Pi ≥ 0; yi

(
Pmax
i − Pi

)
= 0; i = 1, . . . , n, (4.8)

λi(Pi) −w − si + yi = 0; i = 1, . . . , n, (4.9)

where

λi(Pi) =
∂Ci(Pi)
∂Pi

= 2aiPi + bi; i = 1, . . . , n. (4.10)

In the literature on power systems, the Lagrange multiplier w is called energy price
(i.e., the price of 1MWh), while λi(Pi) is called incremental or marginal cost of generating
unit i. Using expression (4.9), the energy price can be calculated by

w = λi(Pi) − si + yi; i = 1, . . . , n. (4.11)

4.7. Energy Prices and Incremental Costs Using KKT Conditions

If the optimal solution provided by the IPLS method satisfies the KKT conditions, then
there are four possible combinations for analysing prices and incremental costs, which are
examined below.

4.7.1. No Active Constraint

In this case there is no active constraint in the optimal solution of problem (4.4), so that s∗i = 0,
y∗
i = 0; i = 1, . . . , n. Thus, from (4.11), one reaches

w = λ∗i
(
P ∗
i

)
; i = 1, . . . , n, (4.12)

that is, the energy price is equal to the incremental (marginal) costs for all the generating
units. This situation corresponds to the rule commonly used by power system operators,
which states that all marginal costs are equal. It is important to emphasize that this rule is
valid only for this case and should, therefore, be used cautiously.

4.7.2. Active Constraints for Maximum Power Output Limit

In this case, some generating units are dispatched in their maximum power output
capabilities, so that the constraints associated with maximum power output capabilities are
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active in the optimal solution of (4.4). To analyse this case, let the set Ωmax be defined with
the indices of the generating units that have been optimally dispatched in their maximum
power output. In this situation, s∗i = 0 for i = 1, . . . , n, y∗

j > 0 for j ∈ Ωmax, and y∗
j = 0 for

j /∈ Ωmax. Starting from (4.11), one reaches

w = λ∗j
(
P ∗
j

)
+ y∗

j ; j ∈ Ωmax,

w = λ∗j
(
P ∗
j

)
; j /∈ Ωmax.

(4.13)

Based on (4.13), it is possible to show that the marginal costs for the group of
generating units that belong to Ωmax are lower than the marginal costs for the group that
does not belong to Ωmax, since y∗

j > 0; j ∈ Ωmax.

4.7.3. Active Constraints for Minimum Power Output Limit

In this case, some generating units are dispatched in their minimum power output
capabilities, so that the constraints associated with minimum power output capabilities are
active in the optimal solution of (4.4). To analyse this case, let the setΩmin be defined with the
indices of the generating units that have been optimally dispatched in their minimum power
output. In this situation, y∗

i = 0 for i = 1, . . . , n, s∗j > 0 for j ∈ Ωmin, and s∗j = 0 for j /∈ Ωmin.
Thus, using (4.11), one reaches

w = λ∗j
(
P ∗
j

)
− s∗j ; j ∈ Ωmin,

w = λ∗j
(
P ∗
j

)
; j /∈ Ωmin.

(4.14)

Based on (4.14), it can be shown that the marginal costs for the group of generating
units that belong toΩmin are higher than the marginal costs for the group that does not belong
to Ωmin, since s∗j > 0; j ∈ Ωmin.

4.7.4. Active Constraints for Both Minimum and Maximum Power Output Capabilities

In this case, some generating units are dispatched in their upper limits, while others are
dispatched in their lower limits, or at some other operational point between their upper and
lower limits. Obviously, the same unit cannot simultaneously assume lower and upper limits.
The comments made in the preceding sections concerning marginal costs for the generating
units that are dispatched in their lower or upper limits also apply to this case.

4.8. Results of Incremental Analyses for the Systems under Study

4.8.1. Case 1: Power System with 3 Generating Units

Table 2 describes the optimal dispatch, P ∗
i , i = 1, . . . , n, calculated by the IPLS method for the

system with 3 generating units. As this table indicates, no generating unit has reached its



Mathematical Problems in Engineering 23

Table 11: Incremental analysis for the 3-generator system.

Unit λ∗i s∗i y∗
i w∗

1 9,14826 0 0 9,14826
2 9,14826 0 0
3 9,14826 0 0

Table 12: Incremental analysis of the 6-generator system.

Unit λ∗i s∗i y∗
i w

1 43,8449 0 0 43,8449
2 48,2765 4,43164 0
3 43,8449 0 0
4 43,8449 0 0
5 43,8449 0 0
6 43,8449 0 0

lower or upper limit, so there is no active constraint in the optimal solution. This situation
coincides with the one described in Section 4.7.1. The energy price, marginal costs, and
Lagrange multipliers are shown in Table 11 for this case. As described in Section 4.7.1, the
values obtained by the IPLS method for s∗i and y∗

i ; i = 1, . . . , n are all zero. Also, the energy
price is equivalent to the marginal costs, which are all equal, as expected. These results are in
accordance with the theory described in Section 4.7.1.

4.8.2. Case 2: Power System with 6 Generating Units

Table 5 shows the optimal dispatch, P ∗
i , i = 1, . . . , n, calculated by the IPLS method for

the system with 6 generating units. As can be seen in this table, the generating unit 2 has
reached its lower limit, so the optimal solution has one active constraint. This situation
coincides with the one described in Section 4.7.3. Table 12 lists the energy price, marginal
costs, and Lagrange multipliers calculated by the IPLS method for this case. As described in
Section 4.7.3, the values obtained by the IPLS method for s∗i and y∗

i ; i = 1, . . . , n are all zero
except for the value of s∗2, which is associated with the constraint for lower output capabilities
at unit 2. Except for unit 2, all the marginal costs are equal to the energy price. These results
are in accordance with the theory described Section 4.7.3 and also with (4.14).

4.8.3. Case 3: Power System with 13 Generating Units

Table 8 shows the optimal dispatch, P ∗
i , i = 1, . . . , n, calculated by the IPLS method for

the system with 13 generating units. Table 13 lists the energy price, marginal costs, and
Lagrange multipliers calculated by the IPLS method. As the latter table indicates, generated
units 1, 2, and 3 have reached their upper limits, and generated units 10, 11, 12, and 13
have reached their lower limits, indicating that there are 6 active constraints in the optimal
solution calculated by the IPLS method. This situation coincides with the one described in
Section 4.7.4. As described previously, the values obtained by the IPLS method for s∗i and y∗

i ;
i = 1, . . . , n are zero except for the values of y∗

1, y∗
2, y∗

3, which are associated with upper
output capabilities, and also for s∗10, s∗11, s

∗
12, s∗13, which are associated with lower output
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Table 13: Incremental analysis for the 13-generator system.

Unit λ∗i s∗i y∗
i w

1 8,4807 0 0,2635 8,7443
2 8,5031 0 0,2411
3 8,5031 0 0,2411
4 8,7443 0 0
5 8,7443 0 0
6 8,7443 0 0
7 8,7443 0 0
8 8,7443 0 0
9 8,7443 0 0
10 8,8272 0,0828 0
11 8,8272 0,0828 0
12 8,9124 0,1680 0
13 8,9124 0,1680 0

capabilities. The marginal costs for all the remaining units (4, 5, 6, 7, 8, and 9) are equal to the
energy price. These results are in accordance with the theory described in Sections 4.7.2 and
4.7.3 and also with (4.13) and (4.14).

As expected, in all the cases analysed in Tables 11, 12, and 13, the value of the
generation cost w = λ∗i − s∗i + y∗

i was determined univocally, which proves the equal
incremental cost criterion [29].

The analysed results indicate that the dispatches P ∗
i , i = 1, . . . , n calculated,

respectively, in Tables 2, 5, and 8 and the results for λ∗i ,w, s∗i , and y∗
i determined, respectively,

in Tables 11, 12, and 13, satisfy the complementary slackness conditions set forth in (4.7) and
(4.8).

5. Conclusions

This paper proposes a predictor-corrector primal-dual interior point method which
introduces line search procedures (IPLS) in both the predictor and corrector steps. The
Fibonacci search is used in the predictor step, while an Armijo search is used in the corrector
step. The method is developed for application to the economic dispatch (ED) problem, which
is an example of a quadratic programming problem studied in the field of power systems
analysis. ED problems have already been solved through primal-dual interior point methods,
although the strategy adopted here to solve the problem has not yet been tested.

The proposed algorithm is applied to solve ED problems in case studies involving
systemswith 3, 6, and 13 generating units. The results provided by the proposed IPLSmethod
are compared to those provided by several other methods described in the literature, such as
the predictor-corrector primal-dual (PCPD) interior point method, hybrid genetic algorithm,
coevolutionary genetic algorithm, hybrid atavistic genetic algorithm, and cultural algorithm.
The dispatches calculated by all the types of genetic algorithms could not reach the global
optimal dispatch attained by the interior point methods PCPD and IPLS.

The computational effort of the interior point methods tested (PCPD and IPLS) was
evaluated and measured in terms of the number of iterations required to find the optimal
solution. The results indicate that the introduction of line searches in the IPLS method
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considerably reduces the number of iterations required for solving ED problems. Line
searches pose represent only a minor additional computational effort in the overall process
of finding a solution; hence, the computational effort for solving ED problems is also greatly
improved by the proposed IPLS method.

A theory for performing a postoptimization analysis was also analysed. This theory
highlights the relation among energy prices, incremental generation costs, and other
Lagrange multipliers. This mathematical relation is used to validate optimal solutions for
ED problems calculated by the IPLS method.

Further research could involve the representation of the so-called valve point loading
in the objective function of ED problems. In that case, the nondifferentiability of the objective
function should be treated appropriately.
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