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Existing integer-order Nonlinear Anisotropic Diffusion (NAD) used in noise suppressing will
produce undesirable staircase effect or speckle effect. In this paper, we propose a new scheme,
named Fractal-order Perona-Malik Diffusion (FPMD), which replaces the integer-order derivative
of the Perona-Malik (PM) Diffusion with the fractional-order derivative using G-L fractional
derivative. FPMD, which is a interpolation between integer-order Nonlinear Anisotropic Diffusion
(NAD) and fourth-order partial differential equations, provides a more flexible way to balance
the noise reducing and anatomical details preserving. Smoothing results for phantoms and real
sinograms show that FPMDwith suitable parameters can suppress the staircase effects and speckle
effects efficiently. In addition, FPMD also has a good performance in visual quality and root mean
square errors (RMSE).

1. Introduction

Radiation exposure and associated risk of cancer for patients receiving CT examination have
been an increasing concern in recent years. Thus minimizing the radiation exposure to
patients has been one of the major efforts in modern clinical X-ray CT radiology [1–8].

A simple and cost-effective means to achieve low-dose CT applications is to lower X-
ray tube current (mA) as low as achievable [6, 7]. However, the presentation of strong noise
degrades the quality of low-dose CT images dramatically and decreases the accuracy of the
diagnosis dose.

Filtering noise from clinical scans is a challenging task, since these scans contain arti-
facts and consist of many structures with different shape, size, and contrast, which should be
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preserved for making correct diagnosis. Many strategies have been proposed to reduce
the noise, for example, by nonlinear noise filters [8–20] and statistics-based iterative image
reconstructions (SIIRs) [21–29].

The SIIRs utilize the statistical information of themeasured data to obtain good denois-
ing results but are limited for their excessive computational demands for the large CT image
size. Although the nonlinear filters show effectiveness in reducing noise both in sinogram
space and image space, they cannot handle the noise-induced streak artifacts. Some nonlinear
filters, such as Nonlinear Anisotropic Diffusion (NAD), even produce new artifacts in L-CT
denoising [30–37].

To eliminate the undesirable staircase effect, high-order PDEs (typically fourth-order
PDEs) for image restoration have been introduced in [38–43]. Though these methods can
eliminate the staircase effect efficiently, they often lead to a speckle effect [44].

Recently, fractional-order PDEs have been studied in many fields [38–49]. The frac-
tional derivative can be seen as the generalization of the integer-order derivative. It has been
studied by many mathematicians (e.g., Euler, Hardy, Littlewood, and Liouville) [47]. Not
until Mandelbrot found fractals and applied the G-L fractional derivative to the Brownian
motion did the fractional derivative cause great attention. There are many methods that can
define the fractional derivative. The usual definitions among them involve G-L fractional
derivative, Cauchy-integral fractional derivative, frequency-domain (Fourier-domain) frac-
tional derivative.

Li and Zhao investigate relation between the data of cyber-physical networking systems
and power laws and then suggest that power-law-type data may be governed by stochasti-
cally differential equations of fractional order [45]. They also propose that one-dimensional
random functions with long-range dependence (LRD) based on a specific class of processes
called the Cauchy-class (CC) process maybe a possible model of sea level data [46].

You and Kaveh develop a class of fractional-order multiscale variational model using
G-L definition of fractional-order derivative and propose an efficient condition of the conver-
gence for the model [38]. The experiments show that the model can improve the peak signal-
to-noise ratio, preserve texture, and eliminate the stair effect efficiently.

Bai and Feng proposed a class of fractional-order anisotropic diffusion equations based
on PM equation for image denoising using Fourier-domain fractional derivative in [49].
The numerical results showed that both of the staircase effect and the speckle effect can be
eliminated effectively by using the fractional-order derivative.

Inspired from previous works and in order to eliminate the staircase effects and pre-
serve anatomical details, we propose to replace the first-order and the second-order deriva-
tive of the PM Diffusion with the fractional-order derivative using G-L fractional derivative.
It should be indicated that the method proposed in this paper, which is carried on the
sinogram space directly, is different to the method proposed in [49], which is carried on the
Fourier space.

The arrangement of this paper is as follows. In Section 2, the noisemodel of Low-dosed
CT (L-CT) is introduced; and then the PM diffusion is given in Section 3, new fractional-order
PM method is developed using G-L fractional definition in Section 4; the experiment results
are shown and discussed in Section 5; the final part is the conclusions and acknowledgement.

2. Noise Models
Based on repeated phantom experiments, low-mA (or low-dose) CT-calibrated projection
data after logarithm transform were found to follow approximately a Gaussian distribution
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with an analytical formula between the sample mean and sample variance, that is, the noise
is a signal-dependent Gaussian distribution [20].

In this section, we will introduce signal-independent Gaussian noise (SIGN), Poisson
noise, and signal-dependent Gaussian noise.

2.1. Signal-Independent Gaussian Noise (SIGN)

SIGN is a common noise for imaging system. Let the original projection data be {xi}, i = 1,
. . . , m, where i is the index of the ith bin. The signal has been corrupted by additive noise
{ni}, i = 1, . . . , m and one noisy observation

yi = xi + ni, (2.1)

where yi, xi, ni are observations for the random variables Yi, Xi, andNi where the uppercase
letters denote the random variables and the lower-case letters denote the observations for
respective variables. Xi is normal N(0, σ2

X); Ni is normal N(0, σ2
N) and independent to the

Gaussian random variable Xi. Thus Yi is normal N(0, σ2
X + σ2

N).

2.2. Poisson Model and Signal-Dependent Gaussian Model

The photon noise is due to the limited number of photons collected by the detector [36]. For
a given attenuating path in the imaged subject, N0(i, α) and N(i, α) denote the incident and
the penetrated photon numbers, respectively. Here, i denote the index of detector channel or
bin, and α is the index of projection angle. In the presence of noises, the sinogram should be
considered as a random process and the attenuating path is given by

ri = − ln
[
N(i, α)
N0(i, α)

]
, (2.2)

where N0(i, α) is a constant and N(i, α) is Poisson distribution with mean N.
Thus we have

N(i, α) = N0(i, α) exp(−ri). (2.3)

Both its mean value and variance are N.
Gaussian distributions of ploy-energetic systems were assumed based on limited

theorem for high-flux levels and followed many repeated experiments in [20]. We have

σ2
i

(
μi

)
= fi exp

(
μi

γ

)
, (2.4)

where μi is the mean and σ2
i is the variance of the projection data at detector channel or bin i,

γ is a scaling parameter, and fi is a parameter adaptive to different detector bins.
The most common conclusion for the relation between Poisson distribution and

Gaussian distribution is that the photon count will obey Gaussian distribution for the case
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with large incident intensity and Poisson distribution with feeble intensity [20]. In addition,
in [36], the authors deduce the equivalency between Poisson model and Gaussian model.
Therefore, both theories indicate that these two noises have similar statistical properties and
can be unified into a whole framework.

3. Perona-Malik Diffusion

In image smoothing, Nonlinear Anisotropic Diffusion (NAD), also called Perona-Malik dif-
fusion (PMD), is a technique aiming at reducing image details without removing significant
parts of the image contents, typically edges, lines, or textures, which are important for the
image [50].

With a constant diffusion coefficient, the anisotropic diffusion equations reduce to the
heat equation, which is equivalent to Gaussian blurring. This is ideal for smoothing details
but also blurs edges. When the diffusion coefficient is chosen as an edge seeking function, the
resulting equations encourage diffusion (hence smoothing) within regions and stop it near
strong edges. Hence the edges can be preserved while smoothing from the image [50].

Formally, NAD is defined as

∂u
(
x, y, t

)
∂t

= div
(
g
(
x, y, t

)∇u
(
x, y, t

))
, (3.1)

where u(x, y, 0) is the initial gray scale image, u(x, y, t) is the smooth gray scale image at time
t, ∇ denotes the gradient, div(·) is the divergence operator, and g(x, y, t) is the diffusion
coefficient. g(x, y, t) controls the rate of diffusion and is usually chosen as a monotonically
decreasing function of the module of the image gradient. Two functions proposed in [50] are

g
(∥∥∇u

(
x, y, t

)∥∥) = e−(‖∇u(x,y,t)‖/σ)2 , (3.2)

g
(∥∥∇u

(
x, y, t

)∥∥) =
1

1 +
(∥∥∇u

(
x, y, t

)∥∥/σ)2 , (3.3)

where ‖ · ‖ is the module of the vector and the constant σ controls the sensitivity to edges.
Perona and Malik propose a simple method to approach the modules of gradients,

which is called PM diffusion [50]. Its discretization for Laplacian operator is

u
(
i, j, t + 1

)
= u

(
i, j, t

)
+
1
4

[
cN · ∇2

Nu
(
i, j, t

)

+cS · ∇2
Su

(
i, j, t

)
+ cE · ∇2

Eu
(
i, j, t

)
+ cW · ∇2

Wu
(
i, j, t

)]
,

(3.4)

where

∇2
Nu

(
i, j, t

)
= u

(
i − 1, j, t

) − u
(
i, j, t

)
,

∇2
Su

(
i, j, t

)
= u

(
i + 1, j, t

) − u
(
i, j, t

)
,
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∇2
Eu

(
i, j, t

)
= u

(
i, j + 1, t

) − u
(
i, j, t

)
,

∇2
Wu

(
i, j, t

)
= u

(
i, j − 1, t

) − u
(
i, j, t

)
. (3.5)

According to (3.2)-(3.3), the diffusion coefficient is defined as a function of module of the
gradient. However, computing a gradient accurately in discrete data is very complex and the
module of the gradient is simplified as the absolute values of four directions and diffusion
coefficients are

cN
(
i, j, t

)
= g

(∣∣∣∇2
Nu

(
i, j, t

)∣∣∣),
cS
(
i, j, t

)
= g

(∣∣∣∇2
Su

(
i, j, t

)∣∣∣),
cE
(
i, j, t

)
= g

(∣∣∣∇2
Eu

(
i, j, t

)∣∣∣),
cW

(
i, j, t

)
= g

(∣∣∣∇2
Wu

(
i, j, t

)∣∣∣),

(3.6)

where | · | is the absolute value of the number and g(·) is defined in (3.2) or (3.3).
The main default for PM diffusion is that it will lead to staircase effect or sometimes

details oversmoothing. In order to eliminate the staircase effects and preserve anatomical
details, we propose to replace the first-order and the second-order derivative of the PM Dif-
fusion with the fractional-order derivative using G-L fractional derivative. The new diffusion
model will be introduced in the next section.

4. The Fractional-Order PM Diffusion (FPMD)

The FPMD is developed using G-L fractional-order derivative, which is defined as [38]

Dαg(x) = lim
h→ 0+

∑
k≥0 (−1)kCα

k
g(x − kh)

hα
, α > 0, (4.1)

where g(x) is a real function, α > 0 is a real number, Cα
k
= Γ(α + 1)/[Γ(k + 1)Γ(α − k + 1)] is

the generalized binomial coefficient and Γ(·) denotes the Gamma function. If h = 1, the finite
fractional difference is

�αg(x) =
K−1∑
k=0

(−1)kCα
kg(x − k). (4.2)

An image U will be a 2-dimensional matrix of size N × N and its discrete fractional-
order gradient ∇αu is an 8-dimensional vector:

∇αu(i, j)

=
(∇α

0u
(
i, j

)
,∇α

1u
(
i, j

)
,∇α

2u
(
i, j

)
,∇α

3u
(
i, j

)
,∇α

4u
(
i, j

)
,∇α

5u
(
i, j

)
,∇α

6u
(
i, j

)
,∇α

7u
(
i, j

))T
,
(4.3)

where T represents the transpose of the vector and ∇αuk(i, j), k = 0, . . . , 7 are defined as

∇α
0u

(
i, j

)
=

K−1∑
k=0

(−1)kCα
ku

(
i, j + k

)
, ∇α

1u
(
i, j

)
=

K−1∑
k=0

(−1)kCα
ku

(
i − k, j + k

)
,
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∇α
2u

(
i, j

)
=

K−1∑
k=0

(−1)kCα
ku

(
i − k, j

)
, ∇α

3u
(
i, j

)
=

K−1∑
k=0

(−1)kCα
ku

(
i − k, j − k

)
,

∇α
4u

(
i, j

)
=

K−1∑
k=0

(−1)kCα
ku

(
i, j − k

)
, ∇α

5u
(
i, j

)
=

K−1∑
k=0

(−1)kCα
ku

(
i + k, j − k

)
,

∇α
6u

(
i, j

)
=

K−1∑
k=0

(−1)kCα
ku

(
i + k, j

)
, ∇α

7u
(
i, j

)
=

K−1∑
k=0

(−1)kCα
ku

(
i + k, j + k

)
.

(4.4)

Thus

∇2αu(i, j)

=
(
∇2α

0 u
(
i, j

)
,∇2α

1 u
(
i, j

)
,∇2α

2 u
(
i, j

)
,∇2α

3 u
(
i, j

)
,∇2α

4 u
(
i, j

)
,∇2α

5 u
(
i, j

)
,∇2α

6 u
(
i, j

)
,∇2α

7 u
(
i, j

))T
,

(4.5)

where T represents the transpose of the vector. From (4.3), we have

∇2α
0 u

(
i, j

)
=

K−1∑
k=0

(−1)kCα
k∇α

0u
(
i, j + k

)
, ∇2α

1 u
(
i, j

)
=

K−1∑
k=0

(−1)kCα
k∇α

1u
(
i − k, j + k

)
,

∇2α
2 u

(
i, j

)
=

K−1∑
k=0

(−1)kCα
k∇α

2u
(
i − k, j

)
, ∇2α

3 u
(
i, j

)
=

K−1∑
k=0

(−1)kCα
k∇α

3u
(
i − k, j − k

)
,

∇2α
4 u

(
i, j

)
=

K−1∑
k=0

(−1)kCα
k∇α

4u
(
i, j − k

)
, ∇2α

5 u
(
i, j

)
=

K−1∑
k=0

(−1)kCα
k∇α

5u
(
i + k, j − k

)
,

∇2α
6 u

(
i, j

)
=

K−1∑
k=0

(−1)kCα
k∇α

6u
(
i + k, j

)
, ∇2α

7 u
(
i, j

)
=

K−1∑
k=0

(−1)kCα
k∇α

7u
(
i + k, j + k

)
.

(4.6)

Let

g =
(
g0, g1, g2, g3, g4, g5, g6, g7

)T
,

(4.7)

where T represents the transpose of the vector and gk, k = 0, . . . , 7 is defined as

gk =
g
(∣∣∇α

k
u
(
i, j

)∣∣)
∑7

n=0 g
(∣∣∇α

nu
(
i, j

)∣∣) , k = 0, 1, . . . , 7, (4.8)

where ∇α
ku(i, j), k = 0, . . . , 7, defined in (4.3) are the components of vector ∇αu(i, j) and∑7

n=0 g(|∇α
nu(i, j)|) is the normalized constant, g is the decreasing function of absolute value
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of ∇α
ku(i, j), k = 0, . . . , 7. Following (2.2) and (2.3), g(|∇uα

k(x, y, t)|) can be defined as

g
(∣∣∇uα

k

(
x, y, t

)∣∣) = e−(|∇uα
k
(x,y,t)|/σ)2 , k = 0, . . . , 7 (4.9)

or

g
(∣∣∇uα

k

(
x, y, t

)∣∣) =
1

1 +
(∣∣∇uα

k

(
x, y, t

)∣∣/σ)2 , k = 0, . . . , 7, (4.10)

where | · | is the absolute value of the number and the constant σ controls the sensitivity to
edges.

The new FPMD based on G-L fractional-order derivative is defined as

∂u
(
i, j, t

)
∂t

= div

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0∇α
0u

(
i, j, t

)
g1∇α

1u
(
i, j, t

)
g2∇α

2u
(
i, j, t

)
g3∇α

3u
(
i, j, t

)
g4∇α

4u
(
i, j, t

)
g5∇α

5u
(
i, j, t

)
g6∇α

6u
(
i, j, t

)
g7∇α

7u
(
i, j, t

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.11)

where the ∇α
k
u(i, j, t), k = 0, . . . , 7, are the components of vector ∇αu(i, j, t) in (4.3) and gk,

k = 0, . . . , 7, defined in (4.8) are the components of g in (4.7).
The above equation can be represented as

∂u
(
i, j, t

)
∂t

=
7∑

k=0

gk∇2α
k u

(
i, j, t

)
, (4.12)

where
∑7

k=0 gk = 1 and ∇2α
k
u(i, j, t) can be computed according to (4.5).

Thus the explicit form for solving (4.12) is

u
(
i, j, t + 1

)
= u

(
i, j, t

)
+

7∑
k=0

gk∇2α
k u

(
i, j, t

)
, (4.13)

where u(i, j, t + 1) is the gray level of (i, j) at time t + 1 and gk, ∇2α
k u(i, j, t) are the same as in

(4.12).

5. Experiments and Discussion

The main objective for smoothing L-CT images is to delete the noise while to preserve
anatomy details for the images.
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Table 1: RMSE of different smoothing methods.

Noisy Median Wlener Gaussian PMD FPMD FPMD FPMD
image Filter Filter Filter α = 0.2 α = 0.5 α = 1.5

RMSE 0.0962 0.0804 0.0634 0.0963 0.0774 0.0603 0.0735 0.0752

In order to show the performance of FPMD, a 2-dimensional 256 × 256 Shepp-Logan
head phantom developed in MatLab. The number of bins per view is 888 with 984 views
evenly spanned on a circular orbit of 360◦. The detector arrays are on an arc concentric to
the X-ray source with a distance of 949.075mm. The distance from the rotation center to the
X-ray source is 541mm. The detector cell spacing is 1.0239mm. The L-CT projection data
(sinogram) is simulated by adding Gaussian-dependent noise (GDN) whose analytic form
between its mean and variance has been shown in (2.4). In this paper, set fi = 4.0 and T =
2e + 4. The projection data is reconstructed by standard Filtered Back Projection (FBP). Since
both the original projection data and sinogram have been provided, the evaluation based on
root-mean-square error (RMSE) between the ideal reconstructed image is and reconstructed
images defined as

√√√√ 1
256 × 256

256∑
i=1

256∑
j=1

(
frecon

(
i, j

) − fPh
(
i, j

))2
, (5.1)

where frecon(i, j) denotes the reconstructed value on position (i, j) while fPh(i, j) denotes the
ideal reconstructed value on position (i, j).

Two abdominal CT images of a 62-year-old woman with different doses were scanned
from a 16 multidetector row CT unit (Somatom Sensation 16; Siemens Medical Solutions)
using 120 kVp and 5mm slice thickness. Other remaining scanning parameters are gantry
rotation time, 0.5 second; detector configuration (number of detector rows section thickness),
16 × 1.5mm; table feed per gantry rotation, 24mm; pitch, 1 : 1 and reconstruction method,
Filtered Back Projection (FBP) algorithm with the soft-tissue convolution kernel “B30f”.
Different CT doses were controlled by using two different fixed tube current 30mAs and
150mAs ((60mA or 300mAs) for L-CT and standard-dose CT (SDCT) protocols, resp.).
The CT dose index volume (CTDIvol) for LDCT images and SDCT images are in positive
linear correlation to the tube current and are calculated to be approximately ranged between
15.32mGy to 3.16mGy [51] (see Figures 2(a) and 2(b)).

On sinogram space, FPMD with α = 0.2, α = 0.5, and α = 1.5 is carried on two image
collections. Other compared methods include median filter with 5 × 5 window; wiener filter
with 5 × 5 window; Gaussian filter whose mean is 0 and its standard deviation is 1.8. The
diffusion coefficient for PMD and FPMDs is selected as a Gaussian function whose standard
deviation is 2. All smoothed projection data will be reconstructed by standard FBP.

Table 1 summarized RMSE between the ideal reconstructed image and filtered
reconstructed image. The FPMD with α = 0.2 has the best performance in RMSE, while other
FPMD with α = 0.5 and α = 1.5 also has better performance than almost other comparing
methods except for 5 × 5 wiener. In summary, the FPMD has a very good performance in
RMSE. Since FPMD provides a more flexible way for diffusion than PMD, FPMD has much
good performance in denoising while preserving structures.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Shepp-Logan phantoms. (a) Original ideal reconstructed phantom. (b) Simulated LDCT
reconstructed phantom. (c) LDCT reconstructed phantom processed by 5 × 5 median filter. (d) LDCT
reconstructed phantom processed by 5 × 5 wiener filter. (e) LDCT reconstructed phantom processed
by Gaussian smoothing with [σ = 1.8, μ = 0]. (f) LDCT reconstructed phantom processed by PMD
with [σ = 2]. (g) LDCT reconstructed phantom processed by FPMD with [σ = 2, α = 0.2]. (h) LDCT
reconstructed phantom processed by FPMD with [σ = 2, α = 0.5]. (i) LDCT reconstructed phantom
processed by FPMD with [σ = 2, α = 1.5].

Comparing all the original SDCT images and L-CT images in Figures 1 and 2, we found
that the L-CT images were severely degraded by nonstationary noise and streak artifacts.
In Figures 2(g)–2(i), for the proposed FPMD approach, experiments with fractional-order
α gradually increased will obtain more smooth images. Both in Figure 1 and 2, we can
observe better noise/artifacts suppression and edge preservation when α = 0.2. Especially,
compared to their corresponding original SDCT images, the fine features representing the
intrahepatic bile duct dilatation and the hepatic cyst were well restored by using the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Abdominal CT images of a 62-year-old woman. (a) Original SDCT image with tube current time
product 150 mAs. (b) Original LDCT image with tube current time product 60 mAs. (c) LDCT image
processed by 5 × 5 median filter. (d) LDCT image processed by 5 × 5 wiener filter. (e) LDCT image
processed by Gaussian smoothing with [σ = 1.8, μ = 0]. (f) LDCT image processed by PMD with [σ = 2].
(g) LDCT image processed by FPMD with [σ = 2, α = 0.2]. (h) LDCT image processed by FPMD with
[σ = 2, α = 0.5]. (i) LDCT image processed by FPMD with [σ = 2, α = 1.5].

proposed FPMD. We can observe that, the noise grains and artifacts were significantly
reduced for the FPMD processed L-CT images with suitable α both in Figures 1 and 2. The
fine anatomical/pathological features can be well preserved compared to the original SDCT
images (Figures 1(a) and 2(a)) under standard dose conditions.

6. Conclusions

In this paper, we propose a new fractional-order PMD (FPMD) for L-CT sinogram imaging
based on G-L fractional-order derivative definition. Since FPMD is a interpolation between
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integer-order Nonlinear Anisotropic Diffusion (NAD) and fourth-order partial differential
equations, it provides a more flexible way to balance the noise reducing and anatomical
details preserving. Smoothing results for phantoms and real sinograms show that FPMD
with suitable parameters can suppress the staircase effects and speckle effects efficiently. In
addition, FPMD also has good performance in visual quality and root mean square errors
(RMSE).
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