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To evaluate how much two different complex topologies are similar to each other in a quantitative
way is an essential procedure in large-scale topology researches and still remains an NP problem.
Cross-correlation evaluation model (CCEM) together with Genetic Algorithm (GA) is introduced
in this paper trying to solve this issue. Experiments have proved that SLS (Signless Laplacian
Spectra) is capable of identifying a topology structure and CCEM is capable of distinguishing the
differences between corresponding topology SLS eigenvectors. CCEMused in GA is recommended
at last since a way of not finding the optimum solution in GA is a good way to reduce computing
complexity.

1. Introduction

The research on the Internet topology modeling has been growing into a hot topic in Internet-
related research fields recently [1, 2]. In Internet topology modeling and other large-scale
topology researches, to evaluate how much two different complex topologies are similar to
each other in a quantitative way is an essential part and up to now, it is still regarded as an
NP problem and there is still not a good way to solve it in a quantitative way.

We take Internet topology as an example trying to solve this issue by constructing a
quantitative model including cross-correlation evaluation model (CCEM), spectral density
[3] out of composite methods of graph theory, correlation algorithm [4], and Genetic Algo-
rithm in this paper.

1.1. Spectral Density Introduction

A nondirected graph G could be denoted by it symmetrical adjacency matrix A. If there is a
link between node i and node j in G, then Aij = Aji = 1, otherwise Aij = Aji = 0. Eigen values
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of G are the eigen values of its matrix A, and they are denoted as λ1, λ2 . . . λn. Researches in
graph theory show that eigenvalues of a graph are closely related to the structural properties
of the graph topology. So studies on a graph’s eigenvalues are useful in topology research.

Spectrum of a graph G is denoted by a set of the eigen values and their tuple of its
adjacency matrix A [5], and it is denoted as follows.

Spec(G) =

(
λ1 · · · λn

m1 · · · mn

)
, (1.1)

where m is the tuple of the eigenvalue.
Spectral density ρ(λ) is the eigen value density of the adjacency matrix A, and it could

be denoted as [5–7].

ρ(λ) =
1
N

n∑
i=1

δ(λ − λi), (1.2)

where λi is the ith eigen value of the adjacency matrixA,N is the number of the eigen values.
ρ(λ)will be approaching to a continuous function when N → ∞.

1.2. Experiment Samples

The samples are the measured router-level Internet results with 1,145,841 routers (nodes) and
2,907,638 links. After IP alias solution [8, 9], the size of the sample reduced to 29,367 routers
and 190,280 links, respectively [10].

To further simplify the computation, we performed a second-order sampling (resam-
pling) operations on the experiment samples, and the re-sampling rules are (1) resampling
operation is completely random, it could start from any effective node in target graph; (2)
resampled results must be a connected graph; (3) Re-sampled results should cover as much
nodes as possible, that is, node selection is preferential to link selections.

At last, the re-sampled Internet topology graph was converted into an adjacency
matrix for further calculation.

2. Possibility of Using Spectral Density in
Distinguishing Topology Graphs

Before we made use of spectral density to construct CCEM, we would first testify whether it
could be used to distinguish topology graphs (including Internet topology) or not.

Three representative graphs: ER random graph, scale-free graph, and Internet topol-
ogy graph were selected for the test in this paper.

According to [6], the spectral density of an ER random graph converges to a half-circle,
and the low part of the half-circle exhibits an exponential distribution.

And spectrum density of a scale-free graph out of BA model [6, 11–14] exhibits a sym-
metrically continuous curve with a triangular center together with two power-law distribu-
tion sides.

We can find from [6, 11] that different graph exhibits quite different spectra diagram.
Can the Internet topology graph, however, be denoted by spectrum density or not? As we
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Table 1: Eigenvalues and spectral density of three re-sampled internet graphs.

30 ips 300 ips 500 ips

λ(13)1 ρ(λ) λ(104)1 ρ(λ) λ(112)1 ρ(λ)

−3.2196 0.0333 −8.7818 0.0033 −10.7058 0.0020

−2.6318 0.0333 −8.0004 0.0033 −10.2681 0.0020

· · · · · · · · · · · · · · · · · ·
−0.5663 0.0333 −0.1767 0.0033 −0.2635 0.0020

−0.0000 0.5333 −0.0000 0.5567 −0.0000 0.7320

0.5663 0.0333 0.1479 0.0033 0.1113 0.0020

· · · · · · · · · · · · · · · · · ·
2.6318 0.0333 8.8174 0.0033 10.9470 0.0020

3.2196 0.0333 14.1650 0.0033 12.3570 0.0020
Note. The value in the bracket is the total number of the eigen values.

know, Internet topology is different from that of ER graph and scale-free graph, but is a little
close to the latter one [1, 2, 10]. We then take a look at it if it is possible to distinguish the
Internet topology graph from the scale-free one.

For simplicity and better comparison, we draw three copies of Internet graph with the
re-sampling tool mentioned above and the size of the three samples after re-sampling are 30
nodes and 29 links, 300 nodes and 536 links, and 500 nodes and 753 links, respectively. Their
eigen values and spectral density are listed in Table 1.

The symmetry of the spectral density could be found from Table 1, and this is consis-
tent to the spectra symmetry on scale-free graphs found in [6, 11]. The correspondence match
proves in a coarse granularity that there is a little similarity between the Internet graph and
the scale-free graph, as was mentioned previously.

However, there are differences between the graphs, and we illustrated the Internet’s
spectra diagram in Figure 1 for better comparison.

From Figure 1, we first find that there are complete conformities in all three re-sampled
graphs (30 ips, 300 ips, and 500 ips), such as two small peaks when λ = ±1.0000, one distinct
peak when λ = 0, and all ρ(λ) < 0.005 when λ < −1.0000 and λ > 1.0000.

All three graphs comprise quite different sizes and contents (specific routers and links)
due to re-sampling rules, and the conformity found in Figure 1 shows that, though performed
on different part of Internet, the spectral density still gets similar results. So conclusions could
be made that, spectral density is OK in representing real Internet graph characters.

Next, we find that the center of three spectral density curves in Figure 1 is of triangular
shape, which is similar to the scale-free graph. For the two side parts, however, they are dif-
ferent from scale-free graph since the side parts are not complied with exponential distribu-
tion or power-law distribution. So the spectral density is OK in distinguishing Internet graph
from the scale-free graph.

Again, we begin to distinguish the Internet graph from the ER graph, and the dif-
ferences are easily found. So, we make the conclusion that the spectral density is OK in
distinguishing Internet graph from the ER graph.

Together with the fact that spectral density gives a quantitative description of Internet
topology characters, we would make use of it in CCEM for Internet topology modeling.
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Figure 1: Spectral density diagrams of three Internet graphs. The subgraph in the top-right is a plot zoomed
in to [−5, 5] in axis x and [0, 0.2] in axis y for a better view.

3. Internet Topology Characters Discovered by Spectral Density

3.1. General Spectral Density

For a better view of spectra distribution, we calibrate the coordinate system by a factor of√
Np(1 − p)to make a new one with axis x as λ/

√
Np(1 − p) and axis y as ρ(λ)

√
Np(1 − p)

[1, 6].
What is more, we enlarge the size of the re-sampled Internet topology graph from

30 ips, 300 ips, and 500 ips (Figure 1) to 300, 800, 2000, 3000, and 4000 ips (Figure 2) so as to
make a graph closer to the real Internet.

We know that the more nodes a graph has, the closer to real Internet it is. However, a
graph with 4000 ips is the largest one in this paper, and the reasons are (1) limitations of com-
puting abilities, the calculating efficiency of spectral density would decrease sharply if the
size of the graph increases over 4000; (2) Internet characters could be well expressed through
spectral density no matter howmany nodes an Internet graph has. And this is a fact had been
proved in Figure 1 (different-sized graph has conformities in spectral density structure) and
going to be proved again in Figure 2.

From Figure 2, we found that all five graphs’ spectral density showed very good con-
formities despite of their different size. All five plots have the maximum when λ = 0 and the
second maximum when λ = 0.5 around.

Similar to what was found in Figure 1, the conformity among five Internet graphs
proved that only a small-sized Internet graph could be enough to represent key properties of
real Internet topology by spectral density based on the re-sampling tool. Which means that,
performing experiments on the complete Internet topology graph is not necessary any more
for us to study its properties, a rather smaller re-sampled graph with appropriate algorithm
could also be effective.
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Figure 2: Spectral density of five re-sampled graphs. The sub-graph in the top-right is a plot zoomed in to
[−3, 3] in axis x and [0, 0.15] in axis y for a better view.

Back to the basic idea of this paper, to distinguish topology graphs by comparing their
spectral density. However, the spectral density is somewhat in coarse granularity, there is
another especially valuable kind of spectral density named Signless Laplacian Spectra (SLS)
which could give further and finer information on a graph’s properties [15].

3.2. SLS

An SLS matrix |L| of a graph G is defined to |L| = D +A, where matrixD is a diagonal matrix
representing G’s degree, and matrix A is G’s adjacency matrix [15]. SLS is eigen values of
|L|. Some researches in graph theory indicate that SLS is the best spectra in distinguishing
different graphs [15]. In this paper, SLS is used on four re-sampled Internet topology graphs
(3000 ips). And the result is illustrated in Figure 3.

From Figure 3, firstly, we could see that all four curves show high similarities although
the four samples are completely random and different from each other. Again, this should be
regarded as another proof that the re-sampled samples could effectively represent properties
of the real Internet graph.

There are two evident horizontal lines when SLS equals to 1(10◦) and 2, which means
that there are the most nodes in the Internet topology graph when SLS equals to 1, and the
second-most nodes at SLS = 2. All four samples exhibit same properties clearly in Figure 3.

For the other part of Figure 3, that is, the part when SLS > 2 and SLS < 1, we would
make further studies by performing power-law distribution fitting operations [1]. The fit
result is illustrated in Figures 4 and 5.

From Figure 4, we could see that there is obvious power-law relationship between SLS
and its corresponding descending order, and the fitting result ACC (absolute value of the cor-
relation coefficient) is greater than 0.9, meaning that the fitting operation is highly acceptable.
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Figure 3: SLS analysis results on four 3000-ip graphs, where axis y is in logarithm, and axis x is sorted by
eigen values’ descending order.
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Figure 4: Power law distribution fitting results with descending eigen value when SLS > 2 of four re-
sampled graphs.
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Figure 5: Power-law distribution fitting results with descending eigen value when SLS < 1.

The power-law relationship found here is quite consistent to what was found in the spectral
density research on China CERNET in [1].

However, there is not clear power-law relationship since ACC is rather small in Figure
5. And this could also be regarded as a criterion identifying Internet graph.

3.3. Selection for CCEM

Compared with the general spectral density, SLS is better since (1) SLS is recommended to be
the best spectra in [15]; (2) SLS is as same as the general spectral density in quantitatively
identifying Internet graph by its eigen value sequence, but is better in discovering more
characters of Internet such as two horizontal phases at SLS = 1 and SLS = 2, one power-law
distribution part when SLS > 2, and non-power-law distribution at SLS < 1.

So, SLS would be selected for studying CCEM.

4. Cross-Correlation Evaluation Model

4.1. Transformation from SLS to Data Sequence

To evaluate an Internet model is to determine the differences between the generated Internet
topology and the real Internet topology. SLS eigen values sequences are introduced to deter-
mine the differences as a quantitative evaluation way.
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The SLS eigen values are a series of numerical numbers representing the primary char-
acters of the target graph, that is, the Internet topology graph. With the two value sequences,
the problem left for us is to find an effective algorithm to get the evaluation result between
them.

CCEM, then is used to evaluate whether a given or a generated topology is similar to
or same as the real Internet topology. And the first requirement of CCEM is to transform SLS
into data sequence.

After the sort of eigen values of SLS in descending way, the data sequence is gained
and ready for the next step evaluation, as is shown in:

u[m] = SLS[m],

v[n] = SLS[n],
(4.1)

where u[m] is sequence of real Internet topology, v[n] is sequence of a given topology,m and
n denote the descending order of SLS eigen value of the real Internet topology and a given
topology, respectively.

4.2. Cross-Correlation Algorithm

Cross-correlation algorithm is capable of distinguishing and identifying the differences be-
tween numerical number sequences in an absolutely quantitative way [4], and it is defined
in (4.2):

ρuv(n) =
ruv(n)√

ruu(0)rvv(0)
, (4.2)

where n is the disalignment lag between u[m] and v[n], ruv(n) is cross-variance, ruu(0) and
rvv(0) are autocorrelation of u[m] and v[n] with disalignment lag set to be 0, respectively.
And they are:

ruv(n) =
1
N

N−n−1∑
k=0

u(k)v(n + k), (4.3)

ruu(0) =
1
N

N−1∑
k=0

u2(k), (4.4)

rvv(0) =
1
N

N−1∑
k=0

v2(k). (4.5)

where N is length of u[m] and v[n]. Let Nu = Length (u[m]),Nv = Length (v[n]), then:

N = Nu, if Nu = Nu,

N = Nu +Nv − 1, if Nu! = Nu.
(4.6)
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Proof 1. The cross-correlation maximum occurs if and only if two given topologies are com-
pletely identical and the disalignment lag is 0.

Proof. If two given topologies are completely identical, then:

u[m] = v[n]. (4.7)

And if the disalignment lag is 0, with (4.3), we get:

ruv(0) =
1
N

N−1∑
k=0

u(k)v(k). (4.8)

According to (4.7), we get:

ruv(0) = ruu(0) = rvv(0) =
1
N

N−1∑
k=0

u(k)u(k) =
1
N

N−1∑
k=0

u2(k) = E
[
u2(k)

]
. (4.9)

First, we are going to prove

ruu(0) ≥
∣∣ruu(j)∣∣ ≥ ∣∣E[u(k) ± u

(
k + j

)]∣∣j! = 0. (4.10)

Consider a nonnegative variable,

E
[(
u(k) ± u

(
k + j

))2] ≥ 0. (4.11)

Extend (4.11), we get:

E
[(

u2(k)
]
± 2E

[
u(k) ± u

(
k + j

)] ± E
[
u2(k + j

))] ≥ 0. (4.12)

With (4.10), we simplify (4.12) to

2ruu(0) ± 2ruu
(
j
) ≥ 0, (4.13)

Then,

−ruu(0) ≤ ruu
(
j
) ≤ ruu(0), (4.14)

ruu(0) ≥
∣∣ruu(j)∣∣j! = 0. (4.15)

Now, we have proved that cross-correlation value reaches maximum when u[m] =
v[n] and the disalignment lag set to be 0.
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Figure 6: Autocorrelation calculation of SLS eigen values with disalignment lags, all four SLS sequences
come from Figure 3.

Next, we are going to prove when u[m]! = v[n], the maximum is still ruu(0) or rvv(0).
When the disalignment lag j! = 0, to simplify the proof procedure, we can set ruu(j) to

be ruv(j) since u[m, j]! = v[n, j]j! = 0. So, according to (4.15), we get:

ruu(0) ≥
∣∣ruv(j)∣∣j! = 0. (4.16)

And for rvv(0), similar to ruu(0), we still get:

rvv(0) ≥
∣∣ruv(j)∣∣j! = 0. (4.17)

We then use SLS eigen values from Figure 3, that is, the four SLS sequences from four
real Internet topologies to testify whether Proof 1 is correct or not.

From Figure 6, it is clear that all four SLS sequences reach their maximums when dis-
alignment lag equals 0, quite consistent with what we have proved in Proof 1.

And for Figure 7, we can find that the cross-correlation still reaches the maximum
when disalignment lag equals 0, though all four SLS sequences, that is, SLS(1), (2), (3), and
(4) are different from each other.
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Figure 7: Cross-correlation calculation of SLS eigen values with disalignment lags, all four SLS sequences
come from Figure 3. SLS(1) and SLS(2) means cross-correlation calculation between SLS(1) and SLS(2),
and the others are the same.

The four SLS sequences, however, all come from real Internet topology, are quite sim-
ilar to each other. And we can see that the maximum of three cross-correlation nearly reach
1, quite close to the maximum value of autocorrelation in Figure 6. This is quite reasonable,
because the topology that SLS(1), (2), and (3) and SLS(4) represent are proved to be similar in
Section 3, and it is again proved to so close in topology structure to each other that the cross-
correlation values are almost equal to that of autocorrelation, that is, the four topologies are
almost same to each other. Meanwhile, Proof 1 is testified to be true.

By now it seems that the alike topologies always reaches a maximum close to 1 during
cross-correlation calculations, what about the dislike topologies? We select SLS(1) and make
cross-correlation calculationwith three random sequences and illustrated the results in Figure
8.

From Figure 8, it is clear that the plot is quite different from that in Figure 7. Firstly,
the maximum of cross-correlation is around 0.2, not 1 as in Figures 6 and 7, meaning that the
similarities between SLS(1) and random sequences (1), (2), and (3) are not identical to each
other, that is, the topologies represented by SLS(1) and the other three random sequences are
not alike to each other. This is quite reasonable since the three random sequences originate
from random operations, it is unlikely to be identical to SLS(1), or the random generated to-
pology has very little possibility to be similar to the real Internet topology.

Secondly, the growing curves are not close to zero any more, but close to 0.1. The rea-
son is that part of the randomly generated sequences is “similar” in some way to part of SLS
sequence (1). The “similarity,” however, is quite low since the cross-correlation values are
near 0.1 and 0.2, quite far from 1, the value of the cross-correlation calculation from com-
pletely identical topologies.
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Figure 8: Cross-correlation calculation of SLS(1) eigen values and three random sequences with
disalignment lags, SLS sequences (1) come from SLS(1) and random (1) in Figure 3means cross-correlation
calculation between SLS(1) and random sequence (1), and the others are the same.

With Proof 1 and illustrations from Figures 6, 7, and 8, CCEM can be used to evaluate
the difference between topologies, and, more important, CCEM can function as a measuring
scale to evaluate how much a given topology is close to the other one.

The gained result from CCEM would be a relative large cross-correlation value if the
two sequences or two topologies are similar to each other, or a small value otherwise. Then a
threshold would usually be set for making decisions when using CCEM in evaluating Inter-
net topology model.

4.3. CCEM Algorithm

The CCEM algorithm for the Internet topology is shown in Table 2.
The size of the modeled Internet graph and that of real Internet graph must be identi-

cal, and the user could controls how to set the value. We know that the real Internet graphs
with different size are quite different, even the real Internet graph with the same size but
re-sampled at different time, are not identical to each other. So the result gained out of the
algorithm may differ in some way each time.

But we still consider the CCEM algorithm to be effective because (1) the properties of
the real Internet by re-sampling rules are quite similar (Figures 2, 3, and 4), so the different re-
sampled Internet graph could not make great changes for the algorithm results. (2) Internet
is a kind of dynamically growing networks, there is not a static Internet graph to be used as a
template in the algorithm. So the re-sampled Internet is so far OK to be used in the algorithm.
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Table 2: The CCEM algorithm for the Internet topology modeling.

Steps Operations

(1)
Get an adjacency matrix of the target Internet topology graph (as a template Internet graph) by
the Internet re-sampling tool;
/∗ the size of the matrix should be identical to that of the matrix from Internet model; ∗/

(2) Get the SLS eigen value sequence by SLS operations;
/∗ This sequence would be regarded as the base comparison sample; ∗/

(3) LOOP

(3.1) Construct a modeled Internet with An Internet Model (with specific parameters), and get its
adjacency matrix;

(3.2) Get its SLS eigen value sequence next;

(3.3) Perform cross-correlation algorithm on the two sequences: the modeled sequence from (3.2)
and the template sequence from (2);
End LOOP till the cross-correlation result is greater than the threshold, which implies that the
modeled Internet is similar enough to the real Internet;
/∗ The threshold is adjustable. ∗/

Else adjust the parameter of the Internet model, and continues the loop.

4.4. Recommended Way to Use CCEM

A way to use CCEM is recommended as to use it within a Genetic Algorithm (GA). Here are
the reasons.

(1) GAfits the CCEM studied in this paper quite well. GA could give direct calculations
and optimizations when using CCEM to evaluate and optimize a given topology to
real Internet topology.

(2) Most Internet modeling researches are out of statistics at present because the Inter-
net is too large to be handled by other approaches. And the most statistical result
is a mathematical model with uncertain parameters, for example, some parameters
are defined as data sequences [3], other than a single value. How to determine these
parameters, or how to optimize the data sequences, is the most essential issue that
the current researchers are required to do. Technically speaking, it needs rounds of
repeatable calculations. Thus, GAwould be themost appropriate tool because of it’s
quite good at repeatable computation and auto-decision-making. GA could auto-
matically make adjustments to the Internet model’s parameters till the optimization
is done.

(3) In the meanwhile, GA is good at reducing computing complexity by its ability of
finding a secondary optimum solution.

So CCEM is recommended to be used in a GA in Internet topology modeling or other
large-scale topology researches.

5. Conclusions

CCEM and its algorithm were studied in this paper. Firstly, we testified the ability of spectral
density in distinguishing different graphs by performing it among ER random graph, BA
scale-free graph and the Internet topology graph.We found that three yielded spectra showed
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quite different properties, so that the spectral density approach was confirmed to be capable
of distinguishing and identifying Internet graphs.

Next, we get topology’s SLS eigen values and input them into CCEM to quantitatively
evaluate the difference between graphs.

Finally, CCEM used in GA was recommended in Internet topology modeling or other
large-scale topology researches to reduce computing complexities.
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